

Weak u-S-projective modules and dimensions

Refat Abdelmawla Khaled Assaad^{†*}, Xiaolei Zhang[‡]

† Department of Artificial Intelligence, Faculty of Computer Science and Information Technology, Al-Razi University, Sana'a, Yemen † Department of Mathematics, School of Mathematics and Statistics, Shandong University of Technology, Zibo, China Emails: refat90@hotmail.com, zxlrghj@163.com

Abstract. The primary focus of this paper is to introduce and investigate a fresh category of projective modules, referred to as weak u-S-projective modules (w-u- is an abbreviation for weak uniformly). These novel modules are utilized for characterizing u-S-von Neumann regular rings. Additionally, the paper investigates a new type of rings, named u-S-semihereditary rings. This leads to the introduction of the weak u-S-projective dimensions of modules and weak u-S-global dimension of rings in this paper.

Keywords: u-S-projective module, u-S-flat module, u-S-torsion, u-S-exact sequence, u-S-von Neumann regular ring, u-S-semihereditary.

AMS Subject Classification 2010: 13D05, 13D07, 13H05, 16E10, 18G25.

1 Introduction

Throughout this paper, we denote by A a commutative ring with identity, M an A-module, and S a multiplicative subset of A, where $1 \in S$ and $s_1s_2 \in S$ for any $s_1 \in S$ and $s_2 \in S$. The study of commutative rings in terms of multiplicative sets started with Anderson and Dumitrescu [1], who introduced the concept of S-Noetherian rings. A ring A is called S-Noetherian if for any ideal S of S definitely generated sub-ideal S such that S defined and S for some fixed S definition of S-Noetherian rings is not generally "uniform," which complicates the study of S-Noetherian rings using module-theoretic methods. To address this issue, S definitely presented the concept of uniformly S-Noetherian rings, which are S-Noetherian rings in which the choice of S is fixed. A ring S is called a coherent ring if any finitely generated ideal is finitely presented, and this concept is another important type of ring defined by a finiteness condition. Coherent rings have been studied by many algebraists in terms

Received: 28 June 2023/ Revised: 05 January 2024/ Accepted: 30 January 2024

DOI: 10.22124/JART.2024.24832.1545

 $^{^*}$ Corresponding author

of various modules. To extend coherent rings by multiplicative sets, Bennis et al. [4] introduced the notions of S-coherent rings and c-S-coherent rings. Recently, Zhang [13] introduced the concept of uniformly S-coherent rings, which are "uniform" versions of S-coherent rings.

In this paper, we require a quick review of uniformly torsion theory. According to [8], an A-module M is considered a u-S-torsion module (with respect to s) if there exists an element $t \in S$ such that tM = 0. A sequence $0 \to M \xrightarrow{f} M' \xrightarrow{g} M'' \to 0$ is labeled u-S-exact (at M') if there is an element $t \in S$ such that $t \operatorname{Ker}(g) \subseteq \operatorname{Im}(f)$ and $t \operatorname{Im}(f) \subseteq \operatorname{Ker}(g)$. A long sequence $\cdots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \cdots$ is deemed u-S-exact if for any i there exists an element $t \in S$ such that $t \operatorname{Ker}(f_{i+1}) \subseteq \operatorname{Im}(f_i)$ and $t \operatorname{Im}(f_i) \subseteq \operatorname{Ker}(f_{i+1})$. A u-S-exact sequence $0 \to M' \to M \to M'' \to 0$ is considered a short u-S-exact sequence. A homomorphism $f: M \to N$ is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if $0 \to M \xrightarrow{f} N$ (resp., $M \xrightarrow{f} N \to 0$, $0 \to M \xrightarrow{f} N \to 0$) is u-S-exact. One can verify that a homomorphism $f: M \to N$ is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if and only if $\operatorname{Ker}(f)$ (resp., $\operatorname{CoKer}(f)$), both $\operatorname{Ker}(f)$ and $\operatorname{CoKer}(f)$) is a u-S-torsion module. Suppose M and N are A-modules, then M is said to be u-S-isomorphic to N if there exists a u-S-isomorphism $f: M \to N$.

Following [1], an A-module M is called S-finite provided that there is an element $s \in S$ and a finitely generated A-module F such that $sM \subseteq F \subseteq M$. Trivially, S-finite modules are generalizations of finitely generated modules. For generalizing finitely presented A-modules, Bennis et al. [4] introduced the notions of S-finitely presented modules and c-S-finitely presented modules. Following [4], an A-module M is called S-finitely presented provided that there exists an exact sequence of A-modules $0 \to K \to F \to M \to 0$ with K S-finite and F finitely generated free. Certainly, an A-module M is S-finitely presented if and only if there exists an exact sequence of A-modules $0 \to T_1 \to N \to M \to 0$ with N finitely presented and $sT_1 = 0$ for some $s \in S$. Following [4], an A-module M is called c-S-finitely presented provided that there exists a finitely presented submodule N of M such that $sM \subseteq N \subseteq M$ for some $s \in S$. Trivially, an A-module M is called c-S-finitely presented if and only if there exists an exact sequence of A-modules $0 \to N \to M \to T_2 \to 0$ with N finitely presented and $sT_2 = 0$ for some $s \in S$. Recently, Zhang [13] introduced and studied the notion of uniformly S-finitely presented modules which generalize both S-finitely presented modules and c-S-finitely presented modules. An A-module M is called u-S-finitely presented (abbreviates uniformly S-finitely presented) provided that there is an exact sequence $0 \to T_1 \to F \to M \to T_2 \to 0$ with F finitely presented and $sT_1 = sT_2 = 0$.

