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Abstract. The purpose of this paper is to introduce the notion of the total graph of Krasner
hyperrings. In this regard, a connection between the graph theory and the theory of hyperrings
is constructed, and some fundamental properties of the total graph of Krasner hyperrings are
investigated. Finally, for a multiplicative-prime subset H of a hyperring R, the diameter and
the girth of ΓH(R \H) andΓH(H) are computed precisely.
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1 Introduction
In the past three decades, graphs created from algebraic structures have been noticed by many
researchers and have become a primary field of study (Please, see [1], [2], [3]). The total graph of
a ring was first introduced by Badawi et al. in [2]. The total graph of R, denoted by T (Γ(R)), is
the simple graph with all elements R as vertices, and for two distinct x, y ∈ R, the vertices x and
y are adjacent if and only if x+ y ∈ Z(R) = {x ∈ R |xy = 0, for some non-zero element y ∈ R}.
Recall that a non-empty subset H of R is said to be multiplicative-prime provided that: (1)
a · b ∈ H for every a ∈ H and b ∈ R and (2) If a · b ∈ H for a, b ∈ R, then either a ∈ H or b ∈ H.
It is obvious that Z(R) is a multiplicative-prime subset. Toward a generalization of the concept
of the total graph, Badawi et al. in [3] defined the concept of the total graph with respect to
a multiplicative-prime subset, where the set vertices of this graph are the elements of the ring
R and two vertices x, y are adjacent if and only if x + y is an element of H. Assigning graphs
to algebraic structures has played a significant role in studying their structures. Studying these
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graphs means one may find significant results about the algebraic structures and vice versa. The
study of derived graphs of algebraic structures helps to the interplay between the properties of
the algebraic structures and the structures of the assigned graphs. The main goal of this paper
is to study the total graph of Krasner hyperrings, which is a common generalization of the
total graph introduced by Badawi and et al. The structure of the paper is as follows. First,
in Section 2, we will provide some preliminary but essential concepts of hyperstructures that
are crucial for us. In Section 3, the concept of a multiplicative-prime subset that plays the
most important role in the structure of a total graph for hyperstructures will be formulated.
According to [3], the multiplicative-prime subset can be explained in two segregated structures.
Therefore, in Sections 4 and 5, the shape of the total graph, its connectedness and disjointness,
and its related subgraphs regarding the girth and diameter of the subgraphs of the total graph
will be investigated. Algebraic properties of the algebraic structures can be translated into the
language of graph theory (Please see [4], [6], [8], [9]). Then, the geometric properties of the
graphs can assist in finding some interesting facts about algebraic structures.

Let us first recall some preliminary concepts and definitions that are crucial in the sequel.

2 Preliminaries

Now, we recall some definitions and notations on graphs and hyperring theory. Let Γ be a simple
graph. The vertex set of Γ is denoted by V (Γ). We recall that a graph is connected if a path
exists connecting any two distinct vertices. The distance d(a, b) is the length of the shortest
path from a to b; if such a path does not exist, then d(a, b) = ∞. The diameter of a graph Γ,
denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph is complete if it is connected
with a diameter less than or equal to one. The girth of a graph Γ, denoted by gr(Γ), is the
length of a shortest cycle in Γ, provided Γ contains a cycle; otherwise; gr(Γ) = ∞, in this case
Γ is called an acyclic graph. We say that two (induced) subgraphs Γ1 and Γ2 of Γ are disjoint
if Γ1 and Γ2 have no common vertices and no vertex of Γ1 (respectively, Γ2) is adjacent (in Γ)
to any vertex not in Γ1 (respectively, Γ2). We denote the complete bipartite graph on m and
n vertices by Km,n. A component (connected component) of graph Γ is a subgraph in which
any two vertices are connected by paths and which is connected to no additional vertices in the
graph Γ. We say that u is a universal vertex of Γ if u is adjacent to all other vertices of Γ. A
vertex v in an undirected connected graph G is a cut-point (cut vertex) of G if removing it (and
edges through it) disconnects the graph.

