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Abstract. In this study, we introduce and validate a novel approach for pricing American-style options.
Our model integrates stochastic volatility with a double exponential jump-diffusion process and incor-
porates a memory feature in the volatility component. We analyze the structure of the proposed model
and demonstrate its accuracy and precision using real data from the S&P 500 index. Our results show
that the model effectively captures market dynamics and provides a more accurate pricing of American
options compared to traditional models.
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1 Introduction

The first commonly used mathematical formula to determine the theoretical value of European call and
put options is the Black–Scholes option pricing model. The ability of the model to calculate fair option
pricing based on a variety of parameters such as the current stock price, the strike price of the option,
the time to expiration, the risk–free interest rate, and the volatility of the underlying stock, is what
makes it significant. However, the assumptions upon which this model is created do not accurately
represent the actual financial landscape. The primary premise is that volatility stayed constant during the
option lifetime, which ignores empirical data that shows varying levels of market volatility. Stochastic
volatility models let volatility change over time in an effort to address this issue with the Black–Scholes
model [3,5,33]. The idea behind stochastic volatility models is that, contrary to what the Black–Scholes
options pricing model assumes, the volatility of asset prices varies and is not constant. The first and
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of course the most popular option pricing model with stochastic volatility is the Heston model [18].
A stochastic volatility process based on the Cox–Ingersoll–Ross (CIR) model is incorporated into this
model. It captures the observed volatility clustering and mean reversion by allowing the volatility to vary
over time. Furthermore, a crucial aspect of options markets known as the volatility smile is captured by
the Heston model. The model may provide volatility smiles, which indicate the market expectation of
future volatility and offer a more accurate depiction of option pricing, by integrating stochastic volatility
and correlation. In the Heston model, St , an asset price at time t, is determined by a stochastic process as

dSt = rStdt +
√

VtStdWt ,

where r is a constant risk–free interest rate of the asset and Vt , the volatility of the asset price, is given by

dVt = κ (θ −Vt)dt +σ
√

VtdBt ,

where parameters σ , the volatility of volatility process, θ , the long–term price variance, and κ , the rate
of reversion to the long–term price variance are constant and also, Wt and Bt are two Brownian motions
corresponding to price and volatility processes, respectively, with correlation ρ .

In a parallel development, numerous research have proposed using a jump–diffusion modification of
the price process to price financial instruments in order to increase model flexibility and improve market
calibration. Jump–diffusion processes have been employed in finance to capture discontinuous behavior
in asset pricing, in contrast to fundamental insights into continuous time asset pricing models that have
been driven by stochastic diffusion processes with continuous sample paths. The primary goal of the
jump–diffusion models was to expand upon the Black–Scholes model by incorporating more logical
assumptions and addressing the reality that empirical research on market returns does not conform to a
log–normal distribution with constant variance. The ability of the jump–diffusion models to generate the
volatility smile that is seen in all options markets makes them intriguing as well. The first model to utilize
jump–diffusion processes in finance was introduced by a noted American economist named Robert C.
Merton in 1976 [32]. The Kou model proposed by Steven Kou in 2002 [19], as another prominent jump–
diffusion model, is very similar to the Merton model. Under this model, an asset price is described by
the equation

dSt

St
= µdt +σdWt +d

(
Nt

∑
i=1

(Xi−1)

)
,

where Wt is a standard Brownian motion, Nt is a Poisson process with rate λ , and {Xi} is a sequence of
independent identically distributed non–negative random variables such that Y = log(X) has an asym-
metric double exponential distribution with the density function as

fY (y) = pη1e−η1y
1y≥0 +qη2eη2y

1y≤0,

where η1 > 1, η2 > 0, p,q≥ 0, p+q= 1, p is the probability of the upward jumps and q is the probability
of the downward jumps. The double exponential jump–diffusion model actually matches the asset price
process better than the normal jump-diffusion model, according to empirical research. In the last decade,
many studies have examined the pricing of financial securities using the various jump–diffusion models
[6, 21, 26, 30, 31] and, moreover, research professionals in the financial industry have begun applying
jump–diffusion models as an evaluation tool [1, 20, 22, 34].
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A jump process alongside stochastic volatility, as another step towards improving the pricing issue,
has first been proposed by Bates in 1996 [2]. The model is a Heston process for stochastic volatility
with an added Merton log–normal jump. Stochastic volatility jump–diffusion model is a type of model
commonly used for equity returns that includes both stochastic volatility and jumps. The advantage of
the model is that it is possible to replicate stylized facts such as heavy tails and volatility clustering and
mean reversion, negative correlation between returns and volatility, and sudden large movements in the
price of the asset. Studies such as [17, 27, 35, 36], provide more comprehensive knowledge about this
framework.