In [11], the author introduced the class of u-S-projective modules. An A-module P is called uniformly S-projective (u-S-projective) provided that the induced sequence $0 \to \operatorname{Hom}_A(P,M) \to \operatorname{Hom}_A(P,M') \to \operatorname{Hom}_A(P,M'') \to 0$ is u-S-exact for any u-S-short exact sequence $0 \to M \to M' \to M'' \to 0$. The class of u-S-projective modules can be seen as a "uniform" generalization of that of projective modules, since an A-module P is u-S-projective if and only if $\operatorname{Ext}_A^1(P,M)$ is u-S-torsion for any A-module M.

In [12], the authors introduced and studied the u-S-projective dimensions of modules and rings. They defined the u-S-projective dimension u-S-pd $_A(M)$ of an A-module M to be the length of the shortest u-S-projective u-S-resolution of M. We characterize u-S-projective dimensions of A-modules using the uniform torsion property of the Ext functors in [12, Proposi-

tion 2.4]. The u-S-global dimension u-S-gl.dim(A) of a commutative ring A is defined to be the supremum of u-S-projective dimensions of all A-modules.

$$u$$
- S - $\operatorname{gl.dim}(A) = \sup\{u$ - S - $\operatorname{pd}_A(M) \mid M \text{ is an } A\text{-module}\}.$

Zhang [8] introduced the class of u-S-flat modules F for which the functor $F \otimes_A$ – preserves u-S-exact sequences. The class of u-S-flat modules can be seen as a "uniform" generalization of that of flat modules, since an A-module F is u-S-flat if and only if $\operatorname{Tor}_1^A(F,M)$ is u-S-torsion for any A-module M. In [10], the author introduced the u-S-flat dimensions of modules and rings. Let A be a ring, S a multiplicative subset of A and B be a positive integer. We say that an A-module has a u-S-flat dimension less than or equal to B, B-flat dimension of B is B-torsion B-module for all B-modules B. Hence, the B-weak global dimension of B is defined to be

$$u$$
-S-w.gl.dim $(A) = \sup\{u$ -S-fd $_A(M) \mid M \text{ is an } A\text{-module}\}.$

Zhang [8] defined the u-S-von Neumann regular ring as follows: Let A be a ring and S a multiplicative subset of A. A is called a u-S-von Neumann regular ring provided there exists an element $s \in S$ satisfies that for any $a \in A$ there exists $r \in A$ such that $sa = ra^2$. Thus, by [8, Theorem 3.13], A is a u-S-von Neumann regular ring if and only if every A-module is u-S-flat.

In Section 2, we introduce the concept of weak u-S-projective modules and study some characterizations of such modules. We prove that a ring A is u-S-von Neumann regular if and only if every u-S-finitely presented A-module is weak u-S-projective, also we prove that if an A-module F is weak u-S-projective, then F_S is free over A_S . Furthermore, we introduce and study a new class of rings called u-S-semihereditary rings. We prove that a ring A is u-S-semihereditary if and only if A is u-S-coherent and u-S-w.gl.dim(A) ≤ 1 .

In Section 3, we introduce and study the weak u-S-projective dimensions of modules and the weak u-S-global dimension of rings. We prove that a ring A is u-S-semihereditary if and only if w-u-S-w.gl.dim(A) = 0 if and only if every ideal of A is u-S-flat.

2 weak u-S-projective modules

In this section, we introduce a class of modules called weak u-S-projective modules, study their properties and characterize them. We begin this section with the following results which we will need in this paper.

Throughout the paper, \mathcal{U}_S^{\dagger} denote the class of S-torsion-free A-modules N with the property that $\operatorname{Ext}_A^i(M,N)=0$ for all u-S-projective A-modules M and for all integers $i\geq 1$. Clearly, every S-torsion-free injective A-module belongs to \mathcal{U}_S^{\dagger} .

Remark 1. If S is composed of units, we have every A-module belongs to \mathcal{U}_S^{\dagger} , since every u-S-projective A-module is projective and every A-module is S-torsion-free.

Proposition 1. 1. Let $\{M_i\}_{i\in I}$ be a family of S-torsion-free A-modules. Then $\Pi_{i\in I}M_i\in\mathcal{U}_S^{\dagger}$ if and only if $M_i\in\mathcal{U}_S^{\dagger}$ for all $i\in I$.

- 2. If $X \in \mathcal{U}_S^{\dagger}$, then $\operatorname{Ext}_A^i(T,X) = 0$ for all u-S-torsion A-module T and for all integer $i \geq 1$.
- 3. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A-modules with $M' \in \mathcal{U}_S^{\dagger}$. Then $M \in \mathcal{U}_S^{\dagger}$ if and only if so is M''.

Proof. (1) Follows from [6, Theorem 3.3.9 and Example 1.6.11(6)].

- (2) Trivial, by [11, Corollary 2.11].
- (3) Let $M' \in \mathcal{U}_S^{\dagger}$, then for any u-S-torsion A-module T, there exists an exact sequence of A-module

$$\operatorname{Hom}_A(T, M') \to \operatorname{Hom}_A(T, M) \to \operatorname{Hom}_A(T, M'') \to \operatorname{Ext}_A^1(T, M').$$

The left term is zero by [8, Proposition 2.5] and the right term is zero by (2). Hence by [8, Proposition 2.5] again, M is S-torsion-free if and only if so is M''. Moreover, for any u-S-projective A-module P and for any integer $i \ge 1$, we have

$$\operatorname{Ext}\nolimits_A^i(P,M') \to \operatorname{Ext}\nolimits_A^i(P,M) \to \operatorname{Ext}\nolimits_A^i(P,M'') \to \operatorname{Ext}\nolimits_A^{i+1}(P,M').$$

Hence $\operatorname{Ext}_A^i(P,P')=\operatorname{Ext}_A^{i+1}(P,M')=0$ since $M'\in\mathcal{U}_S^\dagger.$ Thus, $\operatorname{Ext}_A^i(P,M)\cong\operatorname{Ext}_A^i(P,M'')$ which implies that $M\in\mathcal{U}_S^\dagger$ if and only if so is M''.

