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Abstract. A two-dimensional strip packing problem is the process of packing a set of rectangular items
of given dimensions into a strip of bounded width and infinite height so that the used height of the strip
is minimized. In the case that only guillotine packing is permitted, the problem is called the guillotine
strip packing problem (GSPP). Guillotine packing commonly arises in different industries such as glass,
steel, paper and wood. Nevertheless, there is a lack of explicit mathematical models for GSPP that can
globally solve the problem. In this paper, a new mixed-integer programming model inspired by a so-
called sequence sub-tour elimination technique for the traveling salesman problem (TSP) is presented as
a relaxation of (non-staged) GSPP with orthogonal rotation. The proposed model is able to find good
solutions (good upper bounds) for the optimal objective value and more importantly, it is a polynomial
model of order O(n2), i.e. the number of decision variables (and constraints, as well) is a polynomial
of order O(n2) in the number of the rectangular items (n). Numerical results show that the solutions
obtained from the proposed model are superior to several existing heuristic algorithms in the literature.
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1 Introduction

Two-Dimensional Strip Packing Problem (2D-SPP) is the problem of determining the best way of pack-
ing specified smaller rectangular items into a single bin (strip) of bounded width and infinite height so
that the used height of the strip is minimized. The problem is strongly NP-hard and it is well-known
in production planning for a number of industries such as glass, steel, paper, newspaper printing, wood,
transportation (to load containers), etc. [14]. In this paper, we assume that only orthogonal cuts are con-
sidered i.e. sides of each item are needed to be parallel to the sides of strip. While in the basic form of the
problem, the items are assumed to have fixed orientation, orthogonal (90-degree) rotation of the items is
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allowed in our model. A guillotine (packing) pattern is a pattern that its items can be obtained through a
series of guillotine cuts (also called edge-to-edge cuts) on the strip. This type of cuts is common in sev-
eral industries such as the glass, wood and paper industries. Clearly, imposing guillotine constraints may
lead to worse optimal patterns. If the total number of horizontal and vertical guillotine cuts is limited by
a constant k, k-staged strip packing problem is obtained. Note that in this case, all parallel cuts which
can be performed simultaneously are counted one time. The problem is called level packing when k = 2.
In several papers different heuristics and approximation algorithms are developed for two-dimensional
packing/cutting problems, including on-line algorithms [9], constructive heuristics [2, 5], set covering
based heuristics [11,25], local search [1,33] and metaheuristics [15,16,28,31] among others. Also, sev-
eral relaxation techniques have been proposed to provide (lower/upper) bounds for these problems [3,4].
For a relatively comprehensive survey on heuristics and relaxations, one can refer to [14] and the refer-
ences therein. Heuristic approaches can obtain a feasible solution in a reasonable time, however there
are few articles in the literature in which the achievement of an optimal solution is considered. Exact
methods are, actually, Mixed-Integer Linear Programming (MILP) formulations that are solved using
suitable MILP solvers. These formulations can be classified into three categories: polynomial, pseudo-
polynomial and exponential models.

- Exponential models
Exponential models for two-dimensional packing/cutting problems can be divided into two types.

Some of them relate variables to feasible patterns which leads to an exponential number of variables
and they usually are implemented through a column generation framework. Some others are based on
Benders’ decomposition (leading an exponential number of constraints). To review this class of models,
see [14] and the references therein.

- Pseudo-polynomial models
Pseudo-polynomial models relate variables to the positions into the bins where the items can be

packed. Hence the number of decision variables and constraints depend on the discretization of the
packing area. In such models, decision variables are usually related to the bottom-left corner of an item
in the pattern. Several families of pseudo-polynomial models are proposed in the literature, including
Arc-flow formulation [20, 26], One-cut models [12, 32] and Scheduling inspired models [6, 7] among
others.

