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Abstract. The primary focus of this paper is to introduce and investigate a fresh category of
projective modules, referred to as weak u-S-projective modules (w-u- is an abbreviation for weak
uniformly). These novel modules are utilized for characterizing u-S-von Neumann regular rings.
Additionally, the paper investigates a new type of rings, named u-S-semihereditary rings. This
leads to the introduction of the weak u-S-projective dimensions of modules and weak u-S-global
dimension of rings in this paper.

Keywords: u-S-projective module, u-S-flat module, u-S-torsion, u-S-exact sequence, u-S-von Neumann
regular ring, u-S-semihereditary.

AMS Subject Classification 2010: 13D05, 13D07, 13H05, 16E10, 18G25.

1 Introduction

Throughout this paper, we denote by A a commutative ring with identity, M an A-module, and
S a multiplicative subset of A, where 1 € S and s1s2 € S for any s; € S and s € S. The study
of commutative rings in terms of multiplicative sets started with Anderson and Dumitrescu [1],
who introduced the concept of S-Noetherian rings. A ring A is called S-Noetherian if for any
ideal J of A, there exists a finitely generated sub-ideal J’ of J such that tJ C J’ for some
fixed t € S. However, the element ¢ € S in the definition of S-Noetherian rings is not generally
“uniform,” which complicates the study of S-Noetherian rings using module-theoretic methods.
To address this issue, Qi et al. [5] introduced the concept of uniformly S-Noetherian rings, which
are S-Noetherian rings in which the choice of ¢ is fixed. A ring A is called a coherent ring if any
finitely generated ideal is finitely presented, and this concept is another important type of ring
defined by a finiteness condition. Coherent rings have been studied by many algebraists in terms
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of various modules. To extend coherent rings by multiplicative sets, Bennis et al. [4] introduced
the notions of S-coherent rings and c-S-coherent rings. Recently, Zhang [13] introduced the
concept of uniformly S-coherent rings, which are "uniform” versions of S-coherent rings.

In this paper, we require a quick review of uniformly torsion theory. According to [8], an
A-module M is considered a u-S-torsion module (with respect to s) if there exists an element

t € S such that tM = 0. A sequence 0 — M oM % M = 0 s labeled u-S-exact (at
M) if there is an element ¢ € S such that tKer(g) C Im(f) and ¢tIm(f) C Ker(g). A long

sequence --- —> M;_1 L> M; ﬂ—+1> M;+1 —> -+ is deemed wu-S-exact if for any i there
exists an element ¢ € S such that ¢t Ker(f;+1) C Im(f;) and ¢tIm(f;) C Ker(fit+1). A u-S-exact
sequence 0 — M’ — M — M" — 0 is considered a short u-S-exact sequence. A homomorphism

f: M — N is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if 0 — M i> N

(resp., M i> N—-0,0—-M i> N — 0) is u-S-exact. One can verify that a homomorphism
f: M — N is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if and only if
Ker(f) (resp., CoKer(f), both Ker(f) and CoKer(f)) is a u-S-torsion module. Suppose M and
N are A-modules, then M is said to be u-S-isomorphic to N if there exists a u-S-isomorphism
f:M— N.

Following [1], an A-module M is called S-finite provided that there is an element s € S
and a finitely generated A-module F' such that sM C F C M. Trivially, S-finite modules
are generalizations of finitely generated modules. For generalizing finitely presented A-modules,
Bennis et al. [4] introduced the notions of S-finitely presented modules and ¢-S-finitely presented
modules. Following [4], an A-module M is called S-finitely presented provided that there exists
an exact sequence of A-modules 0 - K — F — M — 0 with K S-finite and F finitely
generated free. Certainly, an A-module M is S-finitely presented if and only if there exists an
exact sequence of A-modules 0 — 77 — N — M — 0 with N finitely presented and s77 = 0
for some s € S. Following [4], an A-module M is called c-S-finitely presented provided that
there exists a finitely presented submodule N of M such that sM C N C M for some s € S.
Trivially, an A-module M is called ¢-S-finitely presented if and only if there exists an exact
sequence of A-modules 0 - N — M — T5 — 0 with N finitely presented and sT5 = 0 for some
s € S. Recently, Zhang [13] introduced and studied the notion of uniformly S-finitely presented
modules which generalize both S-finitely presented modules and c-S-finitely presented modules.
An A-module M is called u-S-finitely presented (abbreviates uniformly S-finitely presented)
provided that there is an exact sequence 0 — 17 — F — M — Ty — 0 with F finitely presented
and sTy = sT> = 0.

In [11], the author introduced the class of u-S-projective modules. An A-module P is called
uniformly S-projective (u-S-projective) provided that the induced sequence 0 — Homy (P, M) —
Homu (P, M") — Homa (P, M") — 0 is u-S-exact for any u-S-short exact sequence 0 — M —
M — M" — 0. The class of u-S-projective modules can be seen as a "uniform” generalization
of that of projective modules, since an A-module P is u-S-projective if and only if Exth(P, M)
is u-S-torsion for any A-module M.