Proposition 2. Every A_S -module, as an A-module, is in \mathcal{U}_S^{\dagger} .

Proof. Let N be an A_S -module, and let M be a u-S-projective A-module. By [11, Theorem 2.9], $\operatorname{Ext}_A^n(M,N)$ is u-S-torsion for any $n \geq 1$. Hence it is an S-torsion A-module for any $n \geq 1$. $\operatorname{Ext}_A^n(M,N)$ is an S-torsion-free A-module by [6, Example 1.6.12(2)] and since $\operatorname{Ext}_A^n(M,N)$ is an A_S -module. Consequently, we have $\operatorname{Ext}_A^n(M,N) = 0$ by [6, Example 1.6.13(5)]. Hence we conclude that $N \in \mathcal{U}_S^{\dagger}$.

Proposition 3. Let E be an S-torsion-free injective A-module. Then $\operatorname{Hom}_A(M,E) \in \mathcal{U}_S^{\dagger}$ for any A-module M.

Proof. Let M be an A-module, and let E be an S-torsion-free injective A-module. By [6, Theorem 3.4.11], we have

$$\operatorname{Ext}_A^n(P, \operatorname{Hom}_A(M, E)) \cong \operatorname{Hom}_A(\operatorname{Tor}_n^A(P, M), E)$$

for any u-S-projective A-module P. Thus, P is a u-S-flat A-module by [11, Proposition 2.13]. Hence $\operatorname{Tor}_n^A(P,M)$ is u-S-torsion by [8, Theorem 3.2]. By [8, Proposition 2.5], $\operatorname{Hom}_A(\operatorname{Tor}_n^A(P,M),E)=0$. Therefore, we have $\operatorname{Ext}_A^n(P,\operatorname{Hom}_A(M,E))=0$, which implies that $\operatorname{Hom}_A(M,E)\in \mathcal{U}_S^{\dagger}$.

Next, we will introduce a new class of modules called the weak uniformly S-projective modules.

Definition 1. An A-module M is said to be w-u-S-projective (abbreviates weak uniformly S-projective) if $\operatorname{Ext}_A^1(M,N)=0$ for any $N\in\mathcal{U}_S^{\dagger}$.

Clearly the following containments hold.

$$\{\text{projective}\} \subseteq \{u\text{-}S\text{-projective}\} \subseteq \{w\text{-}u\text{-}S\text{-projective}\}.$$

- **Remark 2.** 1. If S consists of units, it is easy to see that the three classes of modules previous coincide.
 - 2. Using [11, Theorem 3.5], it is easy to see that every w-u-S-projective is u-S-projective over a u-S-semisimple ring.
 - 3. Every projective module is w-u-S-projective but the converse is not true in general by [11, Example 3.11].

The following proposition summarizes some of the properties of weak uniformly S-projective modules.

Proposition 4. The following statements hold for any ring A and multiplicative subset S of A:

- 1. An A-module M is w-u-S-projective if and only if $\operatorname{Ext}_A^j(M,N)=0$ for any $N\in\mathcal{U}_S^\dagger$ and any $j\geq 1$.
- 2. The class of all w-u-S-projective modules is closed under direct sums and under direct summands.
- 3. Let $0 \to M' \to M \to M'' \to 0$ be an exact sequence of A-modules with M'' is w-u-S-projective. Then M' is w-u-S-projective if and only if so is M.

Proof. (1) Suppose M is a w-u-S-projective module, and let $N \in \mathcal{U}S^{\dagger}$. If j=1, the result is trivial by definition of w-u-S-projective. For any j>1, by Proposition 1, there exists an exact sequence of A-modules

$$0 \to N \to I_0 \to I_1 \to \cdots \to I_{i-2} \to L \to 0$$

where I_0, \ldots, I_{j-2} are S-torsion-free injective and $L \in \mathcal{U}_S^{\dagger}$. Thus, we have $\operatorname{Ext}_A^j(M, N) \cong \operatorname{Ext}_A^1(M, L) = 0$. The converse is obvious.

- (2) The statement follows from [6, Theorem 3.3.9].
- (3) Let $N \in \mathcal{U}_S^{\dagger}$, and let $0 \to M' \to M \to M'' \to 0$ be an exact sequence with M'' being w-u-S-projective. By the long exact sequence of Ext's associated to this short exact sequence, we get

$$\operatorname{Ext}_A^1(M'',N) \to \operatorname{Ext}_A^1(M,N) \to \operatorname{Ext}_A^1(M',N) \to \operatorname{Ext}_A^2(M'',N).$$

Since M'' is w-u-S-projective, we have $\operatorname{Ext}^1_A(M'',N) = \operatorname{Ext}^2_A(M'',N) = 0$ by (1). Hence $\operatorname{Ext}^1_A(M,N) \cong \operatorname{Ext}^1_A(M',N)$, which implies that M' is w-u-S-projective if and only if M is. \square

Corollary 1. Let $0 \to L \to F \to M \to 0$ be a u-S-exact sequence of A-modules with F is w-u-S-projective. Then for any $N \in \mathcal{U}_S^{\dagger}$ and integre $n \geq 1$, $\operatorname{Ext}_A^n(L,N)$ is u-S-isomorphic to $\operatorname{Ext}_A^{n+1}(M,N)$.

Proof. By [9, Theorem 1.4] and Proposition 4.

The following example shows that w-u-S-projective modules may not necessarily be u-S-projective in general.