Now, we recall various notions from hyperring theory, which will be used in the sequel.
Assume that G is a non-empty set and P ∗(G) is the set of all nonempty subsets of G. A hyper-
operation on G is a map ◦ : H ×H −→ P ∗(H) and the couple (H, ◦) is called a hypergroupoid.
For any two nonempty subsets A and B of G and x ∈ G, we define A ◦ B =

∪
(a,b)∈A×B a ◦ b,

where A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B. The more general structure that satisfies the
ring-like axioms is the hyperring in the general sense: (R,+, ·) is a hyperring if + and · are two
hyperoperations such that (R,+) is a hypergroup and · is an associative hyperoperation, which
is distributive with respect to +. There are different notions of hyperrings. If only the addition
+ is a hyperoperation and the multiplication · is a usual operation, then we say that R is an
additive hyperring. A special case of this type is the hyperring introduced by Krasner. There
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are comprehensive references for hyperrings; for example see [5] and [12]. In fact, different kinds
of hyperrings are defined; one of them is the Krasner hyperring described as follows (Please,
see [5], [11]).
Definition 1. A commutative Krasner hyperring is an algebraic structure (R,+, ·) which satisfies
the following axioms:
(1) (R,+) is a canonical hypergroup, i.e.,

(i) For every x, y, z ∈ R, x+ (y + z) = (x+ y) + z,
(ii) For every x, y ∈ R, x+ y = y + x,
(iii) There exists 0 ∈ R such that 0 + x = {x}, for all x ∈ R,
(iv) For all x ∈ R there exists a unique elements x′ ∈ R such that 0 ∈ x + x′ (We write

−x for x′),
(v) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0.

(3) The multiplication is distributive with respect to the hyperoperation +.
Throughout this paper, by a hyperring we mean a commutative Krasner hyperring. A

non-empty subset A of a hyperring (R,+, ·) is called a subhyperring of R if (A,+, ·) is itself
a hyperring. The subhyperring A of R is called normal, if x + A − x ⊆ A for all x ∈ R. A
non-empty subset I of a hyperring R is called a hyperideal if and only if and only if the following
conditions hold.
(1) a− b ⊆ I, for all a, b ∈ I;

(2) a ∈ I and r ∈ R imply that a · r ∈ I and r · a ∈ I.
A hyperideal P of a hyperring R is called a prime hyperideal of R if, for every pair of elements
a and b of R, the fact that ab ∈ P , implies either a ∈ P or b ∈ P . If A is a normal hyperideal
of a hyperring R, then we define the relation x ≡ y (mod A) if and only if x− y ∩ A ̸= ∅. This
relation is denoted by xA∗y and is an equivalence relation. Let A∗(x) be the equivalence class
of the element x ∈ R.
Lemma 1. (cf. [5, Corollary 3.2.5]) Let A be a normal hyperideal of R. Then
(1) (A+ x) + (A+ y) = A+ x+ y for all x, y ∈ R.

(2) A+ x = A+ y for all y ∈ A+ x.

(3) A+ x = A∗(x) for all x ∈ R.
Proposition 1. (cf. [5, Proposition 3.2.13]) Let R be a Krasner hyperring and A be a normal
hyperideal of R. We define the hyperoperation ⊕ and the multiplication ⊙ on the set of all classes
[R : A∗] = {A∗(x) | x ∈ R}, as follows:

A∗(x)⊕A∗(y) = {A∗(z) | z ∈ A∗(x) +A∗(y)} and

A∗(x)⊙A∗(y) = A∗(x · y).

Then [R : A∗] is a Krasner hyperring.
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3 Total Graph of a Krasner hyperring
In this section, we introduced the total graph of a Krasner hyperring. First, we define a
multiplicative-prime subset of Krasner hyperrings as follows:

Definition 2. A nonempty proper subset H of Krasner hyperring (R,+, ·) is called a multiplicative-
prime subset of R if the following two conditions hold.