In [12], the authors introduced and studied the u-S-projective dimensions of modules and
rings. They defined the u-S-projective dimension u-S-pd4(M) of an A-module M to be the
length of the shortest u-S-projective u-S-resolution of M. We characterize u-S-projective di-
mensions of A-modules using the uniform torsion property of the Ext functors in [12, Proposi-
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tion 2.4]. The u-S-global dimension u-S-gl.dim(A) of a commutative ring A is defined to be the
supremum of u-S-projective dimensions of all A-modules.

u-S-gl.dim(A) = sup{u-S-pda(M) | M is an A-module}.

Zhang [8] introduced the class of u-S-flat modules F' for which the functor F' ®4 — preserves
u-S-exact sequences. The class of u-S-flat modules can be seen as a "uniform” generalization of
that of flat modules, since an A-module F is u-S-flat if and only if Tor{'(F, M) is u-S-torsion for
any A-module M. In [10], the author introduced the u-S-flat dimensions of modules and rings.
Let A be a ring, S a multiplicative subset of A and n be a positive integer. We say that an
A-module has a u-S-flat dimension less than or equal to n, u-S-fd4(M) < n, if Tor; (M, N)
is u-S-torsion A-module for all A-modules N. Hence, the u-S-weak global dimension of A is
defined to be

u-S-w.gl.dim(A) = sup{u-S-fda(M) | M is an A-module}.

Zhang [8] defined the u-S-von Neumann regular ring as follows: Let A be a ring and S a
multiplicative subset of A. A is called a u-S-von Neumann regular ring provided there exists
an element s € S satisfies that for any a € A there exists r € A such that sa = ra®. Thus,
by [8, Theorem 3.13], A is a u-S-von Neumann regular ring if and only if every A-module is
u-S-flat.

In Section 2, we introduce the concept of weak u-S-projective modules and study some
characterizations of such modules. We prove that a ring A is u-S-von Neumann regular if and
only if every u-S-finitely presented A-module is weak u-S-projective, also we prove that if an A-
module F' is weak u-S-projective, then Fg is free over Ag. Furthermore, we introduce and study a
new class of rings called u-S-semihereditary rings. We prove that a ring A is u-S-semihereditary
if and only if A is u-S-coherent and u-S-w.gl.dim(A4) < 1.

In Section 3, we introduce and study the weak u-S-projective dimensions of modules and the
weak u-S-global dimension of rings. We prove that a ring A is u-S-semihereditary if and only if
w-u-S-w.gl.dim(A) = 0 if and only if every ideal of A is u-S-flat.

2 weak u-S-projective modules

In this section, we introduce a class of modules called weak u-S-projective modules, study their
properties and characterize them. We begin this section with the following results which we will
need in this paper.

Throughout the paper, Z/{:[.g denote the class of S-torsion-free A-modules N with the property
that Ext (M, N) = 0 for all u-S-projective A-modules M and for all integers i > 1. Clearly,

every S-torsion-free injective A-module belongs to Z/l;.

Remark 1. If S is composed of units, we have every A-module belongs to L{;, since every
u-S-projective A-module is projective and every A-module is S-torsion-free.

Proposition 1. 1. Let {M;}icr be a family of S-torsion-free A-modules. Then ;e M; € Z/l;
if and only if M; € UL, for alli € 1.
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2. If X € Z/{g, then Ext'y (T, X) = 0 for all u-S-torsion A-module T and for all integer i > 1.

3. Let 0 - M' — M — M" — 0 be an exact sequence of A-modules with M' € Z/l;. Then
M e L{g if and only if so is M".

Proof. (1) Follows from [6, Theorem 3.3.9 and Example 1.6.11(6)].
(2) Trivial, by [11, Corollary 2.11].
(3) Let M’ € U};, then for any wu-S-torsion A-module T, there exists an exact sequence of
A-module
Hom (T, M') — Hom(T, M) — Hom (T, M") — Ext!, (T, M").

The left term is zero by [8, Proposition 2.5] and the right term is zero by (2). Hence by [8,
Proposition 2.5] again, M is S-torsion-free if and only if so is M”. Moreover, for any u-S-
projective A-module P and for any integer i > 1, we have

Ext’y (P, M) — Ext’ (P, M) — Ext’y(P, M") — Ext’ (P, M").

Hence Ext’y(P, P') = Ext’} (P, M") = 0 since M’ € U},.
Thus, Exty (P, M) = ExtY (P, M") which implies that M € Z/Ijq if and only if so is M". O

Proposition 2. Fvery Ag-module, as an A-module, is in L{;.