The purpose of this work is to verify the problem of American option pricing under a fractional
stochastic volatility double exponential jump–diffusion model. As we previously discussed, the goal of
modeling volatility using a stochastic process driven by Brownian motion is to more closely approximate
the distribution of stock returns, resulting in implied volatility surfaces with smiles. Nonetheless, the
stochastic volatility models still fail to account for a few other features of the volatility (often referred
to as the stylized facts). The autocorrelation of the realized volatility time series is one of them. Efforts
have been undertaken to simulate this phenomenon in terms of a memory-based method for volatility. To
incorporate the dependence of volatility on its past values into a model, processes driven by the fractional
Brownian motion suggested [7–10,13,14,30]. A fractional Brownian motion (fBm) with Hurst parameter
H ∈ (0,1) is a Gaussian process BH = {BH

t , 0≤ t ≤ T} with E[BH
t ] = 0 and the covariance function

RH(t,s) =
1
2
(t2H + s2H − (t− s)2H), t,s ∈ [0,T ].

If H = 1
2 , then RH(t,s) = min(t,s) and BH

t is the standard Brownian motion. In the case H ∈ (1
2 ,1), the

increments of the process are positively correlated; however, in the case H ∈ (0, 1
2), the increments of the

process are negatively correlated.
The rough volatility model is a novel kind of stochastic volatility model that was recently proposed

in [4,16] and has attracted a lot of interest from academics and industry. The salient feature of this model
is its assumption that a fractional Brownian motion, rather than a conventional Brownian motion, is what
drives the latent stochastic volatility process (e.g., in traditional stochastic (local) volatility models).
Because of the fractional Brownian motion driver, the volatility process trajectories are continuous but
have irregular route characteristics. According to empirical research shown in [16], at any appropriate
time scale, the log–volatility effectively behaves like a fractional Brownian motion with a Hurst exponent
H of order 0.1. In [15], more empirical evidence is presented. The authors developed a quasi–likelihood
estimator and applied it to realized volatility time series. They verified that the Hurst parameter is much
less than half, indicating that volatility is, in fact, rough.

The rough volatility model has been incredibly successful in simulating implied volatility smiles for
SPX options as well as numerous stylized facts of historical volatility time series. Rough volatility mod-
els, especially for at-the-money skew curves, offer a very precise fit to the implied volatility smile shape.
They also reproduce stylized facts for realized volatility [12, 23]. On the other hand, it is consistent with
economic micro–structural models and naturally emerges from economic agents behaviors, as shown
in [11]. In this work, we exploit this process and present a new stochastic volatility jump–diffusion
model with the intention of pricing an exotic option.

The reminder of this paper is organized as follows. Section 2 makes known the structure of our model
as “rough stochastic volatility double exponential jump–diffusion model”. Section 3 proves the existence
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and uniqueness of solution related to this model. Section 4 reports numerical experiments referring to a
S&P500 index as data set. Finally, Section 5 concludes the paper.

2 The model

We consider the asset price {St , t ∈ [0,T ]} which is defined on a filtered probability space (Ω,F ,F,P),
where F = {Ft}t≥0 denotes the standard filtration generated by a two–dimensional F–Brownian mo-
tion (Bt ,B⊥t ) and Wt = ρBt +

√
1−ρ2B⊥t with constant correlation ρ ∈ (−1,1). The Heston stochastic

volatility model with double exponential jumps is defined as{
dSt = rStdt +

√
VtStdWt +d

(
∑

Nt
i=1(Xi−1)

)
,

dVt = κ (θ −Vt)dt +σ
√

VtdBt .