(1) a · b ∈ H for every a ∈ H and b ∈ R;

(2) If a · b ∈ H for a, b ∈ R, then either a ∈ H or b ∈ H.

The concept of total graphs of classical rings and modules was initially introduced and
studied in ( [1], [2], [3], [7], [9]). Now, we will extend these definitions and properties to the
general case of Krasner hyperrings.

Definition 3. Let R be a Krasner hyperring and H be a multiplicative-prime subset of R. The
total graph ΓH(R) is a graph with all elements of the Krasner hyperring R as vertices and for
distinct x, y ∈ R, the vertices x and y are adjacent if and only if x + y ⊆ H. For A ⊆ R, let
ΓH(A) be the induced subhypergraph of ΓH(R). For example ΓH(R\H) is subhypergraph of ΓH(R)
with vertices R \H.

According to the definition, if H = R, then it is easily seen that ΓH(R) is a complete graph,
and it is a disconnected graph when H = 0 and |R| ≥ 2. So, in what follows, due to our
approach, without loss of generality, one may assume that H ̸= 0 and H ̸= R. The study of
ΓH(R) breaks naturally into two cases depending on whether or not H is a hyperideal of R.
First, we consider the case when H is a hyperideal of R.

4 The Case at Which H is a Hyperideal of R

Let H be a multiplicative-prime subset of a commutative Krasner hyperring R. In this section,
we study ΓH(R) in case that H is a (prime) hyperideal of R; i.e., when H is closed under the
hyperaddition. We first begin with the following lemma.

Lemma 2. Let H be a normal hyperideal of a commutative Krasner hyperring R. Then

(1) If x − y ⊆ H for every x, y ∈ R \ H, then x + H = y + H.(Similarly, if x + y ⊆ H for
x, y ∈ R \H then x+H = −y +H.)

(2) If z + y ⊆ H and z ∈ H, then y is an element of H.

Proof. (1) Let x, y ∈ R \H be arbitrary elements and let x− y ⊆ H. If z ∈ x− y, then z ∈ H
and so x ∈ z+y = y+z ⊆ ∪z∈Hy+z = y+H. Therefore, by Lemma 1, we have x+H = y+H.

(2) Let a ∈ z + y ⊆ H. Since R is a Krasner hyperring, then y ∈ a − z. Considering that
y ∈ H and a− z ⊆ H, one may deduce that y is an element of H, as desired.

Now, we are going to investigate the connectedness of the subgraphs ΓH(H) and ΓH(R \H).
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Theorem 1. Let H be a prime normal hyperideal of a commutative Krasner hyperring R.
Then ΓH(H) is a complete (induced) subgraph of ΓH(R) and ΓH(H) is disjoint from ΓH(R \H).
Consequently, while ΓH(H) is always connected, ΓH(R) is never connected.

Proof. Suppose that there exist x ∈ ΓH(H) and y ∈ ΓH(R \H) such that x+ y ⊆ H. Therefore
y ∈ y + 0 ⊆ y + x − x = x + y − x ⊆ H, and so, y ∈ H which is a contradiction. Since H
is a hyperideal of R, then for any x, y ∈ H we have x + y ⊆ H, which implies that ΓH(H) is
connected.

The next theorem gives a complete description of ΓH(R) when H is a hyperideal of R. It
also shows that non-isomorphic hyperrings may have isomorphic graphs. We allow α and β to
be infinite cardinals; if β is infinite, then β − 1 = (β − 1)/2 = β.

Theorem 2. Let H be a prime normal hyperideal of a commutative Krasner hyperring R and
let |H| = α and |[R : H∗]| = |{x+H|x ∈ R}| = β. The following statements hold.

(1) If 1 + 1 ⊆ H, then ΓH(R \H) is the union of β − 1 disjoint Kα’s.

(2) If 1 + 1 ⊈ H, then ΓH(R \H) is the union of (β − 1)/2 disjoint Kα,α’s.