Proof. Let N be an Ag-module, and let M be a u-S-projective A-module. By [11, Theorem
2.9], Ext"y (M, N) is u-S-torsion for any n > 1. Hence it is an S-torsion A-module for any n > 1.
Ext’y(M, N) is an S-torsion-free A-module by [6, Example 1.6.12(2)] and since Ext’y (M, N) is
an Ag-module. Consequently, we have Ext’y (M, N) = 0 by [6, Example 1.6.13(5)]. Hence we
conclude that N € UL. 0

Proposition 3. Let E be an S-torsion-free injective A-module. Then Homy (M, E) € Z/I; for
any A-module M .

Proof. Let M be an A-module, and let E be an S-torsion-free injective A-module. By [6,
Theorem 3.4.11], we have

Ext" (P, Hom4 (M, E)) = Hom 4(Tor’}(P, M), E)

for any u-S-projective A-module P. Thus, P is a u-S-flat A-module by [11, Proposition 2.13].
Hence Tor’ (P M) is u-S-torsion by [8, Theorem 3.2]. By [8, Proposition 2.5],

Hom 4 (Tor2 (P, ) E) = 0. Therefore, we have Ext’ (P,Homa (M, E)) = 0, which implies that
Homy (M, E) € US O

Next, we will introduce a new class of modules called the weak uniformly S-projective mod-
ules.

Definition 1. An A-module M is said to be w-u-S-projective (abbreviates weak uniformly S-
projective) if ExtYy (M, N) =0 for any N € Z/{g.
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Clearly the following containments hold.
{projective} C {u-S-projective} C {w-u-S-projective}.

Remark 2. 1. If S consists of units, it is easy to see that the three classes of modules
previous coincide.

2. Using [11, Theorem 3.5], it is easy to see that every w-u-S-projective is u-S-projective over
a u-S-semisimple ring.

3. Every projective module is w-u-S-projective but the converse is not true in general by [11,
Example 3.11].

The following proposition summarizes some of the properties of weak uniformly S-projective
modules.

Proposition 4. The following statements hold for any ring A and multiplicative subset S of A:

1. An A-module M is w-u-S-projective if and only if Extf;l(M, N) =0 for any N € Z/{; and
any 5 > 1.

2. The class of all w-u-S-projective modules is closed under direct sums and under direct
summands.

3. Let 0 — M' — M — M" — 0 be an exact sequence of A-modules with M" is w-u-S-
projective. Then M’ is w-u-S-projective if and only if so is M.

Proof. (1) Suppose M is a w-u-S-projective module, and let N € ¢St. If j = 1, the result is
trivial by definition of w-u-S-projective. For any j > 1, by Proposition 1, there exists an exact
sequence of A-modules

O—+N—=Ih—-1I—-—=1j2—=L—=0

where Iy,...,Ij_o are S-torsion-free injective and L € Ugv. Thus, we have EXti‘(M, N) =
Ext! (M, L) = 0. The converse is obvious.

(2) The statement follows from [6, Theorem 3.3.9].

(3) Let N € Z/l;, and let 0 - M’ — M — M"” — 0 be an exact sequence with M” being
w-u-S-projective. By the long exact sequence of Ext’s associated to this short exact sequence,
we get

Extl(M",N) — Exty (M, N) — ExtY (M, N) — Ext%(M", N).

Since M" is w-u-S-projective, we have Exty(M” N) = Ext}(M”,N) = 0 by (1). Hence
Ext! (M, N) = Ext! (M’, N), which implies that M’ is w-u-S-projective if and only if M is. [

Corollary 1. Let 0 - L - F — M — 0 be a u-S-ezxact sequence of A-modules with F is
w-u-S-projective. Then for any N € Z/{jg and integre n > 1, Ext’y(L, N) is u-S-isomorphic to
Ext (M, N).

Proof. By [9, Theorem 1.4] and Proposition 4. O
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The following example shows that w-u-S-projective modules may not necessarily be wu-S-
projective in general.

Example 1. Let A = Z be the ring of integers, p a prime in Z and S = {p"|n € N}. Since Z/(p")
o

is u-S-torsion, and so is w-u-S-projective. Thus, by Proposition 4, the A-module N = € Z/{p")
n=1

is w-u-S-projective. However, we claim that it is not u-S-projective. Indeed, first, we note that
Ext},(Z/(p"), Z] (p™)) = Z/(pmin{m’”}). So we have

EXt%(N, N) = H(@ EXt%(Z/(pn%Z/@m») o~ H(@ Z/<pmin{m,n}>)‘

neN meN neN meN

Note that the abelian group [] (@ Z/(p™{™n})) contains a subgroup [] Z/(p™). Since
neN meN neN

oo oo
[T Z/{p") is not u-S-torsion, Ext (@ Z/{p"), @ Z/{p")) is also not u-S-torsion. Conse-
neN n=1 n=1

oo
quently, @ Z/(p") is not u-S-projective.
n=1

The following proposition gives some characterizations of w-u-S-projective modules.
Proposition 5. The following statements are equivalent for any A-module M :

1. M is w-u-S-projective,

2. M ® F is w-u-S-projective for any projective A-module F,

3. Homy (F, M) is w-u-S-projective for any finitely generated projective A-module F.

Proof. (1) = (2) Let F be a projective A-module. For any A-module N € Z/l;. By [6, Theo-
rem 3.3.10], we have Exty (FF ® M, N) = Hom(F, Ext!y(M, N)). Since M is w-u-S-projective,
Extl(M,N) =0, and Ext}(F ® M, N) = 0. Hence F ® M is a w-u-S-projective A-module.