A fractional Brownian motion BH
t with Hurst parameter H ∈ (0,1) can be built through the Mandelbrot-

van Ness representation [28] as follows

BH
t =

1
Γ(H +1/2)

∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2

)
dWs +

1
Γ(H +1/2)

∫ t

0
(t− s)H− 1

2 dWs,

where the kernel (t− s)H− 1
2 plays a crucial role in the rough dynamic of the fractional Brownian motion

for H < 1
2 . In order to allow for a rough behavior of the volatility in a Heston–type model with double

exponential jumps, the kernel (t− s)α−1 is introduced asdSt = rStdt +
√

VtStdWt +d
(

∑
Nt
i=1(Xi−1)

)
,

Vt =V0 +
1

Γ(α)

∫ t
0(t− s)α−1κ (θ −Vs)ds+ 1

Γ(α)

∫ t
0(t− s)α−1σ

√
VsdBs,

(1)

where the parameters κ , θ and σ are positive and play the same role as in the classical Heston model, and
here also W and B are two Brownian motions with correlation ρ . The additional parameter α := H + 1

2
belongs to (1

2 ,1) and governs the smoothness of the volatility sample paths.
But the existence of the fractional kernel forces the variance process to leave both the semi–martingale

and Markovian properties. To deal with such a problem in our rough stochastic volatility jump–diffusion
model, encouraged by Cui et al. [25], who performs a semi–martingale approximation to the rough
stochastic volatility models, we approximate the fractional kernel (t − s)H− 1

2 by a perturbed kernel
(t + ε − s)H− 1

2 with 0 < ε << 1. Based on this approximation, the volatility process Vt in system (1)
would be approximated by the semi–martingale process

V ε
t =V ε

0 +
1

Γ(α)

∫ t

0
(t + ε− s)α−1

κ (θ −Vs)ds+
1

Γ(α)

∫ t

0
(t + ε− s)α−1

σ
√

VsdBs.

So, according to what was mentioned, our goal model to verify an American style option price process
is defined asdSt = rStdt +

√
VtStdWt +d

(
∑

Nt
i=1(Xi−1)

)
,

V ε
t =V ε

0 + 1
Γ(α)

∫ t
0(t + ε− s)α−1κ (θ −Vs)ds+ 1

Γ(α)

∫ t
0(t + ε− s)α−1σ

√
VsdBs.

(2)

Hereinafter referred to study the existence and uniqueness solutions of the price St and the volatility
V ε

t processes in our proposed system (2).
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3 Examination of the model

In this section, we verify the existence and uniqueness of the solution to the price and volatility equations
of rough Heston jump–diffusion model.

Theorem 1. There exists a unique solution to jump diffusion process

St =
∫ t

0
f (Ss,V ε

s ) ds+
∫ t

0
g(Ss,V ε

s ) dWs +
∫ t

0

∫
R−0

γ(Ss,y)Ñ (ds,dy) , (3)

where Ñ (dt,dy) is the compensated Poisson random measure given by Ñ (dt,dy) = N (dt,dy)−dtν(dy).
Here, ν(dy) is the Lévy measure associated to N.

We first state the following assumptions that guarantee the existence and uniqueness of the solution
to Equation (3).

Assumption 1. Locally Lipschitz condition. For every integer n≥ 1, there exists a positive constant Cn

such that for all x, x̄,v, v̄ ∈ Rd with |x|∨ |x̄|∨ |v|∨ |v̄| ≤ n, we have

| f (x,v)− f (x̄, v̄)|+ |g(x,v)−g(x̄, v̄)|+
∫
{|y|<Cn}

|γ(x,y)− γ(x̄,y)|ν(dy)≤Cn
(
|x− x̄|2 + |v− v̄|2

)
.

Assumption 2. Linear growth condition. There exists a positive constant C such that for all (x,v) ∈
Rd×Rd ,

| f (x,v)|2 + |g(x,v)|2 +
∫
{|y|<C}

|γ(x,y)|2ν(dy)≤C
(
1+ |x|2 + |v|2

)
.