Proof. (1) Let 1+1 ⊆ H, and suppose that x ∈ R\H. First we show that the coset H∗(x) = x+H
is a complete subgraph of ΓH(R \H). Let a, b ∈ x+H. Then a ∈ x+h1 and b ∈ x+h2 for some
h1, h2 ∈ H. Since H is a hyperideal and x(1+1) = x+x ⊆ H, then a+b ⊆ (x+h1)+(x+h2) =
(x + x) + h1 + h2 ⊆ H and the claim is proved. Now, assume that x, y ∈ R \ H. We show
that the subgraphs with vertices set of cosets H∗(x) and H∗(y) are disjoint in ΓH(R \H). Let
a ∈ H∗(x) = H + x =

∪
h∈H h + x and b ∈ H∗(y) = H + x =

∪
h∈H h + y. Then a ∈ h1 + x

and b ∈ h2 + x for some h1, h2 ∈ H which means that x ∈ a − h1 and y ∈ b − h2. Hence
x + y ⊆ a − h1 + b − h2 = (a + b) − (h1 + h2) ⊆ H. On the other hand, as 0 ∈ y − y and
y+ y = y(1+ 1) ⊆ H, then x− y = x− y+0 ⊆ x− y+ y− y = x+ y− (y+ y) ⊆ H. Therefore,
by Lemma 1 and [5, Lemma 3.2.9], it is concluded that H∗(x) = H∗(y), which in turn, implies
that ΓH(R \H) is the union of β − 1 disjoint (induced) subgraphs H∗(x), each of which equals
Kα, where α = |H| = |H∗(x)|.

(2) Now, assume that 1 + 1 ⊈ H, and let x ∈ R \ H. We will show that no two distinct
elements in x+H are adjacent. Assume the contrary and let a+ b ∈ H for some a ∈ x+ z1 and
b ∈ x+ z2, where z1, z2 ∈ H. Then x ∈ a− z1 and x ∈ b− z2. Thinking of the fact that H is a
hyperideal, then x+x ⊆ (a− z1)+(b− z2) = (a+ b)− (z1+ z2) ⊆ H. Therefore, as H is a prime
hyperideal, one may deduce that x ∈ H is a contraction. Now, we will prove that the cosets
x+H and −x+H are adjacent. Indeed, for a ∈ x+ z1 and b ∈ −x+ z2, where z1, z2 ∈ H, being
H a normal hyperideal gives a+ b ⊆ (x+ z1) + (−x+ z2) = x+ (z1 + z2)− x ⊆ H . Therefore,
by what we have proved, (x + H) ∪ (−x + H) is a complete bipartite (induced) subgraph of
ΓH(R \H). Furthermore, if a ∈ x+ z1 is adjacent to ∈ y+ z2 for some y ∈ R \H and z1, z2 ∈ H,
then a+ b ⊆ H and x+ y ⊆ a− z1+ b− z2 = (a+ b)− (z1+ z2) ⊆ H as H is a hyperideal. Thus
x+ y ⊆ H and hence y +H = −x+H, by Lemma 2. Consequently, ΓH(R \H) is the union of
(β − 1)/2 disjoint (induced) subgraphs (x+H) ∪ (−x+H), each of which equals Kα,α, where
α = |H| = |H∗(x)| and the result follows.
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It is easily seen that, by the proof of Theorem 2, that, when ΓH(R \ H) is complete or
connected, and its diameter and girth could be computed, explicitly. So we have the following
corollary.

Corollary 1. Let H be a prime normal hyperideal of a commutative Krasner hyperring R.
Then, the following statements hold.

(1) diam(ΓH(R \H)) = 0, 1, 2, or ∞.

(2) gr(ΓH(R \H)) = 3, 4, or ∞.

We have already observed in Theorem 1 that, when H is a hyperideal of R, then ΓH(H)
is always connected and ΓH(R) is never connected. The following propositions give some new
criteria for ΓH(R \H) to be connected.