Example 1. Let $A = \mathbb{Z}$ be the ring of integers, p a prime in \mathbb{Z} and $S = \{p^n | n \in \mathbb{N}\}$. Since $\mathbb{Z}/\langle p^n \rangle$ is u-S-torsion, and so is w-u-S-projective. Thus, by Proposition 4, the A-module $N = \bigoplus_{n=1}^{\infty} \mathbb{Z}/\langle p^n \rangle$ is w-u-S-projective. However, we claim that it is not u-S-projective. Indeed, first, we note that $\operatorname{Ext}_{\mathbb{Z}}^1(\mathbb{Z}/\langle p^n \rangle, \mathbb{Z}/\langle p^m \rangle) \cong \mathbb{Z}/\langle p^{\min\{m,n\}} \rangle$. So we have

$$\operatorname{Ext}^1_{\mathbb{Z}}(N,N) \cong \prod_{n \in \mathbb{N}} (\bigoplus_{m \in \mathbb{N}} \operatorname{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/\langle p^n \rangle, \mathbb{Z}/\langle p^m \rangle)) \cong \prod_{n \in \mathbb{N}} (\bigoplus_{m \in \mathbb{N}} \mathbb{Z}/\langle p^{\min\{m,n\}} \rangle).$$

Note that the abelian group $\prod_{n\in\mathbb{N}}(\bigoplus_{n\in\mathbb{N}}\mathbb{Z}/\langle p^{\min\{m,n\}}\rangle)$ contains a subgroup $\prod_{n\in\mathbb{N}}\mathbb{Z}/\langle p^n\rangle$. Since $\prod_{n\in\mathbb{N}}\mathbb{Z}/\langle p^n\rangle$ is not u-S-torsion, $\operatorname{Ext}^1_\mathbb{Z}(\bigoplus_{n=1}^\infty\mathbb{Z}/\langle p^n\rangle,\bigoplus_{n=1}^\infty\mathbb{Z}/\langle p^n\rangle)$ is also not u-S-torsion. Consequently, $\bigoplus_{n=1}^\infty\mathbb{Z}/\langle p^n\rangle$ is not u-S-projective.

The following proposition gives some characterizations of w-u-S-projective modules.

Proposition 5. The following statements are equivalent for any A-module M:

- 1. M is w-u-S-projective,
- 2. $M \otimes F$ is w-u-S-projective for any projective A-module F,
- 3. $\operatorname{Hom}_A(F, M)$ is w-u-S-projective for any finitely generated projective A-module F.

Proof. (1) \Rightarrow (2) Let F be a projective A-module. For any A-module $N \in \mathcal{U}_S^{\dagger}$. By [6, Theorem 3.3.10], we have $\operatorname{Ext}_A^1(F \otimes M, N) \cong \operatorname{Hom}_A(F, \operatorname{Ext}_A^1(M, N))$. Since M is w-u-S-projective, $\operatorname{Ext}_A^1(M, N) = 0$, and $\operatorname{Ext}_A^1(F \otimes M, N) = 0$. Hence $F \otimes M$ is a w-u-S-projective A-module.

 $(1) \Rightarrow (3)$ Let $N \in \mathcal{U}_S^{\dagger}$, for any finitely generated projective A-module F. By [6, Theorem 3.3.12], we have $F \otimes \operatorname{Ext}_A^1(M,N) \cong \operatorname{Ext}_A^1(\operatorname{Hom}_A(F,M),N)$. Since M is w-u-S-projective, so $\operatorname{Ext}_A^1(M,N) = 0$. Hence $\operatorname{Ext}_A^1(\operatorname{Hom}_A(F,M),N) = 0$, which implies that $\operatorname{Hom}_A(F,M)$ is a w-u-S-projective A-module.

$$(2) \Rightarrow (1) \text{ and } (3) \Rightarrow (1) \text{ Follow by letting } F = A.$$

Proposition 6. Let $A = A_1 \times A_2$ be a direct product of rings A_1 and A_2 and $S = S_1 \times S_2$ be a direct product of multiplicative subsets of A_1 and A_2 . Then M is a w-u-S-projective A-module if and only if M_i is a w-u-S_i-projective A_i -module for each i = 1, 2.

Proof. Suppose M be a w-u-S-projective A-module so $M=M_1\times M_2$. Let N be an A_1 -module and $N\in\mathcal{P}_{S_1}^\dagger$. Then we have $0=\operatorname{Ext}_A^1(M,N\times 0)\cong\operatorname{Ext}_{A_1}^1(M_1,N)$. Consequently, M_1 is a w-u- S_1 -projective A_1 -module. Similarly, M_2 is a w-u- S_2 -projective A_2 -module. Now, suppose that M_i is a w-u- S_i -projective A_i -module for each i=1,2. Let N be an A-module and $N\in\mathcal{U}_S^\dagger$, so $N=N_1\times N_2$. Hence $\operatorname{Ext}_A^1(M,N)\cong\operatorname{Ext}_{A_1}^1(M_1,N_1)\times\operatorname{Ext}_{A_2}^1(M_2,N_2)=0$. Thus, M is a w-u-S-projective A-module.

Proposition 7. If M is w-u-S-projective, then M_S is projective over A_S . The converse holds, if M is u-S-finitely presented and S is finite.