Proof. To prove the uniqueness of the solution, let Ŝt and S̄t be two solutions to Eq. (3). For each n ∈N,
define τn = inf{t ∈ [0,T ] : |V ε

t | ≥ n}. Then for any t ≤ T , we have

E
[

sup
u≤t∧τn

∣∣Ŝu− S̄u
∣∣2]= E

[∣∣∣∣∫ t∧τn

0

(
f (Ŝs,V ε

s )− f (S̄s,V ε
s )
)

ds

+ sup
u≤t∧τn

∫ u

0

(
g(Ŝs,V ε

s )−g(S̄s,V ε
s )
)

dWs

+ sup
u≤t∧τn

∫ u

0

∫
R−{0}

(
γ(Ŝs,y) − γ(S̄s,y)

)
Ñ (ds,dy)

∣∣∣∣2]
≤ E

[
3
∣∣∣∣∫ t∧τn

0

(
f (Ŝs,V ε

s )− f (S̄s,V ε
s )
)

ds
∣∣∣∣2

+3 sup
u≤t∧τn

∣∣∣∣∫ u

0

(
g(Ŝs,V ε

s ) −g(S̄s,V ε
s )
)

dWs

∣∣∣∣2
+3 sup

u≤t∧τn

∣∣∣∣∫ u

0

∫
R−{0}

(
γ(Ŝs,y) − γ(S̄s,y)

)
Ñ (ds,dy)

∣∣∣∣2].
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Using Jensen inequality, we get

E
[

sup
u≤t∧τn

∣∣Ŝu− S̄u
∣∣2]≤ 3E

[∣∣∣∣∫ t∧τn

0

(
f (Ŝs,V ε

s )− f (S̄s,V ε
s )
)

ds
∣∣∣∣2
]

+3E

[
sup

u≤t∧τn

∣∣∣∣∫ u∧τn

0

(
g(Ŝs,V ε

s ) −g(S̄s,V ε
s )
)

dWs

∣∣∣∣2
]

+3E

[
sup

u≤t∧τn

∣∣∣∣∫ u

0

∫
R−{0}

(
γ(Ŝs,y)− γ(S̄s,y)

)
Ñ(ds,dy)

∣∣∣∣2
]

According to L2–norm, Doob’s inequality and It̂o’s isometry, we obtain

E
[

sup
u≤t∧τn

∣∣Ŝu− S̄u
∣∣2]≤ 3L2t E

[∫ t∧τn

0

∣∣ f̂ − f̄
∣∣2du

]
+3L2 E

[∫ t∧τn

0

∣∣ĝ− ḡ
∣∣2du

]
+3L2 E

[∫ t∧τn

0

∫
R−{0}

∣∣γ(Ŝu,y)− γ(S̄u,y)
∣∣2ν(dy)du

]
,

and by Assumption 1,

E
[

sup
u≤t∧τn

∣∣Ŝu− S̄u
∣∣2]≤ 3C2

nL2 (t +2)
∫ t

0
E
[

sup
u≤s∧τn

∣∣Ŝu− S̄u
∣∣2]ds.

Now, defining ϕ(t) = E
[
supu≤t∧τn

∣∣Ŝu− S̄u
∣∣2] results in

ϕ(t)≤ 3C2
nL2(t +2)

∫ t

0
ϕ(s)ds.

The required assertion now follows from the Gronwell inequality.
Now, we verify the existence of the solution to Equation (3). Denote,

S(n+1)
t =

∫ t

0
f
(

S(n)u ,V ε
u

)
du+

∫ t

0
g
(

S(n)u ,V ε
u

)
dWu +

∫ t

0

∫
R−0

γ

(
S(n)u ,y

)
Ñ (du,dy)

Applying the Picard iteration method and S(0)t = 0, for each n ∈ N and t ∈ [0,T ], we have

S(n+1)
t −S(n)t =

∫ t

0

(
f (S(n)u ,V ε

u )− f (S(n−1)
u ,V ε

u )
)

du

+
∫ t

0

(
g(S(n)u ,V ε

u )−g(S(n−1)
u ,V ε

u )
)

dWu

+
∫ t

0

∫
R−0

(
γ(S(n)u ,y)− γ(S(n−1)

u ,y)
)