Proposition 2. Let H be a prime normal hyperideal of a commutative Krasner hyperring R.
Then, the following hold.

(1) Let G be an induced subgraph of ΓH(R \H), and let x and y be distinct vertices of G that
are connected by a path in G. Then there is a path of length, at most two, between x and
y in G. In particular, if ΓH(R \H) is connected, then diam(ΓH(R \H) ≤ 2.

(2) Let x and y be distinct elements of R \H that are connected by a path in ΓH(R \H). If
x+ y ⊈ H; i.e., if x and y are not adjacent, then x− (−x)− y and x− (−y)− y are paths
of length two between x and y in ΓH(R \H).

Proof. (1) It suffices to show that if x1, x2, x3 and x4 are distinct vertices of G and there is a path
x1−x2−x3−x4 from x1 to x4, then x1 and x4 are adjacent. If a ∈ x1+x4, then 0 ∈ x2−x2 and
0 ∈ x3−x3, and so, a = a+0 ∈ x1+x4+(x2−x2)+(x3−x3) = (x1+x2)−(x2+x3)+(x3+x4) ⊆ H.
Thus x1 + x4 ⊆ H.

(2) Suppose that x + y ⊈ H. Then there exists z ∈ R \ H such that x − z − y is a path
of length two by part (1). By Lemma 2, it is clear that z ∈ R \ H. Let a ∈ x + z ⊆ H and
b ∈ z + y ⊆ H. Then x ∈ a− z and −y ∈ z − b and, by view that H is a normal hyperideal of
R, it is concluded that x− y ⊆ a− z + z − b = z + (a− b)− z ⊆ H. Similarly, y− x ⊆ H. Also,
x ̸= −x and y ̸= −y, otherwise, y − x ⊆ H and x − y ⊆ H imply that x + y ⊆ H, which is a
contradiction. If y = −x then x+y = x+y+0 ⊆ x+y+H = x−x+H = x+H−x ⊆ H, where
H being a normal hyperideal, results x + y ⊆ H which is obviously a contradiction. Therefore
y ̸= −x and x − (−x) − y and x − (−y) − y are paths of length two between x and y and the
result follows.

Now, we will characterize the connectedness of ΓH(R \H) in terms of some algebraic prop-
erties.

Proposition 3. Let H be a normal prime hyperideal of a commutative Krasner hyperring R.
Then, the following statements are equivalent.

(1) ΓH(R \H) is connected.

(2) Either x+ y ⊆ H or x− y ⊆ H for every x, y ∈ R \H.
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(3) Either x+ y ⊆ H or x+ y + y ⊆ H for every x, y ∈ R \H.

In particular, for all x ∈ R\H, either x+ x ⊆ H or x+ x+ x ⊆ H, but not both.

Proof. (1) ⇒ (2) Assume that ΓH(R \ H) is connected, and let x, y ∈ R \ H. Let x = y and
z ∈ x− y. Then we have z ∈ z + 0 ⊆ x− y +H = x− x+H = x+H − x ⊆ H, as H is normal
hyperideal. Hence x− y ⊆ H. Now assume that x ̸= y and let x+ y ⊈ H. If x+ y ⊈ H, then,
by Proposition 2, it is conclude that x− (−y)− y is a path from x to y, and so, x− y ⊆ H.

(2) ⇒ (3) Let x + y ⊈ H and let z ∈ x + y be an arbitrary element. Then x ∈ z − y
which implies that z − y ⊈ H, as x ∈ R \H, and hence, y + z ⊆ H by assumption. Therefore
(x + y) + y =

∪
t∈(x+y) t + y ⊆ H. Now assume that x + x and x + x + x + x both be in H

and let a ∈ x + x + x ⊆ H. Then a ∈
∪

t∈{x+x} t + x. This implies that a ∈ t′ + x for some
t′ ∈ x+ x ⊆ H. Since H is a hyperideal, then x ∈ a− t ⊆ H that contracts the assumption.