Proof. Let N be an A_S -module and let $0 \to L \to F \to M \to 0$ be an exact sequence with F free. Hence by Proposition 2, $N \in \mathcal{U}_S^{\dagger}$ and so $\operatorname{Ext}_A^1(M,N) = 0$. Consider the following diagramme with exact rows

$$\operatorname{Hom}_{A_S}(F_S,N) \longrightarrow \operatorname{Hom}_{A_S}(L_S,N) \longrightarrow \operatorname{Ext}^1_{A_S}(M_S,N) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\operatorname{Hom}_A(F,N) \longrightarrow \operatorname{Hom}_A(L,N) \longrightarrow \operatorname{Ext}^1_A(M,N) \longrightarrow 0$$

By [6, Theorem 2.2.16], the first two vertical maps are isomorphisme. Thus, we have $\operatorname{Ext}_{A_S}^1(M_S, N) \cong \operatorname{Ext}_A^1(M, N) = 0$. Hence M_S is a projective over A_S . The converse, suppose that M_S is a projective A_S -module, so M_S is flat. Hence by [8, Proposition 3.8], we have M is a u-S-flat A-module and by [13, Proposition 2.8], M is u-S-projective and so w-u-S-projective.

Corollary 2. Let S be finite. Every w-u-S-projective module is u-S-flat.

Proof. By Proposition 7 and [8, Proposition 3.8].

Proposition 8. If P is a w-u-S-projective A-module and E is an S-torsion-free injective A-module. Then $\operatorname{Hom}_A(\operatorname{Tor}_n^A(P,M),E)=0$.

Proof. Let P be a w-u-S-projective A-module, E be S-torsion-free injective, and let M be an A-module. Hence by [6, Theorem 3.4.11], we have

$$\operatorname{Ext}_A^n(P, \operatorname{Hom}_A(M, E)) \cong \operatorname{Hom}_A(\operatorname{Tor}_n^A(P, M), E).$$

Since $\operatorname{Hom}_A(M,E)\in\mathcal{U}_S^\dagger$ by Proposition 3, we have $\operatorname{Ext}_A^n(P,\operatorname{Hom}_A(M,E))=0$. Hence $\operatorname{Hom}_A(\operatorname{Tor}_n^A(P,M),E)=0$.

Proposition 9. Let S be finite, and M be an S-torsion-free A-module. The following assertions holds.

- 1. M_S/M is w-u-S-projective.
- 2. M is w-u-S-projective if and only if so is M_S .

Proof. (1) Since M is a S-torsion-free A-module, M_S/M is S-torsion by [6, Example 1.6.13]. Hence by [8, Propositin 2.3], M_S/M is u-S-torsion. Thus, by [11, Corollary 2.11], M_S/M is u-S-projective which implies that is a w-u-S-projective A-module.

(2) Let $N \in \mathcal{U}_S^{\dagger}$, by (1) we have M_S/M is u-S-projective. Consider the following exact sequence $0 \to M \to M_S \to M_S/M$. Hence by Proposition 4, we have M is w-u-S-projective if and only if M_S is w-u-S-projective.

From [2], an A-module M is said to be weak u-S-flat (w-u-S-flat) if $\operatorname{Tor}_1^A(A/I, M)$ is u-S-torsion for any ideal I of A.

Lemma 1. Let S be finite, and M be a u-S-finitely presented A-module. The following assertions are equivalent.

- 1. M is u-S-projective,
- 2. M is w-u-S-projective,
- 3. M is w-u-S-flat,
- 4. M is u-S-flat,
- 5. M_S is a projective A_S -module.

Proof. $(1) \Rightarrow (2)$ Obvious.

- $(2) \Rightarrow (3)$ By Corollary 2.
- $(3) \Rightarrow (4)$ By [2, Corollary 2.11].
- $(4) \Leftrightarrow (5)$ Let M be a u-S-finitely presented A-module, so M_S is a finitely presented A_S -module by [13, Proposition 2.4]. Hence M_S is a flat A_S -module by [8, Corollary 3.6]. Thus, M_S is a projective A_S -module.
 - $(5) \Rightarrow (1)$ By Proposition 7.

Proposition 10. If M is w-u-S-projective then $\operatorname{Ext}_A^1(M,N)=0$ for any A_S -module N. The converse holds if M is u-S-finitely presented and S is finite.

Proof. Let N be an A_S -module, then by Proposition 2, $N \in \mathcal{U}_S^{\dagger}$. Hence $\operatorname{Ext}_A^1(M,N) = 0$ since M is w-u-S-projective. Conversitely, suppose that $\operatorname{Ext}_A^1(M,N) = 0$ for any A_S -module N, so M_S is a projective A_S -module. Hence by Lemma 1, M is w-u-S-projective. \square

Next, we give a new characterizations of u-S-Von Neumann regular rings in terms of w-u-S-projective modules.

Proposition 11. Let S be finite. The following assertions are equivalent.

- 1. Every u-S-finitely presented A-module is w-u-S-projective,
- 2. Every u-S-finitely presented A-module is w-u-S-flat,
- 3. A is u-S-Von Neumann regular.

Proof. (1) \Leftrightarrow (2) Follows from Lemma 1.

- $(2) \Rightarrow (3)$ Let M be a finitely presented A-module, so M is w-u-S-flat by (2). Thus, M is u-S-flat by Lemma 1. Hence A is u-S-Von Neumann regular ring by [3, Proposition 3.19].
- $(3) \Rightarrow (1)$ Let M be a u-S-finitely presented A-module. Hence M is u-S-flat since A is u-S-Von Neumann regular and so M is w-u-S-projective by Lemma 1.

Recall that a ring A is said to be semihereditary if every finitely generated ideal of A is projective. It is proved in [6, Theorem 3.7.10], that a ring is semihereditary if and only if A is coherent and every ideal of A is flat.

In the next part, we introduce a new class of rings, which is a u-S-version of semihereditary rings.

Definition 2. A ring A is called a u-S-semihereditary (abbreviates uniformly S-semihereditary) if every finitely generated ideal of A is u-S-projective.