Ñ (du,dy) .
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Similar computations as for the uniqueness and BDG’s inequality, gives

E
[

sup
u≤t∧τn

|S(n+1)
u −S(n)u |2

]
≤CE

[
sup

u≤t∧τn

∣∣∫ u

0

(
f (S(n)s ,V ε

s )− f (S(n−1)
s ,V ε

s )
)

ds
∣∣2]

+CE
[

sup
u≤t∧τn

∣∣∫ u

0

(
g(S(n)s ,V ε

s )−g(S(n−1)
s ,V ε

s )
)

dWs
∣∣2]

+CE
[

sup
u≤t∧τn

∣∣∫ u

0

∫
R−0

(
γ(S(n)s ,y)− γ(S(n−1)

s ,y)
)

Ñ (ds,dy)
∣∣2]

≤CE
[∫ t∧τn

0

∣∣ f (S(n)u ,V ε
u )− f (S(n−1)

u ,V ε
u )
∣∣2du

]
+CE

[∫ t∧τn

0

∣∣g(S(n)u ,V ε
u )−g(S(n−1)

u ,V ε
u )
∣∣2du

]
+CE

[∫ t∧τn

0

∫
R−0

∣∣γ(S(n)u ,y)− γ(S(n−1)
u ,y)

∣∣2ν(dy)du
]

≤CE

[∫ t∧τn

0
sup

s∈[0,u]

∣∣S(n)s −S(n−1)
s

∣∣2du

]
, (4)

for some constant C, and from the Assumption 2, we have

E
[

sup
u≤t∧τn

|S(1)u |2
]
≤CE

[
sup

u≤t∧τn

∣∣∫ u

0
f
(

S(0)s ,V ε
s

)
ds
∣∣2]

+CE
[

sup
u≤t∧τn

∣∣∫ u

0
g
(

S(0)s ,V ε
s

)
dWs
∣∣2]

+CE
[

sup
u≤t∧τn

∣∣∫ u

0

∫
R−0

γ

(
S(n)s ,y

)
Ñ (ds,dy)

∣∣2]
≤CE

[∫ t∧τn

0

∣∣ f (S(0)u ,V ε
u

)∣∣2du
]

+CE
[∫ t∧τn

0

∣∣g(S(0)u ,V ε
u

)∣∣2du
]

+CE
[∫ t∧τn

0

∫
R−0

∣∣γ (S(0)u ,y
)∣∣2ν(dy)du

]
≤C. (5)

So by induction based on Eqs. (4) and (5), for all n ∈ N, we obtain the key estimate

E
[

sup
u≤t∧τn

∣∣S(n+1)
u −S(n)u

∣∣2]≤ C
n!
. (6)

Our first observation is that (S(n)t ,n ∈ N) is convergent in L2(Ω) for each t ∈ [0,T ]. Indeed, for each
m,n ∈ N, we have, for each t ∈ [0,T ],

E
[∣∣S(n)t −S(m)

t
∣∣2]≤C

n−1

∑
k=m

E
[∣∣S(k+1)

t −S(k)t
∣∣2]≤C

n−1

∑
k=m

1
k!
.
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Since the series on the right converges, each (S(n)t ,n ∈ N) is Cauchy and hence, convergent to some
St ∈ L2(Ω) for every t ∈ [0,T ]. Now we establish the almost sure convergence of (S(n)t ,n ∈N, t ∈ [0,T ]).
Apply the Chebyshevs inequality in Eq. (6), we deduce that

P
[

sup
u≤t∧τn

∣∣S(n+1)
u −S(n)u

∣∣≥ 1
2n

]
≤ C

n!
,

from which we have

P
[

limsup
n→∞

sup
u≤t∧τn

∣∣S(n+1)
u −S(n)u

∣∣≥ 1
2n

]
= 0,

by Borel-Cantellis lemma. Therefore, we deduce that (S(n)t ,n ∈ N, t ∈ [0,T ]) is almost surely uniformly
convergent to (St , t ∈ [0,T ]) and consequently,∫ t∧τn

0
f
(

S(n)u ,V ε
u

)
du−→

∫ t∧τn

0
f (Su,V ε

u )du,∫ t∧τn

0
g
(

S(n)u ,V ε
u

)
dWu −→

∫ t∧τn

0
g(Su,V ε

u )dWu,∫ t∧τn

0

∫
R−0

γ

(
S(n)u ,y

)
Ñ (du,dy)−→

∫ t∧τn

0

∫
R−0

γ (Su,y) Ñ (du,dy) ,

as n→ ∞. So the desired result would be produced.