(3) ⇒ (1) If x, y ∈ R \H and x+y ⊈ H, then, by assumption, x+y+y ⊆ H. First, suppose
that y+ y ⊆ H. If a ∈ x+ y+ y, then a ∈

∪
t∈{y+y} x+ t, and so, a ∈ x+ t′′ for some t′′ ∈ y+ y,

which, in turn, implies that x ∈ a − t′′. Considering that a, t′′ ∈ H and H is a hyperideal of
R, we deduce that x ∈ H, which is a contradiction. Therefore, y + y ⊈ H. This means that
y+y+y ⊆ H. Let b ∈ H \y+y. If x = b, then x+y = b+y ⊆ y+y+y ⊆ H is a contradiction,
and so, x ̸= b. Now, from x+ b ⊆ x+ y+ y ⊆ H and b+ y ⊆ y+ y+ y ⊆ H, it is concluded that
x− b− y is a path from x to y in ΓH(R \H), and so, ΓH(R \H) is connected, as desired.

Now, we are going to provide an example for Theorem 2.

Example 1. Let R = {0, a, b, c} be a set with hyperoperation + ” and the operation · ” that
are defined as follows:

+ 0 a b c

0 {0} {a} {b} {c}
a {a} {0, b} {a, c} {b}
b {b} {a, c} {0, b} {a}
c {c} {b} {a} {0}

· 0 a b c

0 0 0 0 0
a 0 a b c
b 0 b b 0
c 0 c 0 c

By [4, Example 4.8] the algebraic structure (R,+, ·) is a Krasner hyperring with 1R = a. Let
H = {0, b}. It is easy to see that H is a normal prime hyperideal of R and both subgraphs
ΓH(H) and ΓH(R \H) are the complete graph K2. Thinking of the facts that α = β = 1 and
a + a = {0, b} ∈ H, then, by Theorem 2, it is concluded that ΓH(R) is the disjoint union of
its (complete) subgraphs ΓH(H) and ΓH(R \ H). Also, by Corollary 1, it is easily seen that
diam(ΓH(R \H)) = 1 and gr(ΓH(R \H)) = ∞.

The following example shows the normal condition for the prime hyperideal H, in Theorem
2, is necessary.

Example 2. Let (G = {e, a, b, c}, ·) be the Klein four-group. Set R = G∪ {0, u, v} where 0 is a
multiplicative absorbing element and u, v are distinct orthogonal idempotents, with

a · 0 = 0 · a = 0; for all a ∈ R;
u · v = v · u = 0; u · u = u; v · v = v;

u · g = g · u = u and v · g = g · v = v for all g ∈ G.
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Let the hyperoperation + on R be as follows.

a+ 0 = 0 + a = {a}; a+ a = {0, a} for all g ∈ R;
a+ b = b+ a = R \ {0, a, b} for all a, b ∈ R \ {0} and a ̸= b.

Then (R,+, ·), by [5, Page 76], is a Krasner hyperring. Let H = {0, u}. Then H, by [10, Example
2.2], is a prime hyperideal of R. It is easy to see that H is not a normal hyperideal of R. Also
1R +1R = eG + eG = {eG, 0} ⊈ H. So, by Theorem 2, ΓH(R \H) should be a union of complete
bipartite graphs. Note that R \H = {e, a, b, c, v}. The following calculations show that a is not
adjacent to any vertices in ΓH(R \H).

e+ a = R \ {0, e, a} = {b, c, u, v} ⊈ H; b+ a = R \ {0, b, a} = {e, c, u, v} ⊈ H;
c+ a = R \ {0, c, a} = {e, b, u, v} ⊈ H; v + a = R \ {0, v, a} = {e, b, c, u} ⊈ H.

Similarly, one may show that no vertices of R \H are adjacent in ΓH(R \H), and so, ΓH(R \H)
is a totally disconnected graph.