(1) = (3) Let N € Z/{;, for any finitely generated projective A-module F. By [6, Theorem
3.3.12], we have F ® Ext! (M, N) = Ext(Hom(F, M), N). Since M is w-u-S-projective, so
Extl (M, N) = 0. Hence Ext!(Homa(F, M), N) = 0, which implies that Homu(F, M) is a
w-u-S-projective A-module.

(2) = (1) and (3) = (1) Follow by letting F' = A. O

Proposition 6. Let A = Ay x Ay be a direct product of rings A1 and As and S = 51 X Sy be a
direct product of multiplicative subsets of A1 and As. Then M is a w-u-S-projective A-module
if and only if M; is a w-u-S;-projective A;-module for each i =1,2.

Proof. Suppose M be a w-u-S-projective A-module so M = My x Ms. Let N be an Aj-module
and N € 733;1. Then we have 0 = Ext!y(M, N x 0) = Extih(Ml,N). Consequently, M is a
w-u-S1-projective Aj-module. Similarly, Ms is a w-u-Sa-projective As-module. Now, suppose
that M; is a w-u-S;-projective A;-module for each ¢ = 1,2. Let N be an A-module and N € L{g,
so N = Ny x Np. Hence Ext}y (M, N) = Exty (M, N1) x Extly (Ms, Ny) = 0. Thus, M is a
w-u-S-projective A-module. O
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Proposition 7. If M is w-u-S-projective, then Mg is projective over Ag. The converse holds,
if M is u-S-finitely presented and S is finite.

Proof. Let N be an Ag-module and let 0 - L — F' — M — 0 be an exact sequence with F' free.
Hence by Proposition 2, N € Ll; and so Exth(M ,N) = 0. Consider the following diagramme
with exact rows

Hom g (Fg, N) — Homug(Ls, N) — Ext} (Mg, N) — 0

| ! !

Hom(F, N) —— Homy(L, N) —— Ext4Y(M,N) —— 0

By [6, Theorem 2.2.16], the first two vertical maps are isomorphisme. Thus, we have Exti‘ S (Mg, N)
= Exth(M, N) = 0. Hence Mg is a projective over Ag. The converse, suppose that Mg is a
projective Ag-module, so Mg is flat. Hence by [8, Proposition 3.8, we have M is a u-S-flat
A-module and by [13, Proposition 2.8], M is u-s-projective and so w-u-s-projective. O

Corollary 2. Let S be finite. Every w-u-S-projective module is u-S-flat.
Proof. By Proposition 7 and [8, Proposition 3.8]. O

Proposition 8. If P is a w-u-S-projective A-module and E is an S-torsion-free injective A-
module. Then Hom 4 (Tor’ (P, M), E) = 0.

Proof. Let P be a w-u-S-projective A-module, E¥ be S-torsion-free injective, and let M be an
A-module. Hence by [6, Theorem 3.4.11], we have

Ext'y (P, Hom4(M, E)) = Hom 4 (Tor (P, M), E).

Since Homy (M, E) € L{; by Proposition 3, we have Ext’y(P,Homa(M,E)) = 0 . Hence
Hom 4 (Tord(P, M), E) = 0. O

Proposition 9. Let S be finite, and M be an S-torsion-free A-module. The following assertions
holds.

1. Mg/M is w-u-S-projective.
2. M is w-u-S-projective if and only if so is Mg.

Proof. (1) Since M is a S-torsion-free A-module, Mg/M is S-torsion by [6, Example 1.6.13].
Hence by [8, Propositin 2.3], Mg/M is u-S-torsion. Thus, by [11, Corollary 2.11], Mg/M is
u-S-projective which implies that is a w-u-S-projective A-module.

(2) Let N € Z/lj;, by (1) we have Mg/M is u-S-projective. Consider the following exact
sequence 0 — M — Mg — Mg/M. Hence by Proposition 4, we have M is w-u-S-projective if
and only if Mg is w-u-S-projective. O
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From [2], an A-module M is said to be weak u-S-flat (w-u-S-flat) if Tor{'(A/I, M) is u-S-
torsion for any ideal I of A.

Lemma 1. Let S be finite, and M be a u-S-finitely presented A-module. The following assertions
are equivalent.