In what follows, we study the existence and uniqueness of the solution to approximated rough
stochastic volatility V ε

t in system (2).

Theorem 2. Under locally Lipschitz and linear growth conditions [29], the process V ε
t admits a unique

solution.

Proof. To prove the uniqueness of the solution, let V̂ ε
t and V̄ ε

t be two solutions of process V ε
t . For every

integer n≥ 1, define
τ̂n := T ∧ inf{t ∈ [0,T ] : |V̂ ε

t | ≥ n},
and also,

τ̄n := T ∧ inf{t ∈ [0,T ] : |V̄ ε
t | ≥ n}.

Set τn := τ̂n∧ τ̄n. Then

E
[
|V̂ ε

t∧τn
−V̄ ε

t∧τn
|2
]
= E

[
| 1
Γ(α)

∫ t∧τn

0
(t + ε−u)α−1

κ
(
V̂ ε

u −V̄ ε
u )
)

du

+
1

Γ(α)

∫ t∧τn

0
(t + ε−u)α−1

σ

(√
V̂ ε

u −
√

V̄ ε
u

)
dBu|2

]
≤ 2E

[ 1
Γ(α)

|
∫ t∧τn

0
(t + ε−u)α−1

κ
(
V̂ ε

u −V̄ ε
u )
)

du|2
]

+2E
[ 1

Γ(α)
|
∫ t∧τn

0
(t + ε−u)α−1

σ

(√
V̂ ε

u −
√

V̄ ε
u

)
dBu|2

]
≤ 2tκ2

Γ(α)
E
[∫ t∧τn

0
(t + ε−u)2(α−1)|V̂ ε

u −V̄ ε
u |2du

]
+

2σ2

Γ(α)
E
[∫ t∧τn

0
(t + ε−u)2(α−1)|

√
V̂ ε

u −
√

V̄ ε
u |2du

]
.
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Given local condition, there exists a > 0, so that

E
[
|V̂ ε

t∧τn
−V̄ ε

t∧τn
|2
]
≤ 2T κ2

Γ(α)
E
[∫ t∧τn

0
(t + ε−u)2(α−1)|V̂ ε

u −V̄ ε
u |2du

]
+

2σ2

a2Γ(α)
E
[∫ t∧τn

0
(t + ε−u)2(α−1)|V̂ ε

u −V̄ ε
u |2du

]
,

and from the local Lipchits conditin, we have

E
[
|V̂ ε

t∧τn
−V̄ ε

t∧τn
|2
]
≤ 1

Γ(α)

(
T κ

2 +
σ2

a2

)
C2

n

∫ t

0
(t + ε−u∧ τn)

2(α−1)E
[
|V̂ ε

u∧τn
−V̄ ε

u∧τn
|2
]
du.

Now, we apply the Gronwall inequality to conclude that {V̂ ε
t∧τn

,0 ≤ t ≤ T} and {V̄ ε
t∧τn

,0 ≤ t ≤ T} are
modification of each another and thus are indiscernible. Letting n→ ∞, we see that the same is true for
{V̂ ε

t ,0≤ t ≤ T} and {V̄ ε
t ,0≤ t ≤ T}.

To prove the existence of the solution, we define V ε(0)
t :=V ε

0 =V0 and V ε(n)
t :=V ε(n)

t (ω) inductively
as follows,

V ε(n+1)
t =V ε

0 +
1

Γ(α)

∫ t

0
(t + ε−u)α−1

κ

(
θ −V ε(n)

u

)
du+

1
Γ(α)

∫ t

0
(t + ε−u)α−1

σ

√
V ε(n)

u dBu.