Obviously, every semisimple and semihereditary rings are u-S-semihereditary but the converse is not true in general (see Example 2). Also, every u-S-semisimple rings are u-S-semihereditary rings (see [11, Theorem 3.5]).

Lemma 2. Let $\{M_i|i \in I\}$ be a direct system of u-S-flat sub-modules of M which are all with respect to some $s \in S$. Then $\lim_{i \to \infty} M_i$ is u-S-flat.

Proof. Set $M = \varinjlim M_i$. Hence $s \operatorname{Tor}_1^A(F, \varinjlim M_i) \cong s(\varinjlim \operatorname{Tor}_1^A(F, M_i)) \cong \varinjlim (s \operatorname{Tor}_1^A(F, M_i)) = 0$ by [13, Lemma 4.1]. So, $\operatorname{Tor}_1^A(F, \varinjlim M_i)$ is u-S-torsion, which implies that $\varinjlim M_i$ is u-S-flat by [8, Theorem 3.2].

Proposition 12. Let $A = A_1 \times A_2$ be direct product of rings A_1 and A_2 , $S = S_1 \times S_2$ a multiplicative subset of A. Then A is u-S-semihereditary if and only if A_i is u- S_i -semihereditary for any i = 1, 2.

Proof. This is straightforward.

In the following example, we show that there exists a u-S-semihereditary ring but not semihereditary.

Example 2. Let A_1 be a semihereditary ring and A_2 a non-semihereditary ring. Denote by $A = A_1 \times A_2$. Then A is not a semihereditary. Set $S = S_1 \times S_2$, where $S_1 = \{1\}$ and $S_2 = \{0\}$. Hence A is u-S-semihereditary ring by Proposition 12 (A_2 is u-S-semihereditary because $0 \in S_2$ and so A_2 is u-S-semisimple ring).

Recall from [13], that an A-module M is called u-S-coherent (with respective to s) provided that there is $s \in S$ such that it is S-finite with respect to s and any finitely generated submodule of M is u-S-finitely presented with respective to s. A ring A is called u-S-coherent (with respective to s) if A itself is a u-S-coherent A-module with respective to s.

In the following result we give a new characterization of u-S-coherent.

Proposition 13. The following statements are equivalent.

- 1. A is u-S-coherent ring,
- 2. Every finitely generated ideal of A is u-S-finitely presented with respect to some fixed $s \in S$,
- 3. Every finitely generated submodule of a free module is u-S-finitely generated with respect to some fixed $s \in S$.

Proof. $(3) \Rightarrow (2)$ This is trivial.

- $(2) \Rightarrow (1)$ By [13, Theorem 2.2].
- $(1) \Rightarrow (3)$ Let M be a finitely generated submodule of a free module F. So by [13, Theorem 3.2(3)], F is u-S-coherent. Hence M is u-S-finitely presented.

In the following Proposition we characterize a ring with u-S-w.gl.dim(A) < 1.

Proposition 14. The following statements are equivalent.

- 1. Every submodule of u-S-flat modules is u-S-flat,
- 2. Every submodule of flat modules is u-S-flat,
- 3. Every ideal of A is u-S-flat with respect to some fixed $s \in S$,
- 4. Every finitely generated ideal of A is u-S-flat with respect to some fixed $s \in S$.
- 5. u-S-w.ql.dim(A) < 1

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (5) By [10, Proposition 3.9].

- $(4) \Rightarrow (3)$ Let I be an ideal of A. Then $I = \cup B$ where B ranges over the set of all finitely generated subideal of I. Thus, I is u-S-flat by Lemma 2.
 - $(2) \Rightarrow (3) \Rightarrow (4)$ Theses are obvious.
- (3) \Rightarrow (5) Let I be an ideal of A, so is u-S-flat with respect to some fixed $s \in S$ by (3). Hence u-S-fd $_A(A/I) \leq 1$. By [10, Proposition 2.3], we have $s \operatorname{Tor}_2^A(A/I, A/J) = 0$ for all ideal J of A. Thus, u-S-w.gl.dim $(A) \leq 1$ by [10, Proposition 3.2].

Proposition 15. Let A be a u-S-coherent ring and S be finite. Then

u-S-w. $gl.dim(A) \le n$ if and only if u-S- $fd_A(A/\mathfrak{m}) \le n$ for any $\mathfrak{m} \in \operatorname{Max}(A)$.

Proof. Let A be a u-S-coherent ring with respect to some $s \in S$. Then A_s is coherent ring by [13, Proposition 3.14]. Hence u-S-w.gl.dim $(A) \le n$ if and only if w.gl.dim $(A_s) \le n$ by [10, Corollary 3.5] if and only if $\operatorname{fd}_{A_s}(A_s/\mathfrak{m} A_s) \le n$ for any $\mathfrak{m} \in \operatorname{Max}(A)$ by [7, Lemma 3.7] if and only if u-S-fd $_A(A/\mathfrak{m}) \le n$ for any $\mathfrak{m} \in \operatorname{Max}(A)$ by [10, Corollary 2.6].

Recall from [5], that an A-module E is called u-S-injective provided that the induced sequence $0 \to \operatorname{Hom}_A(M'', E) \to \operatorname{Hom}_A(M, E) \to \operatorname{Hom}_A(M', E) \to 0$ is u-S-exact for any u-S-exact sequence $0 \to M' \to M \to M'' \to 0$.

Proposition 16. An A-module N is S-torsion if and only if $\operatorname{Hom}_A(N, E) = 0$ for any u-S-injective S-torsion-free A-module E.

Proof. Let N be a S-torsion A-module, so $\text{Hom}_A(N, E) = 0$ by [8, Proposition 2.5].