1. M is u-S-projective,

2. M is w-u-S-projective,

3. M is w-u-S-flat,

4. M is u-S-flat,

5. Mg is a projective Ag-module.

Proof. (1) = (2) Obvious.

(2) = (3) By Corollary 2.

(3) = (4) By [2, Corollary 2.11].

(4) & (5) Let M be a u-S-finitely presented A-module, so Mg is a finitely presented Ag-
module by [13, Proposition 2.4]. Hence Mg is a flat Ag-module by [8, Corollary 3.6]. Thus, Mg
is a projective Ag-module.

(5) = (1) By Proposition 7. O

Proposition 10. If M is w-u-S-projective then Exth(M, N) =0 for any As-module N. The
converse holds if M is u-S-finitely presented and S is finite.

Proof. Let N be an Ag-module, then by Proposition 2, N € Z/lj;. Hence Exth(]\/[, N) = 0 since
M is w-u-S-projective. Conversitely, suppose that Exth(M ,N) = 0 for any Ag-module N, so
Mg is a projective Ag-module. Hence by Lemma 1, M is w-u-S-projective. O

Next, we give a new characterizations of u-S-Von Neumann regular rings in terms of w-u-S-
projective modules.

Proposition 11. Let S be finite. The following assertions are equivalent.
1. Every u-S-finitely presented A-module is w-u-S-projective,
2. Every u-S-finitely presented A-module is w-u-S-flat,
3. A is u-S-Von Neumann reqular.

Proof. (1) < (2) Follows from Lemma 1.

(2) = (3) Let M be a finitely presented A-module, so M is w-u-S-flat by (2). Thus, M is
u-S-flat by Lemma 1. Hence A is u-S-Von Neumann regular ring by [3, Proposition 3.19].

(3) = (1) Let M be a u-S-finitely presented A-module. Hence M is u-S-flat since A is
u-S-Von Neumann regular and so M is w-u-S-projective by Lemma 1. O
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Recall that a ring A is said to be semihereditary if every finitely generated ideal of A is
projective. It is proved in [6, Theorem 3.7.10], that a ring is semihereditary if and only if A is
coherent and every ideal of A is flat.

In the next part, we introduce a new class of rings, which is a u-S-version of semihereditary
rings.

Definition 2. A ring A is called a u-S-semihereditary (abbreviates uniformly S-semihereditary)
if every finitely generated ideal of A is u-S-projective.

Obviously, every semisimple and semihereditary rings are u-S-semihereditary but the con-
verse is not true in general (see Example 2). Also, every u-S-semisimple rings are u-S-semihereditary
rings (see [11, Theorem 3.5]).

Lemma 2. Let {M;|i € I} be a direct system of u-S-flat sub-modules of M which are all with
respect to some s € S. Then thZ is u-S-flat.

Proof. Set M = lim M;. Hence sTor‘f‘(F,ligMi) = s(li_ngTor‘f‘(F, M;)) = @(s Tor{ (F, M;)) =
0 by [13, Lemma 4.1]. So, Torf(F,ligMi) is u-S-torsion, which implies that hﬂMZ is u-S-flat
by [8, Theorem 3.2]. O

Proposition 12. Let A = Ay x Ay be direct product of rings A1 and Az, S = S1 X S a
multiplicative subset of A. Then A is u-S-semihereditary if and only if A; is u-S;-semihereditary
foranyi=1,2.

Proof. This is straightforward. O

In the following example, we show that there exists a u-S-semihereditary ring but not semi-
hereditary.

Example 2. Let A; be a semihereditary ring and As a non-semihereditary ring. Denote by
A = A; x As. Then A is not a semihereditary. Set S = S x Sy, where S; = {1} and Sy = {0}.
Hence A is u-S-semihereditary ring by Proposition 12 (Ajg is u-S-semihereditary because 0 € S
and so Ay is u-S-semisimple ring).

Recall from [13], that an A-module M is called u-S-coherent (with respective to s) provided
that there is s € S such that it is S-finite with respect to s and any finitely generated submodule
of M is u-S-finitely presented with respective to s. A ring A is called u-S-coherent (with
respective to s) if A itself is a u-S-coherent A-module with respective to s.

In the following result we give a new characterization of u-S-coherent.

Proposition 13. The following statements are equivalent.
1. A is u-S-coherent ring,
2. FEwvery finitely generated ideal of A is u-S-finitely presented with respect to some fized s € S,

3. Fvery finitely generated submodule of a free module is u-S-finitely generated with respect
to some fized s € S.
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Proof. (3) = (2) This is trivial.

(2) = (1) By [13, Theorem 2.2].

(1) = (3) Let M be a finitely generated submodule of a free module F. So by [13, Theorem
3.2(3)], F' is u-S-coherent. Hence M is u-S-finitely presented. O

In the following Proposition we characterize a ring with u-S-w.gl.dim(A) < 1.
Proposition 14. The following statements are equivalent.