Then similar computation as the uniqueness, we have

E
[
|V ε(n+1)

t∧τn −V ε(n)
t∧τn |

2]≤ 2
Γ(α)

(
T κ

2 +
σ2

a2

)
C2

n

∫ t

0
(t + ε−u∧ τn)

2(α−1)E
[
|V ε(n)

u∧τn−V ε(n−1)
u∧τn |2

]
du,

for n≥ 1, t ≤ T and

E
[
|V ε(1)

t −V ε(0)
t |2

]
≤ 2

Γ(α)

(
T κ

2 +
σ2

a2

)
C2 (1+E

[
|V ε

t |2
])

≤C. (7)

By induction on n, we have

E
[
|V ε(n+1)

t∧τn −V ε(n)
t∧τn |

2]≤ C
n!
.

The required assertion now follows from the Doob martingale inequality and the Fatou lemma.

4 Numerical illustration

In this section, we examine the American put option on an underlying asset whose price is approximated
by the rough Heston jump-diffusion model (2).

An American option is a type of financial derivative that gives the holder the right, but not the
obligation, to buy (in the case of a call option) or sell (in the case of a put option) an underlying asset at a
specified strike price at any time before or on the expiration date. This flexibility to exercise the option at
any point up to maturity adds a layer of complexity to the pricing model compared to European options,
which can only be exercised at expiration.
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In the field of option pricing, pricing American–style options is a significant issue. One of the most
effective and straightforward solutions for this type of problem is the Least–Square Monte–Carlo (LSM)
method, which is based on the Longstaff–Schwarts algorithm [24].

The LSM method is based on the property that the conditional expectation of a random process
minimizes the mean squared distance between a simulated sample of this process and an adopted Borel
measurable function approximated by a regression in a subspace of basis functions. Here, we provide a
detailed explanation of the steps involved:

To accurately price an American option under this complex model, we follow these detailed steps:

1. Simulate Asset Price Paths:

• Use Monte Carlo methods to generate multiple paths for the underlying asset price St and the
volatility V ε

t .

• Incorporate jumps in St by generating Poisson-distributed jump times and double exponential
jump sizes.

2. Initialize Payoff Matrix:

• Calculate the intrinsic value (payoff) of the American option at each time step for all simu-
lated paths.

• For a put option, the payoff is max(K−St ,0), where K is the strike price.

3. Backward Induction Using LSM:

• Begin with the terminal payoff at maturity and proceed backward to the initial time.

• At each time step, identify paths where the option is in-the-money (i.e., the intrinsic value is
positive).

• Estimate the continuation value (CV) via polynomial regression on the current asset price.

• Update the option value by comparing the payoff and the estimated CV, taking the maximum
to reflect the possibility of early exercise.

• Apply the discount factor to account for the time value of money.

4. Calculate the Option Price:

• The final American option price is obtained by averaging the option values across all simu-
lated paths at the initial time step.

The volatility process is given by

V ε
t =V ε

0 +
1

Γ(α)

∫ t

0
(t + ε− s)α−1

κ (θ −Vs)ds+
1

Γ(α)

∫ t

0
(t + ε− s)α−1

σ
√

VsdBs,

where 0 < ε � 1. The steps for discretizing this process are as follows:

1. Time Discretization:

• Divide the time interval [0,T ] into N steps with a small time increment ∆t = T
N .
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• Let t j = j∆t for j = 0,1, . . . ,N.

• Use the Euler-Maruyama method to approximate solutions of the stochastic differential equa-
tions.

2. Discretize Mean-Reverting Component:

• Approximate the integral
∫ t j

0 (t j +ε− s)α−1κ(θ −Vs)ds using a discrete sum over time steps:

∫ t j

0
(t j + ε− s)α−1

κ(θ −Vs)ds≈
j−1

∑
k=0

(t j + ε− tk)α−1
κ(θ −Vtk)∆t.

3. Discretize Stochastic Component:

• Approximate the integral
∫ t j

0 (t j + ε − s)α−1σ
√

VsdBs using a discrete sum and Brownian
motion increments:∫ t j

0
(t j + ε− s)α−1

σ
√

VsdBs ≈
j−1

∑
k=0

(t j + ε− tk)α−1
σ
√

Vtk ∆Btk ,

where ∆Btk is the Brownian motion increment.