- Polynomial models
Polynomial models for packing problems are those that associate variables to the items. In such mod-

els, the number of decision variables (as well as the number of constraints) is a polynomial in the number
of rectangular items. The authors in [8] considered the possible positions of each pair of items relative to
each other and presented a polynomial mixed-integer model for the two-dimensional packing problem.
A slight modification of the polynomial models of Chen et al. was presented in [17]. These polynomial
models consider, in fact, the assortment problem (i.e., the case in which the number of bins is limited to
one). Huang et al. [13] extended the mentioned polynomial models to a general 2D-CSP . None of the
mentioned polynomial models is restricted to guillotine cuts. Guillotine constraints were proposed for
level packing problems [18] and 2-staged knapsack problems [19]. These models were extended to the 3-
staged case of the 2D-BPP [29] and to the 2-staged 2D-CSP with variable-sized bins [10]. Necessary and
sufficient conditions for characterizing guillotine patterns were proposed in [23] and based on this char-
acterization, the guillotine constraints were formulated as linear inequalities. However, the model of [23]
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is of order O(n4) where n is the number of the rectangular items. Having too many binary variables and
constraints, this model is impractical and only has been tested on very small-sized instances (n = 5).
In [22] two-dimensional guillotine placement problem was addressed and pseudo-polynomial and com-
pact integer non-linear formulations were proposed for the problem and then equivalent MILP formu-
lations were presented. Very recently, [30] proposed a compact mixed-integer formulation (which is a
general heuristic model) for 2D guillotine cutting problems. Computational experiments were conducted
comparing the proposed model with the 2D guillotine single knapsack problem and the 2D guillotine
cutting stock and bin packing problems. As a limitation, the proposed model is not able to include some
patterns. To overcome this weakness, an exact version of the model was proposed by the same authors,
but the exact version (although general and theoretically interesting) is not computationally competitive.

In the present paper, we propose an O(n2) polynomial MILP relaxation of the GSPP. Although our
model does not guarantee the achievement of optimal patterns, it can be applied in problems much larger
in size compared to [23]. Indeed, numerical results show that the solutions obtained from our model are
superior to several existing heuristic algorithms in the literature for not too large instances. Furthermore,
our model has the advantage over previous k-staged mathematical models (such as [18, 19] and [29])
that it is not limited to 2-staged and 3-staged patterns. The rest of the paper is organized as follows:
The proposed polynomial MILP relaxation of the GSPP is presented in Section 2. Section 3 reports the
results of a numerical experiment and certifies the performance of the presented model. Finally, Section
4 concludes the paper and provides some directions to the future extensions.

2 The MILP relaxation

In this section, we aim to propose a mathematical model that is a relaxation of the GSPP. First we
present a polynomial non-guillotine strip packing problem (NGSPP) and then we modify it to exclude
non-guillotine patterns.

2.1 An MILP model for NGSPP

Assume that n items must be packed on a strip of width W and infinite height using a minimum length
of the strip. To mathematically formulate the problem, we use the following parameters and decision
variables, as they were used in [8] and [17]:
Parameters:

n: The number of given rectangular items to be packed.
(pi,qi): The width and length of a given rectangular item i for i = 1,2, . . . ,n.
x̄: The width of the strip.
ȳ: An upper bound of the required length of the strip. It can be simply chosen as ȳ = ∑

n
i=1 qi if no

better bound is known.
I: The set of indices of rectangular items (I = {1,2, ...,n}).

Decision variables:
(xi,yi): The bottom-left coordinates of rectangular item i.
(ai j,bi j,ci j,di j): A set of binary variables used to express the non-overlapping conditions for a pair

of items i and j.
si: A binary variable which indicates orientation of item i. si = 1 if the side with size pi of rectangular

item i is parallel to the x-axis; otherwise, si = 0.
Y : The used length of the strip.
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Using the above notation, the NGSPP can be expressed as:

Minimize Y (1)

s.t.

x j + p js j +q j(1− s j)≤ xi + x̄(1−ai j) i, j ∈ I, i < j, (2)

xi + pisi +qi(1− si)≤ x j + x̄(1−bi j) i, j ∈ I, i < j, (3)

y j +q js j + p j(1− s j)≤ yi + ȳ(1− ci j) i, j ∈ I, i < j, (4)