5 The Case at Which H is not a Hyperideal of R

In this section, we consider the case that the multiplicative-prime subset H is not a hyperideal
of R. Since H is always closed under multiplication by elements of R, then 0 ∈ H, and so, there
are distinct elements x, y ∈ H∗ = H \{0} such that x+y ⊆ R\H. In this case, ΓH(H) is always
connected, but never complete with diam(ΓH(H)) = 2.

Theorem 3. Let R be a commutative Krasner hyperring and H be a multiplicative-prime subset
of R that is not a hyperideal. Then ΓH(H) is connected with diam(ΓH(H)) = 2.

Proof. Let x, y ∈ H∗. If x+ y ⊆ H, then d(x, y) = 1, otherwise, as every x ∈ H∗ is adjacent 0,
then x − 0 − y is a path, in ΓH(H), of length two between any two distinct x, y ∈ H∗, and so,
d(x, y) = 2. Therefore, ΓH(H) is connected with diam(ΓH(H)) = 2.

Now, we will compute the girth of ΓH(H).

Theorem 4. Let R be a commutative Krasner hyperring and H be a multiplicative-prime subset
of R that is not a hyperideal. Then gr(ΓH(H)) = 3 or ∞.

Proof. Since H is not a hyperideal of R, then there exist x, y ∈ H∗ such that x+ y ⊈ H. This
implies that |H| ≥ 3. If x + y ⊆ H for some distinct elements x, y ∈ H∗, then 0 − x − y − 0
is a 3-cycle in ΓH(H) and so gr(ΓH(H)) = 3, otherwise, x + y ⊈ H, for all distinct elements
x, y ∈ H∗, and so, every element x ∈ H∗ is adjacent to 0 and no two distinct elements of H are
adjacent. Therefore, ΓH(H) is a star graph and so gr(ΓH(H)) = ∞, as desired.

Corollary 2. Let R be a commutative Krasner hyperring and H be a multiplicative-prime subset
of R that is not a hyperideal. If gr(ΓH(R)) = 4, then gr(ΓH(R \H)) = 4.

Proof. The proof is clear by Theorem 3.

The following is an example of a Krasner hyperring R, at which, ΓH(R \ H) is a complete
graph, but the subgraphs ΓH(H) and ΓH(R \H) are not disjoint.
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Example 3. Let Znξ
:= Zn ∪ {ξ}, where ξ /∈ Z. Then, by [1, Theorem 4.23], (Znξ

,+ξ, 0, ·ξ, 1)
is a Krasner hyperring where, for any x, y ∈ Zn, the hyperoperation +ξ and the operation .ξ on
Znξ

are defined as follows.

x+ξ y =


{0, ξ} x = −y
{x+ y} x, y ∈ Zn, x ̸= y
{y} x = 0 or (x = ξ and y /∈ {ξ})
{ξ} x = y = ξ

and

x ·ξ y =


{x · y} x, y ∈ Zn

{ξ} (y = ξ and gcd(x, n) ̸= 1) or (x = y = ξ)
{0} x = ξ, gcd(x, n) = 1.

Now, let n = 10. Then I1 = {0̄, 2̄, 4̄, 6̄, 8̄, ξ} and I2 = {0̄, 5̄, ξ} are hyperideals of Znξ
, by

[1, Theorem 4.24 (iii)]. It is easy to see that I1 and I2 are prime hyperideals of Znξ
. Set

H := I1 ∪ I2 = {0̄, 2̄, 4̄, 5̄, 6̄, 8̄, ξ}. Then H is a multiplicative-prime subset of Znξ
. Since