Converstely, Set $T = \text{tor}_S(N)$ and C = N/T. Thus, C is S-torsion-free by [6, Example 1.6.13]. Set E = E(C), so E is S-torsion-free by [6, Exercise 2.34] and so E is u-S-injective S-torsion-free. Hence $\text{Hom}_A(N, E) = 0$ by hypothesis. Since, $0 \to \text{Hom}_A(C, E) \to \text{Hom}_A(N, E)$ is exact, $\text{Hom}_A(C, E) = 0$ and so the inclusion map $C \hookrightarrow E$ it the zero homomorphism. Hence C = 0 which implies that N is S-torsion.

Recall from [4], that a ring A is called c-S-coherent, if every S-finite ideal of A is S-finitely presented.

Proposition 17. Let S be finite. If A_S is a von Neumann regular ring, then A is u-S-coherent.

Proof. Let A_S be a von Neumann regular ring, so A is c-S-coherent by [8, Corollary 3.11]. Hence by [13, Proposition 3.13], we have A is u-S-coherent.

Corollary 3. Let S be finite. Then any u-S-von Neumann regular ring is u-S-coherent.

Proof. By [8, Corollary 3.14] and Proposition 17.

Proposition 18. Every u-S-semihereditary ring is u-S-coherent.

Proof. Let J be a finitely generated ideal of A. Hence J is u-S-projective. Thus, J is u-S-finitely presented by [13, Proposition 2.8]. Hence A is u-S-coherent by Proposition 13.

Corollary 4. Every u-S-semihereditary ring is S-coheren (resp., c-S-coheren).

Proof. By Proposition 18 and [13, Proposition 3.12].

Recall from [6], that a ring A is semihereditary if and only if A is coherent and w.gl.dim $(A) \leq 1$.

Next, we give a u-S-analogue of this result.

Proposition 19. The following statements are equivalent.

- 1. A is u-S-semihereditary,
- 2. A is u-S-coherent and every finitely generated ideal of A is u-S-flat with respect to some fixed $s \in S$,
- 3. A is u-S-coherent and u-S-w.ql.dim(A) ≤ 1 .

Proof. (1) \Rightarrow (2) By Proposition 18, we have every u-S-semihereditary ring is u-S-coherent. The secand part, let J is a finitely generated ideal of A, so J is u-S-projective. Hence J is u-S-flat by [11, Proposition 2.13].

- $(2) \Rightarrow (3)$ By Proposition 14.
- $(3) \Rightarrow (1)$ Let J be a finitely generated ideal of A, so J is u-S-flat by Proposition 14 and J is u-S-finitely presented by Proposition 13. Hence J is u-S-projective by [13, Proposition 2.8]. So A is u-S-semihereditary.

3 Weak u-S-projective dimension of modules and weak u-S-global dimension of rings

In this section, we introduce and investigate the notion of weak u-S-projective dimension of modules and rings. We begin this section with the following definition.

Definition 3. The weak u-S-projective dimension of M, denoted by w-u-S-pd_A(M), is the smallest integer $n \geq 0$ such that $\operatorname{Ext}_A^{n+1}(M,N) = 0$ for any $N \in \mathcal{U}_S^{\dagger}$. If no such integer exists, set w-u-S-pd_A(M) = ∞ .

The weak u-S-global dimension of A is defined by

$$w$$
- u - S - $\operatorname{gl.dim}(A) = \sup\{w$ - u - S - $\operatorname{pd}_A(M) : M \text{ is an } A$ - $module\}$

Clearly, w-u-S- $\operatorname{pd}_A(M) \leq u$ -S- $\operatorname{pd}_A(M) \leq \operatorname{pd}_A(M)$, where $\operatorname{pd}_A(M)$ denotes the classical projective dimension of M, with equality when S is composed of units, also the equality when A is a semisimple ring. However, this inequality may be strict (see, Example 1 and [11, Example 3.11]. It is also obvious that an A-module M is w-u-S-projective if and only if w-u-S- $\operatorname{pd}_A(M) = 0$. Also, w-u-S- $\operatorname{gl.dim}(A) \leq u$ -S- $\operatorname{gl.dim}(A) \leq \operatorname{gl.dim}(A)$, where $\operatorname{gl.dim}(A)$ denotes the global dimension of A, with equality when S is composed of units or A is a semisimple ring. This inequality may be strict (see, Example 3 and [12, Example 3.5]).

The next result gives a description of the w-u-S-projective dimensions of modules.

Proposition 20. The following statements are equivalent for any A-module M.

- 1. w-u-S- $pd_A(M) \leq n$,
- 2. $\operatorname{Ext}_A^{n+1}(M,N) = 0$ for any $N \in \mathcal{U}_S^{\dagger}$,
- 3. $\operatorname{Ext}_A^{n+i}(M,N) = 0$ for any $N \in \mathcal{U}_S^{\dagger}$ and any i > 0,
- 4. If the sequence $0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$ is exact with P_0, \ldots, P_{n-1} are w-u-S-projective A-modules, then P_n is w-u-S-projective,
- 5. If the sequence $0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$ is exact with P_0, \ldots, P_{n-1} are projective A-modules, then P_n is w-u-S-projective,
- 6. There exists an exact sequence $0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$ where each P_i are w-u-S-projective.
- *Proof.* (3) \Rightarrow (2) \Rightarrow (1) and (4) \Rightarrow (5) \Rightarrow (6) These are obvious.
- $(6)\Rightarrow (3)$ We prove (3) by induction on n. For the case n=0, (2) holds by Proposition 4 as M is a w-u-S-projective module. If n>0, then there is an exact sequence $0\to P_n\to P_{n-1}\to\cdots\to P_0\to M\to 0$ with all P_i are w-u-S-projective. Set $K_0=\ker(P_0\to M)$, we have two exact sequences $0\to K_0\to P_0\to M\to 0$ and $0\to P_n\to P_{n-1}\to\cdots\to P_1\to K_0\to 0$. Hence by induction we have, $\operatorname{Ext}_A^{n-1+i}(K_0,N)=0$ for any $N\in\mathcal{U}_S^\dagger$ and any i>0. Thus, $\operatorname{Ext}_A^{n+i}(M,N)=0$.
- (1) \Rightarrow (4) Let $0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to M \to 0$ be an exact sequence with all P_i are w-u-S-projective $(i = 0, \ldots, n-1)$. Set $K_0 = \ker(P_0 \to M)$ and $K_i = \ker(P_i \to P_{i-1})$, where $(i = 1, \ldots, n-1)$. Hence $K_{n-1} = P_n$. Since all P_i , $(i = 0, \ldots, n-1)$ are w-u-S-projective, $\operatorname{Ext}_A^1(P_n, N) \cong \operatorname{Ext}_A^{n+1}(M, N) = 0$ for any $N \in \mathcal{U}_S^{\dagger}$ by Proposition 4. Thus, P_n is a w-u-S-projective module.