(SPP) yi +qisi + pi(1− si)≤ y j + ȳ(1−di j) i, j ∈ I, i < j, (5)

ai j +bi j + ci j +di j = 1 i, j ∈ I, i < j, (6)

xi + pisi +qi(1− si)≤ x̄ i ∈ I, (7)

yi +qisi + pi(1− si)≤ Y i ∈ I, (8)

xi ≥ 0,yi ≥ 0,si ∈ {0,1} i ∈ I, (9)

ai j,bi j,ci j,di j ∈ {0,1} i, j ∈ I, i < j. (10)

Remark 1. Constraints (2)-(5) prevent overlapping of each pair of distinct items i and j. In fact, based
on the values of ai j, bi j, ci j and di j, one of the following cases can occur for each rectangular items i and
j:

2.2 Sufficient conditions for excluding non-guillotine patterns

In order to derive sufficient conditions for guaranteeing the patterns to be guillotinable, we propose to
use a sequence idea inspiring the idea of [24] for sub-tour elimination in the Traveling Salesman Problem
(TSP).

Definition 1. An edge e is called an obstacle to another edge e′ if the guillotine cut along e′ passes
through e, and e is the closest edge to e′ (among the edges of the object to which it belongs) that has this
property.

For example, in the following figure, the right edge of i is an obstacle for the top edge of j (while the
left edge of i is not an obstacle). Furthermore, the left edge of j is an obstacle for the bottom edge of i
(while the right edge of j is not an obstacle).
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Now, corresponding to each edge of a rectangular item i ∈ I, we consider a scalar label as follows:
zil: the label related to the left edge of item i;
zir: the label related to the right edge of item i;
zib: the label related to the bottom edge of item i;
zit : the label related to the top edge of item i.

Lemma 1. Consider a feasible solution (x,s,a,b,c,d) of the problem SPP defined by (1)-(10). Then, the
following two statements are equivalent:
(s1) There exists a set z = {zil,zir,zit ,zib : i ∈ I} of labels that satisfy the following conditions for each
distinct items i and j in I:

(i) if x j < xi < x j + p js j +q j(1− s j) then zil > z jtc(i j)+ z jbd(i j), (11)

(ii) if x j < xi + pisi +qi(1− si)< x j + p js j +q j(1− s j) then zir > z jtc(i j)+ z jbd(i j), (12)

(iii) if y j < yi < y j +q js j + p j(1− s j) then zib > z jlb(i j)+ z jra(i j), (13)

(iv) if y j < yi +qisi + pi(1− si)< y j +q js j + p j(1− s j) then zit > z jlb(i j)+ z jra(i j), (14)

where,

a(i j) :=
{

ai j i < j
b ji j < i

, (15)

b(i j) :=
{

bi j i < j
a ji j < i

, (16)

c(i j) :=
{

ci j i < j
d ji j < i

, (17)

d(i j) :=
{

di j i < j
c ji j < i

. (18)

(s2) For each arbitrary couple of edges e and e′ in the pattern related to (x,s,a,b,c,d), if e is an obstacle
to e′ then e takes a smaller label than e′.

Proof. Note that the if-clauses in the conditions (i)-(iv) cover all possible situations that an arbitrary edge
e (belong to an arbitrary item j) is an obstacle to another edge e′ (belong to an arbitrary item i). To prove
that (s1) implies (s2), it is sufficient to show that the then-clauses guarantee that in all such situations, e
takes a smaller label than e′. Condition (i) deals with the situations that either the top edge or the bottom
edge of item j is an obstacle for the left edge of item i:
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In the case (i-a), we have either c(i j) = ci j = 1 and d(i j) = di j = 0 (if i < j) or c(i j) = d ji = 1 and
d(i j) = c ji = 0 (if i > j); and hence, Condition (i) guarantees that the label of the left edge of the item i
must be greater than the label of the top edge of the item j i.e. zil > z jt . Similarly, in the case (i-b), we
have c(i j) = ci j = 0 and d(i j) = di j = 1 (if i < j) or c(i j) = d ji = 0 and d(i j) = c ji = 1 (if i > j); and hence,
Condition (i) guarantees that the label of the left edge of i must be greater than the label of the bottom
edge of j i.e. zil > z jb. Similar discussions can be made for Conditions (ii)-(iv). Hence, (s1) implies (s2).
The proof of the reverse direction is quite straightforward.