The asset price dynamic is given by

dSt = rStdt +
√

VtStdWt +d

(
Nt

∑
i=1

(Xi−1)

)
.

The steps for discretizing this process are as follows:

• Discretize this process using the Euler-Maruyama scheme and include the jump component:

St j+1 = St j +St j(r−q)∆t +St j

√
Vt j ∆Wt j + Jump Component.

• The jump component is given by:

Jump Component =
N∆t

∑
i=1

(Xi−1),

where N∆t is the Poisson-distributed number of jumps within the time step ∆t and Xi are the
i.i.d. jump sizes following a double exponential distribution.

By following these steps, we can effectively price American options under our complex model, cap-
turing the nuances of market dynamics and providing accurate pricing. In this work, we take advantage
of this framework and study the behavior of the American put option prices from Aug. 2019 to Sep.
2019, Oct. 2019, Nov. 2019, Dec. 2020 and Jan. 2021, respectively, in order to confirm the accuracy
and efficiency of our presented model. The adopted parameters related to our study include κ = 0.1669,
θ = 0.2930, σ = 0.1436, ρ =−0.5, λ = 1, p = 0.5, η1 = 25, η2 = 30, and H = 0.3.
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(a) Heston–model and SPY prices (b) RHJd–model and SPY prices

Figure 1: Log–Normal probability test for prices generated by Heston model, Rough Heston Jump–diffusion
(RHJd) model and SPY market for a maturity time of 499 days.

(a) Heston–model and SPY prices (b) RHJd–model and SPY prices

Figure 2: Log–Normal probability test for prices generated by Heston model, Rough Heston Jump–diffusion
(RHJd) model and SPY market for a maturity time of 527 days.

Figures 1 and 2 demonstrate log–normal probability test for the prices predicted by the Heston model,
the rough Heston jump-diffusion model, and the prices of the SPY market for two maturity times of 499
and 527 days.

In Figures 3 to 8, we provide a comparison of the American put option price estimated by the classical
Heston model and the rough Heston jump–diffusion model by considering SPY American put option data
with expiration dates 19, 54, 72, 100, 499, and 527 days as a set of benchmark data in which the initial
stock price is 287.97. As shown, both models perform well in assessing the market for short–term dates.
But, for long–term dates, the accuracy of rough Heston jump–diffusion model in evaluating our sample
of data is evident.
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Figure 3: The American put option price estimated by the Heston (up) and rough Heston jump–diffusion (down) models vs. SPY market
data from Aug. 2019 for time to maturity T of 19 days.
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Figure 4: The American put option price estimated by the Heston (up) and rough Heston jump–diffusion (down)
models vs. SPY market data from Aug. 2019 for time to maturity T of 54 days.
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Figure 5: The American put option price estimated by the Heston (up) and rough Heston jump–diffusion (down)
models vs. SPY market data from Aug. 2019 for time to maturity T of 72 days.
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Figure 6: The American put option price estimated by the Heston (up) and rough Heston jump–diffusion (down)
models vs. SPY market data from Aug. 2019 for time to maturity T of 100 days.
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Figure 7: The American put option price estimated by the Heston (up) and rough Heston jump–diffusion (down)
models vs. SPY market data from Aug. 2019 for time to maturity T of 499 days.
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Figure 8: The American put option price estimated by the Heston (up) and rough Heston jump–diffusion (down)
models vs. SPY market data from Aug. 2019 for time to maturity T of 527 days.
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5 Conclusion

In this study, we introduced and validated a novel stochastic volatility model incorporating a double
exponential jump-diffusion process with a memory feature embedded in the volatility component. To
demonstrate the practical application of our model, we conducted a case study focusing on the pricing
of American options. Using the LSM algorithm, we priced these options and compared the results with
those from the classical Heston model and real data from the S&P 500 index options. The comparative
analysis revealed that our proposed model accurately captures the market dynamics and provides precise
and reliable pricing of American options. The inclusion of the memory feature and double exponential
jumps not only enhances the model’s realism but also its robustness. Our findings underscore the sig-
nificance of integrating these features for more accurate pricing of financial derivatives, validating the
effectiveness and reliability of our approach.
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