1. Every submodule of u-S-flat modules is u-S-flat,

2. Every submodule of flat modules is u-S-flat,

3. Every ideal of A is u-S-flat with respect to some fixed s € S,

4. Bvery finitely generated ideal of A is u-S-flat with respect to some fized s € S.

5. u-S-w.gl.dim(A) <1

Proof. (1) < (2) < (5) By [10, Proposition 3.9].

(4) = (3) Let I be an ideal of A. Then I = UB where B ranges over the set of all finitely
generated subideal of I. Thus, I is u-S-flat by Lemma 2.

(2) = (3) = (4) Theses are obvious.

(3) = (5) Let I be an ideal of A, so is u-S-flat with respect to some fixed s € S by (3).
Hence u-S-fd4(A/I) < 1. By [10, Proposition 2.3], we have s Tor{(A/I,A/.J) = 0 for all ideal
J of A. Thus, u-S-w.gl.dim(A) <1 by [10, Proposition 3.2]. O

Proposition 15. Let A be a u-S-coherent ring and S be finite. Then
u-S-w.gl.dim(A) < n if and only if u-S-fda(A/m) < n for any m € Max(A).

Proof. Let A be a u-S-coherent ring with respect to some s € S. Then Aj is coherent ring
by [13, Proposition 3.14]. Hence u-S-w.gl.dim(A) < n if and only if w.gl.dim(As) < n by [10,
Corollary 3.5] if and only if fd4, (As/ m As) < n for any m € Max(A) by [7, Lemma 3.7] if and
only if u-S-fd4(A/m) < n for any m € Max(A) by [10, Corollary 2.6]. O

Recall from [5], that an A-module E is called u-S-injective provided that the induced se-
quence 0 — Homy (M”, E) — Homa (M, E) — Homy(M', E) — 0 is u-S-exact for any u-S-exact
sequence 0 — M' — M — M" — 0.

Proposition 16. An A-module N is S-torsion if and only if Homa(N,E) = 0 for any u-S-
injective S-torsion-free A-module E.

Proof. Let N be a S-torsion A-module, so Homy4 (N, E) = 0 by [8, Proposition 2.5].
Converstely, Set T' = torg(N) and C = N/T. Thus, C is S-torsion-free by [6, Example
1.6.13]. Set E = E(C), so E is S-torsion-free by [6, Exercise 2.34] and so F is u-S-injective
S-torsion-free. Hence Hom 4 (N, E) = 0 by hypothesis. Since, 0 — Hom(C, E) — Hom4 (N, E)
is exact, Homy4(C, E) = 0 and so the inclusion map C' < E it the zero homomorphism. Hence
C = 0 which implies that N is S-torsion. O
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Recall from [4], that a ring A is called c-S-coherent, if every S-finite ideal of A is S-finitely
presented.

Proposition 17. Let S be finite. If Ag is a von Neumann reqular ring, then A is u-S-coherent.

Proof. Let Ag be a von Neumann regular ring, so A is ¢-S-coherent by [8, Corollary 3.11]. Hence
by [13, Proposition 3.13], we have A is u-S-coherent. O]

Corollary 3. Let S be finite. Then any u-S-von Neumann regular ring is u-S-coherent.
Proof. By [8, Corollary 3.14] and Proposition 17. O
Proposition 18. FEvery u-S-semihereditary ring is u-S-coherent.

Proof. Let J be a finitely generated ideal of A. Hence J is u-S-projective. Thus, J is u-S-finitely
presented by [13, Proposition 2.8]. Hence A is u-S-coherent by Proposition 13. O

Corollary 4. FEvery u-S-semihereditary ring is S-coheren (resp., c-S-coheren).
Proof. By Proposition 18 and [13, Proposition 3.12]. O

Recall from [6], that a ring A is semihereditary if and only if A is coherent and w.gl.dim(A) <

Next, we give a u-S-analogue of this result.
Proposition 19. The following statements are equivalent.
1. A is u-S-semihereditary,

2. A is u-S-coherent and every finitely generated ideal of A is u-S-flat with respect to some
fized s € S,

3. A is u-S-coherent and u-S-w.gl.dim(A) < 1.

Proof. (1) = (2) By Proposition 18, we have every u-S-semihereditary ring is u-S-coherent. The
secand part, let J is a finitely generated ideal of A, so J is u-S-projective. Hence J is u-S-flat
by [11, Proposition 2.13].

(2) = (3) By Proposition 14.