5̄ +ξ 8̄ = 5̄ + 8̄ = 3̄ /∈ H, then H is not a hyperideal. From the relations 0̄ +ξ 2̄ = {2̄} ⊆ H,
2̄ +ξ 8̄ = {0, ξ} ⊆ H and 8̄ +ξ 0̄ = {8̄} ⊆ H it is evident that 0̄ − 2̄ − 8̄ − 0̄ is a cycle in
ΓH(H). Therefore, by Theorem 3, it is concluded that gr(ΓH(H)) = 3, which in turn, implies
that gr(ΓH(R)) = 3. On the other hand, from 1̄ +ξ 4̄ = {5̄} ⊆ H and 1̄ +ξ 5̄ = {6̄} ⊆ H, it is
easily seen that, some vertices of two subgraphs ΓH(H) and ΓH(R \H) are adjacent and these
subgraphs are not disjoint. Also, the relations 1̄ +ξ 3̄ = {4̄} ⊆ H, 3̄ +ξ 7̄ = {0, ξ} ⊆ H and
7̄ +ξ 1̄ = {8̄} ⊆ H, imply that 1̄ − 3̄ − 7̄ − 1̄ is a cycle of length 3 in ΓH(R \ H). Therefore,
gr(ΓH(R \H)) = 3. Finally, it is not hard to see that ΓH(R \H) is a complete graph with vertex
set {1̄, 3̄, 7̄, 9̄}.

It is easy to see that the union of prime hyperideals of a hyperring is a multiplicative-prime
subset that is not necessarily a hyperideal of R. So, we end this paper with the following results.

Lemma 3. Assume that R is a commutative Krasner hyperring and let H be a multiplicative-
prime subset of R that is not a hyperideal of R. Set H :=

∪
α Pα, where the Pα’s vary over a set

of prime hyperideals of R. If the intersection
∩

α Pα contains a non-zero element, h say, then
the following statements hold.

(1) If A ⊆ H, then A+ h ⊆ H.

(2) If a ∈ R \H, then (a+ h) ∩H = ∅.

Proof. (1) Let x ∈ A + h. Then x ∈ a + h for some a ∈ A ⊆ H, and so, a ∈ Pβ for some β.
Therefore a+ h ⊆ Pβ, which means that x ∈ Pβ ⊆ H.

(2) Suppose the contrary and let y ∈ (a+ h)∩H. Since y ∈ H =
∪

α Pα, then there exists a
hyperideal Pβ such that y ∈ Pβ. On the other hand, y ∈ a + h implies that a ∈ y − h ∈ Pβ as
Pβ is a hyperideal of R and h ∈

∩
α Pα ⊆ Pβ. Thus a ∈ Pβ ⊆ H which is a contradiction.

Theorem 5. Let R be a commutative Krasner hyperring and H =
∪

α Pα, where the Pα’s vary
over a set of prime hyperideals of R, be a multiplicative-prime subset of R that is not a hyperideal
of R. Let a− b− c be a path of length two in ΓH(R \H) for distinct vertices a, b, c ∈ R \H. If
k + k ⊆ H for some k ∈ {a, b, c} and

∩
α Pα ̸= 0, then gr(ΓH(R \H)) = 3.
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Proof. Let a − b − c be a path in ΓH(R \ H) and let 0 ̸= h ∈
∩

α Pα. We proceed in three
distinguished cases.

Case 1: Let a + a ⊆ H. If t ∈ a + h then, by Lemma 3, we have t /∈ H. We show that, in
this case, a − b − t − a is the desired cycle in ΓH(R \ H). Since b + a ⊆ H, then, by Lemma
5.5, it is concluded that b + t ⊆ b + a + h ⊆ H. Now, again by Lemma 3 and hypothesis,
t+ a ⊆ a+ h+ a = a+ a+ h ⊆ H.

Case 2: If b+ b ⊆ H then, by Lemma 3, we have (b+ h)∩H = ∅. Let t′ ∈ b+ h. Then, by 3
and the fact that c+ b ⊆ H, one may deduce that c+ t′ ⊆ c+ b+ h ⊆ H. Similarly, it is easily
seen that t′ + b ⊆ b+ h+ b = b+ b+ h ⊆ H. Therefore, in this case, b− c− t′ − b is the desired
cycle in ΓH(R \H).

Case 3: If c+ c ⊆ H, then the proof proceeds as in Case 1.
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