Remark 2. Condition (ii), presented in (12), deals with the situations that either the top edge or the
bottom edge of item j is an obstacle to the right edge of item i:

Condition (iii) deals with the situations that either the left edge or the right edge of item j is an
obstacle to the bottom edge of item i:

Finally, Condition (iv) deals with the situations that either the left edge or the right edge of item j is
an obstacle to the top edge of item i:

Remark 3. Statement (s2) states a sufficient condition for the label of e to be smaller than the label of
e′. However, the reverse is not necessary i.e. if e takes a smaller label than e′, it is not necessary for e to
be an obstacle to e′.

Proposition 1. Assume that there exists a set z = {zil,zir,zit ,zib : i ∈ I} of labels so that the conditions
(i)-(iv) (defined in (11)-(14)) are satisfied for all i, j ∈ I (and i 6= j). Then the pattern derived from the
problem SPP defined by (1)-(10) is a guillotine pattern.

Proof. By contradiction, assume that there exists a non-guillotine pattern with a label set z satisfying the
conditions (i)-(iv). This pattern clearly includes a sub-pattern S on which no guillotine cut can be made.
By sub-pattern we mean a subset of rectangular items retaining their location in the pattern. Consider
an item i1 in S having an edge e1 with a label zi1α1 that must be cut (α1 is a representative for one of
the notations l, r, t or b). Since we assumed that no guillotine cut can be made on S, there is another
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item i2 ∈ S having an edge e2 with a label zi2α2 which is an obstacle to e1. If we continue this argument,
we conclude that there is a sequence of edges e1, e2, e3, e4, that each one is an obstacle to the previous
one. Clearly, there is some edge ek in this sequence that is identical to a preceding edge ek′ (with k′ < k)
because the number of items in S is finite. Since (according to Lemma 1) each edge in the sequence has
a smaller label than the previous one, we have:zik′αk′ > zik′+1αk′+1

> · · ·> zikαk = zik′αk′ This contradiction
approves that non-guillotine patterns cannot provide any label sets that satisfy conditions (i)-(iv).

To illustrate more clearly how the conditions (i)-(iv) do not accept non-guillotine patterns, we present
the following example.

Example 1. Consider the following non-guillotine pattern:

Figure 1: A non-guillotine pattern corresponding to 1.

Then, by the conditions (i)-(iv) we have

z3r > z1b,
z1b > z4l,
z4l > z5t ,
z5t > z3r

⇒ z3r > z3r. (19)

The four inequalities in the left side of (19) follow from (ii), (iii), (i) and (iv), respectively. This contra-
diction (z3r > z3r) shows that the above non-guillotine pattern cannot provide any label sets that satisfy
conditions (i)-(iv).

2.3 GSPP in the form of an MILP model

- Condition (i) in the form of mathematical modeling constraints:
We can present Condition (i) in the form of mathematical constraints by introducing binary variables δ 1

i j

and γ1
i j for i 6= j and adding the following linear constraints to the problem (1)-(10):

xi ≤ x j + x̄(1−δ 1
i j) i 6= j, (20)

x j + p js j +q j(1− s j)− x̄(1− γ1
i j)≤ xi i 6= j, (21)

zil +M(δ 1
i j + γ1

i j)≥ z jb−M(1−d(i j))+1 i 6= j, (22)

zil +M(δ 1
i j + γ1

i j)≥ z jt −M(1− c(i j))+1 i 6= j. (23)
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Note that according to (20), if xi ≤ x j then δ 1
i j can take any of the values 0 or 1. Similarly, according

to (21), if xi ≥ x j + p js j + q j(1− s j) then γ1
i j can take any of the values 0 or 1. Therefore, in such

cases no additional restrictions are imposed to the problem (1)-(10) and none of its feasible solutions are
excluded. But, when the top edge or the bottom edge of item j is an obstacle to the left edge of item i i.e.
x j < xi < x j + p js j +q j(1− s j), the constraints (20) and (21) force δ 1

i j and γ1
i j to take zero.