(3) = (1) Let J be a finitely generated ideal of A, so J is u-S-flat by Proposition 14 and J
is u-S-finitely presented by Proposition 13. Hence J is u-S-projective by [13, Proposition 2.8].
So A is u-S-semihereditary. O

3 Weak u-S-projective dimension of modules and weak u-S-global
dimension of rings

In this section, we introduce and investigate the notion of weak u-S-projective dimension of
modules and rings. We begin this section with the following definition.
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Definition 3. The weak u-S-projective dimension of M, denoted by w-u-S-pd (M), is the
smallest integer n > 0 such that EthH(M, N) =0 for any N € Z/{g. If no such integer exists,
set w-u-S-pd 4 (M) = co.

The weak u-S-global dimension of A is defined by

w-u-S-gl.dim(A) = sup{w-u-S-pd4 (M) : M is an A-module}

Clearly, w-u-S-pd4(M) < u-S-pdy(M) < pdy(M), where pd,(M) denotes the classical
projective dimension of M, with equality when S is composed of units, also the equality when A
is a semisimple ring. However, this inequality may be strict (see, Example 1 and [11, Example
3.11]. It is also obvious that an A-module M is w-u-S-projective if and only if w-u-S-pd 4 (M) =
0. Also, w-u-S-gl.dim(A) < u-S-gl.dim(A) < gl.dim(A), where gl.dim(A) denotes the global
dimension of A, with equality when S is composed of units or A is a semisimple ring. This
inequality may be strict (see, Example 3 and [12, Example 3.5]).

The next result gives a description of the w-u-S-projective dimensions of modules.

Proposition 20. The following statements are equivalent for any A-module M.
1. w-u-S-pd (M) < n,
2. ExtT (M, N) =0 for any N € Z/{;,
3. Extﬁ”(M, N) =0 for any N € Z/{g and any i > 0,

4. If the sequence 0 - P, = P,_1 — -+ = Py - M — 0 is exact with Py,...,P,_1 are
w-u-S-projective A-modules, then P, is w-u-S-projective,

5. If the sequence 0 - P, —» P,_1 — -+ — Py — M — 0 is exact with Py,...,P,_1 are
projective A-modules, then P, is w-u-S-projective,

6. There exists an exact sequence 0 - P, —» P, 1 — --- — Py — M — 0 where each P; are
w-u-S-projective.

Proof. (3) = (2) = (1) and (4) = (5) = (6) These are obvious.

(6) = (3) We prove (3) by induction on n. For the case n = 0, (2) holds by Proposition
4 as M is a w-u-S-projective module. If n > 0, then there is an exact sequence 0 — P, —
P,1— -+ — Py— M — 0 with all P; are w-u-S-projective. Set Ky = ker(Py — M), we have
two exact sequences 0 - Koy - P> M - 0and 0 - P, - P,_1 — -+ = P — Ky — 0.
Hence by induction we have, ExtzflJri(Ko,N) = 0 for any N € Ll; and any ¢ > 0. Thus,
Ext’;" (M, N) = 0.

(1) = (4) Let 0 - P, —» P,—1 — -+ = Py - M — 0 be an exact sequence with all P; are
w-u-S-projective (i = 0,...,n —1). Set Ky = ker(Py — M) and K; = ker(P; — P;_1), where
(i =1,...,n—1). Hence K,,_1 = P,. Since all P;, (i = 0,...,n — 1) are w-u-S-projevtive,
Exth (P,, N) = EX‘UZH(M7 N) =0 for any N € I/I; by Proposition 4. Thus, P, is a w-u-S-
projective module. O

Corollary 5. pdy,(Ms) < w-u-S-pdy(M). Moreover, if S is finite and M be u-S-finitely
presented, then w-u-S-pd (M) = pd (Ms).
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Proof. Let 0 - P, - P,-1 — -+ - PL - Py - M — 0 be an exact sequence, where
Py, P1, ..., P,_1 are projective A-modules. By localizing at S, we get an exact sequence of Ag-
modules, 0 — (P,)s — (Pn—1)s = - — (P1)s = (Po)s — (M)s — 0. By Proposition 7, if P,
is w-u-S-projective, so (P,)s is projective over Ag, and the converse by Proposition 7. O

Proposition 21. Let 0 — M"” — M’ — M — 0 be an exact sequence of A-modules. If two of
w-u-S-pd4(M"), w-u-S-pd 4 (M') and w-u-S-pd4 (M) are finite, so is the third. Moreover,

1. w-u-S-pdy(M") < max {w-u-S-pd4 (M), w-u-S-pd (M) — 1}.
2. w-u-S-pd (M) < max{w-u-S-pd4(M"), w-u-S-pd (M)}.
3. w-u-S-pd (M) < max{w-u-S-pd (M), w-u-S-pds(M") + 1}.
Proof. Standard in homological algebra. O

Corollary 6. Let 0 — M"” — M’ — M — 0 be an ezact sequence of A-modules. If M' is
w-u-S-projective and w-u-S-pd (M) > 0, then

w-u-S-pdy (M) = w-u-S-pd4(M") + 1.
Proposition 22. Let {M;} be a family of A-modules. Then
w-u-S-pdy(©;M;) = sup{w-u-S-pd,(M;)}.