On the other hand, (22) does not impose any restrictions and does not exclude any feasible solution
of (1)-(10) unless δ 1

i j = γ1
i j = 0 and d(i j) = 1. Similarly, constraint (23) does not impose any restriction

unless δ 1
i j = γ1

i j = 0 and c(i j) = 1.
To summarize, only when the if-clause of the condition (i) is satisfied, δ 1

i j and γ1
i j are forced by (20)

and (21) to take a value of zero and hence the obstacle edge (the bottom edge or the top edge) is forced by
(22) or (23) to take a label smaller than zil . In any other cases, (20)-(23) does not impose any additional
restrictions and do not exclude any feasible solutions (patterns) of the problem (1)-(10).

The above discussion shows that the Condition (i) can be presented by (20)-(23). By similar discus-
sions, one concludes that the Conditions (ii)-(iv) can also be presented in the form of linear mathematical
programming constraints.
- Condition (ii) in the form of mathematical modeling constraints:

xi + pisi +qi(1− si)≤ x j + x̄(1−δ 2
i j) i 6= j, (24)

x j + p js j +q j(1− s j)− x̄(1− γ2
i j)≤ xi + pisi +qi(1− si) i 6= j, (25)

zir +M(δ 2
i j + γ2

i j)≥ z jb−M(1−d(i j))+1 i 6= j, (26)

zir +M(δ 2
i j + γ2

i j)≥ z jt −M(1− c(i j))+1 i 6= j. (27)

- Condition (iii) in the form of mathematical modeling constraints:

yi ≤ y j + ȳ(1−δ 3
i j) i 6= j, (28)

y j +q js j + p j(1− s j)− ȳ(1− γ3
i j)≤ yi i 6= j, (29)

zib +M(δ 3
i j + γ3

i j)≥ z jl−M(1−b(i j))+1 i 6= j, (30)

zib +M(δ 3
i j + γ3

i j)≥ z jr−M(1−a(i j))+1 i 6= j. (31)

- Condition (iv) in the form of mathematical modeling constraints:

yi +qisi + pi(1− si)≤ y j + ȳ(1−δ 4
i j) i 6= j, (32)

y j +q js j + p j(1− s j)− ȳ(1− γ4
i j)≤ yi +qisi + pi(1− si) i 6= j, (33)

zit +M(δ 4
i j + γ4

i j)≥ z jl−M(1−b(i j))+1 i 6= j, (34)

zit +M(δ 4
i j + γ4

i j)≥ z jr−M(1−a(i j))+1 i 6= j. (35)

Based on the above results and discussions, we can present the GSPP by the following MILP model:

Minimize Y (36)

s.t.

(GSPP) (2)− (10), (20)− (35), (37)

zil,zir,zit ,zib ≥ 0 i ∈ I, (38)

δ
k
i j,γ

k
i j ∈ {0,1} k = 1,2,3,4, i 6= j. (39)
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It is not difficult to see that GSPP model has 6n+1 continuous variables, 10n2−9n binary variables
and 37

2 n2− 33
2 n constraints. Hence, both the number of decision variables and the number of constraints

are of order O(n2). It is worth mentioning that the number of variables and constraints of the mathemat-
ical model presented in [23] are about 3n4

4 and 2n4, respectively.

Example 2. Recall the rectangular items of Example 1. The non-guillotine pattern of Figure 1 is an
optimal strip packing of the items into a strip of width 5. Note that the minimum used length of the strip
is 1.9. The same items and strip were considered to find an optimal guillotine packing pattern by solving
the related GSPP model. The resulting pattern is as presented in Figure 2. As we can see, the minimum
length of the strip needed to pack the items is 2 (> 1.9) since non-guillotine patterns are not accepted.
Note that in GSPP unlike many heuristics, items are not necessarily packed at the bottom-left corners.
For example, although item number 5 can be moved to the left without changing the used height of the
strip, it is packed at the rightmost position.

Figure 2: An optimal guillotine packing pattern corresponding to the items of Example 1.

2.4 Valid inequalities

It is worth noting that, for each pair of distinct items i and j in I, the variales ai j, bi j, ci j and di j form a
special ordered set of type 1 (SOS1). In other words, they form a set of variables that at most one of them
can take a non-zero value (see (6) and (10)). Most of modern MIP solvers provide the ability to intoduce
SOSs in optimization models. Indeed, we can eliminate Constraints (6) by introducing ai j, bi j, ci j and
di j as a SOS1. This reduces the number constraints of the GSPP model to 18n2− 16n. The benefit of
using SOSs is that the search procedure (in the search tree) will generally be noticeably faster. In fact,
the number of binary variables at each node reduces to 8n2−7n. We take advantage of this feature in our
implementation.

Now, assume that in a certain node of the search tree, ai j is set to 1. Then, according to (2), item i
is placed to the right of item j and according to (20) and (24), the variables δ 1

i j and δ 2
i j cannot take the

value of 1. But, despite our desire, they may take any real value in the interval [0,1) in the solution of the
continuous relaxation of the problem at that node. Also, in this case, γ1

i j and γ2
i j are permitted to take any

real value in the interval [0,1] without imposing any restrictions to the problem (see (21)-(23) and (25)-
(27)). Hence, it is worth to force these variables to take integer values in the solution of the continuous
relaxation of the problem at each node. The following inequalities are a set of valid inequalities that help
to achieve this goal:

4ai j ≤ (1−δ
1
i j)+ γ

1
i j +(1−δ

2
i j)+ γ

2
i j i, j ∈ I, i < j. (40)
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It is clear that, if ai j = 1 then δ 1
i j and δ 2

i j must take the value of 0, and γ1
i j and γ2

i j must take the value of 1.
By a similar discussion, we can show that (41)-(43) are also valid inequalities:

4bi j ≤ δ 1
i j +(1− γ1

i j)+δ 2
i j +(1− γ2

i j) i, j ∈ I, i < j, (41)

4ci j ≤ (1−δ 3
i j)+ γ3

i j +(1−δ 4
i j)+ γ4

i j i, j ∈ I, i < j, (42)

4di j ≤ δ 3
i j +(1− γ3

i j)+δ 4
i j +(1− γ4

i j) i, j ∈ I, i < j. (43)

Another benefit of using SOSs is that fixing ai j or bi j at 0 at a node simply leads to (20)-(27) becoming
redundant and being detected and eliminated by the solver in the presolve phase at that node. Similarly,
fixing ci j or di j at 0 at a node leads to (28)-(35) becoming redundant and being detected and eliminated
by the solver in the presolve phase at that node. Elimination of these redundant constraints, significantly
reduces the size of the problems to be solved at each node.

3 Numerical experiments

In order to check the performance of the proposed model GSPP, we used a series of small and medium
sized instances of some benchmark instances from the literature. As we mentioned before, we did not
find (in the literature) any mathematical model or any algorithm capable to globally solve the guillotine
strip packing problem except the MILP model proposed in [23]. But, the model of [23] is of order O(n4)
and no experimental results have been reported for it. Therefore, we decided to compare our model
with heuristic algorithms. More than 10 heuristic algorithms for the guillotine oriented strip packing
problem are compared in [27]. We compare the MILP model GSPP presented by (36)-(39) with the best
functioned heuristic for each instances. Since no execution time is reported for the mentioned heuristics,
we consider some time limit (as shown in Table 1) and compare the best objective values obtained from
our MILP model with the best one obtained from the heuristics. Furthermore, since an oriented version
of the strip packing problem has been considered in [27], we also considered an oriented version of
GSPP (i.e. we set si = 1 for all i = 1, ,n) to be able to compare our results with theirs. The GSPP model
was implemented using GAMS 24.2.2 and solved using CPLEX 12.6.0 solver on a laptop with Intel(R)
Core(TM) i7-6498DU CPU @ 2.5GHz, 12 GB RAM, 64-bit.