Proof. The proof is straightforward. O
Proposition 23. Let n > 0 be an integer. The following statements are equivalent.

1. w-u-S-gldim(A) <mn,

2. w-u-S-pdy(M) < n for any finitely generated A-module M,

3. w-u-S-pd4(A/I) <n for any ideal I of A,

4. 1dA(N) <n for any N € Z/l;.
Consequently, we have

w-u-S-gl.dim(A) = sup{w-u-S-pd (M) | M is a finitely generated A-module}
= sup{w-u-S-pd4(A/I) | I is an ideal of A}
= sup{ida(N) | N € Ul}.
Proof. (1) = (2) and (2) = (3) These are obvious.
(3) = (4) Let N € UL. For any ideal I of A, Ext2 ;(A/I,N) =0, so ida(N) < n.
(4) = (1) Let M be an A-module. For any N € L{;, we have Ext/, (M, N) = 0. Thus,
w-u-S-pd 4 (M) < n, which implies that w-u-S-gl.dim(A) < n. O

Corollary 7. The following statements are equivalent.
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1. w-u-S-gl.dim(A4) =0,

2. FEvery finitely generated A-module is w-u-S-projective,
3. A/I is w-u-S-projective for any ideal I of A,

4. Bvery A-module belong to Z/Ijq is injective.

Every u-S-von Neumann regular ring A has w-u-S-gl.dim(A) = 0. However, the converse is
not true in general.

Example 3. Let A = Z be the ring of integers and S = Z—{0}. Then A is not u-S-von Neumann
regular since S is composed of regular elements and A is not von Neumann. But each A/(s) is
u-S-torsion, so L{; is equal to torsion-free injective A-modules. Hence w-u-S-gl.dim(A) = 0.

Corollary 8. The following statements are equivalent.

1. w-u-S-gl.dim(A4) <1,

2. Bvery submodule of a w-u-S-projective A-module is w-u-S-projective,
Every submodule of a projective A-module is w-u-S-projective,

Every ideal of A is w-u-S-projective,

ida(N) <1 for any N € L{;.

Recall from [2], The weak u-S-flat dimension of A is defined by

w-u-S-w.gl.dim(A) = sup{w-u-S-fd (M) : M is an A-module},
where w-u-S-fd 4 (M) denotes the weak u-S-flat dimension of M.
Proposition 24. Let S be finite. Then
w-u-S-fda(M) < u-S-fda(M) < w-u-S-pd4(M).
Consequently,
w-u-S-w.gl.dim(A4) < u-S-w.gl.dim(A) < w-u-S-gl.dim(A).

The equivalence holds, if M is a u-S-finitely presented A-module.
Proof. Follows from Corollary 2 and Lemma 1. O

Recall from [1], a ring A is said to be S-Noetherian if every ideal of A is S-finite.

Proposition 25. Let A be an S-Noetherian and S be finite.

u-S-w.gl.dim(A) = w-u-S-w.gl.dim(A) = sup{w-u-S-pd4(A/I) | I is an ideal of A}.
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Proof. Let I be an ideal of A, so A/I is u-S-finitely presented by [13, Proposition 2.3]. Hence by
Proposition 24, we have w-u-S-fd4(A/I) = u-S-fda (M) = w-u-S-pd 4 (M) and so w-u-S-w.gl.dim(A)
= u-S-w.gl.dim(A) = w-u-S-gl.dim(A). Thus, by Proposition 23, we have the result. O

Corollary 9. Let A be an S-Noetherian ring and S be finite. The following are equivalent.
1. A is u-S-semihereditary ring,
2. A is u-S-von Neumann reqular ring,
3. Fvery ideal of A is u-S-flat,
4. w-u-S-w.gl.dim(A) = 0.

Proof. (2) < (4) By [10, Corollary 3.8] and Proposition 25.

(1) = (4) Since A u-S-semihereditary ring, so every finitely generated ideal is w-u-S-projective.
Hence w-u-S-pd 4(A/I) = 0, and by Proposition 25, we have the result.

(2) = (3) By [8, Theorem 3.13].

(3) = (4) By Proposition 14 and Proposition 25.

(4) = (1) By Corollary 7, we have every finitely generated module is w-u-S-projective, and so
A is u-S-semihereditary ring. O

Proposition 26. Every u-S-semihereditary ring is S-Noetherian.

Proof. Let I be an ideal of A, so A/I is w-u-S-projective since A is u-S-semihereditary. Hence
by [13, Proposition 2.8], A/I is u-S-finitely presented and by [13, Theorem 2.2], I is S-finite.
Hence A is S-Noetherian. O

Corollary 10. Let S be finite. Every u-S-semihereditary ring is u-S-Noetherian.

Proof. By Proposition 26 and [5, Proposition 2.4]. O]
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