3.1 Benchmark data

The set of benchmark instances that we applied to test efficiency of the MILP model GSPP (which are
available and can be accessed via http://or.dei.unibo.it/library/2dpacklib) includes instances with up to
29 rectangular items instances from N, T series , instances with up to 29 items from C series , instances
with up to 30 items from GCUT series and all the instances from NGCUT series .

3.2 Results

The summary of the achieved results is presented in Table 1. The column LB indicates a lower bound
for the problems some of which are obtained from the simple formula (1/W )∑

n
i=1 wihi and some others

are obtained from heuristics in the literature (see [21]). The column Best Heur. presents the best value
obtained from the best functioned heuristics among more than 10 heuristics studied in [27]. The column
GSPP presents the best values obtained by solving our MILP model GSPP within a time limit of T.L..
Finally, the column Best Time indicates the least execution time needed to obtain the values in column
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GSPP. For example, the first row of the table (corresponding to ’T1’ class) states that the GSPP model
solution leads to an objective value of 223.2 after 355 seconds and no better objective value is obtained
within 900 seconds. An asterisk is placed next to some values in the GSPP column to indicate that the
obtained values are optimal.

Table 1: Comparison of GSPP with the best functioned heuristics in the literature.

Class Num.o f Inst. Num.o f Items LB BestHeur. GSPP T.L.(sec) BestTime
T1 5 17 200 274.4 223.2 900 355
T2 5 25 200 263.2 229.2 1800 1375
T3 5 29 200 251.8 238.8 3600 2735
N1 5 17 200 242.6 219.6 900 539
N2 5 25 200 244.8 235.4 1800 1129
N3 5 29 200 246.0 230.6 3600 2702
C1 3 16/17 20 22.0 20.7 900 407
C2 3 25 15 17.0 17.3 1800 1206
C3 3 28/29 30 35.3 35.3 3600 2150
GCUT1 1 10 1016 1016 1016* 900 0
GCUT2 1 20 1133 1347 1266 1800 1681
GCUT3 1 30 1803 1810 1872 3600 1264
NGCUT1 1 10 23 25 23* 900 2
NGCUT2 1 17 30 33 30* 900 16
NGCUT3 1 21 28 31 30 900 274
NGCUT4 1 7 20 23 20* 900 0
NGCUT5 1 14 36 37 36* 900 8
NGCUT6 1 15 31 35 31* 900 48
NGCUT7 1 8 20 20 20* 900 0
NGCUT8 1 13 33 38 35 900 70
NGCUT9 1 18 49 60 54 900 48
NGCUT10 1 13 80 85 80* 900 8
NGCUT11 1 15 52 63 57 900 12
NGCUT12 1 22 87 91 87* 900 62

Based on the number of items to be packed (difficulty of the instances), different time limits have
been considered for instances of N, T, ’C’ and ’GCUT’ classes (T.L.= 900,1800,3600 for instances with
less than 20 items, instances with 20 to 25 items and instances with more than 25 items, respectively). For
all of instances in ’NGCUT’ class (which are relatively simpler instances), a time limit of 900 seconds is
considered.

The results show that the proposed model is able to find better solutions than the most known heuris-
tics in almost all test instances. As can be seen, instances with n≤ 10 are solved optimally in just a few
seconds. However, the solution time of the proposed GSPP increases greatly when the size of instances
increases.
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4 Conclusions

An O(n2) polynomial MILP relaxation of the GSPP (inspired by a sequence sub-tour elimination tech-
nique first proposed for the traveling salesman problem) was presented. Although the proposed model
does not guarantee the achievement of optimal patterns, it can be applied to problems of relatively larger
size compared to the only exact model in the literature [23]. Furthermore, although the efficiency of
our relaxation model decreases significantly with increasing the size of the instances, numerical results
show that the solutions obtained from our model are superior to several existing heuristic algorithms in
the literature for not too large instances. Therefore, the author believes that better performances of the
proposed model can be achieved if it can be combined with heuristics and decomposition techniques
where several smaller problems are solved instead of solving the original problem once.
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