Corollary 5. $\operatorname{pd}_{A_S}(M_S) \leq w$ -u-S- $\operatorname{pd}_A(M)$. Moreover, if S is finite and M be u-S-finitely presented, then w-u-S- $\operatorname{pd}_A(M) = \operatorname{pd}_{A_S}(M_S)$.

Proof. Let $0 \to P_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$ be an exact sequence, where $P_0, P_1, \ldots, P_{n-1}$ are projective A-modules. By localizing at S, we get an exact sequence of A_{S-1} modules, $0 \to (P_n)_S \to (P_{n-1})_S \to \cdots \to (P_1)_S \to (P_0)_S \to (M)_S \to 0$. By Proposition 7, if P_n is w-u-s-projective, so $(P_n)_S$ is projective over A_S , and the converse by Proposition 7.

Proposition 21. Let $0 \to M'' \to M' \to M \to 0$ be an exact sequence of A-modules. If two of w-u-S- $pd_A(M'')$, w-u-S- $pd_A(M')$ and w-u-S- $pd_A(M)$ are finite, so is the third. Moreover,

- 1. $w-u-S-pd_A(M'') \le \max\{w-u-S-pd_A(M'), w-u-S-pd_A(M)-1\}.$
- 2. $w-u-S-pd_A(M') \le \max\{w-u-S-pd_A(M''), w-u-S-pd_A(M)\}.$
- 3. $w-u-S-pd_A(M) \le \max\{w-u-S-pd_A(M'), w-u-S-pd_A(M'')+1\}$.

Proof. Standard in homological algebra.

Corollary 6. Let $0 \to M'' \to M' \to M \to 0$ be an exact sequence of A-modules. If M' is w-u-S-projective and w-u-S-pd_A(M) > 0, then

$$w$$
- u - S - $pd_A(M) = w$ - u - S - $pd_A(M'') + 1.$

Proposition 22. Let $\{M_i\}$ be a family of A-modules. Then

$$w$$
- u - S - $\operatorname{pd}_A(\bigoplus_i M_i) = \sup_i \{ w$ - u - S - $\operatorname{pd}_A(M_i) \}.$

Proof. The proof is straightforward.

Proposition 23. Let $n \geq 0$ be an integer. The following statements are equivalent.

- 1. w-u-S- $\operatorname{gl.dim}(A) < n$,
- 2. w-u-S- $pd_A(M) \le n$ for any finitely generated A-module M,
- 3. w-u-S- $pd_A(A/I) \le n$ for any ideal I of A,
- 4. $\operatorname{id}_A(N) \leq n \text{ for any } N \in \mathcal{U}_S^{\dagger}$.

Consequently, we have

$$\begin{aligned} w\text{-}u\text{-}S\text{-}\mathrm{gl.dim}(A) &= \sup\{w\text{-}u\text{-}S\text{-}\mathrm{pd}_A(M) \mid M \text{ is a finitely generated A-module}\} \\ &= \sup\{w\text{-}u\text{-}S\text{-}\mathrm{pd}_A(A/I) \mid I \text{ is an ideal of A}\} \\ &= \sup\{\mathrm{id}_A(N) \mid N \in \mathcal{U}_S^\dagger\}. \end{aligned}$$

Proof. $(1) \Rightarrow (2)$ and $(2) \Rightarrow (3)$ These are obvious.

- $(3) \Rightarrow (4)$ Let $N \in \mathcal{U}_S^{\dagger}$. For any ideal I of A, $\operatorname{Ext}_{n+1}^A(A/I,N) = 0$, so $\operatorname{id}_A(N) \leq n$.
- (4) \Rightarrow (1) Let M be an A-module. For any $N \in \mathcal{U}_S^{\dagger}$, we have $\operatorname{Ext}_{n+1}^A(M,N) = 0$. Thus, $w u S \operatorname{pd}_A(M) \leq n$, which implies that $w u S \operatorname{gl.dim}(A) \leq n$.

Corollary 7. The following statements are equivalent.

- 1. w u S gl.dim(A) = 0,
- 2. Every finitely generated A-module is w-u-S-projective,
- 3. A/I is w-u-S-projective for any ideal I of A,
- 4. Every A-module belong to \mathcal{U}_S^{\dagger} is injective.

Every u-S-von Neumann regular ring A has w-u-S-gl.dim(A) = 0. However, the converse is not true in general.

Example 3. Let $A = \mathbb{Z}$ be the ring of integers and $S = \mathbb{Z} - \{0\}$. Then A is not u-S-von Neumann regular since S is composed of regular elements and A is not von Neumann. But each $A/\langle s \rangle$ is u-S-torsion, so \mathcal{U}_S^{\dagger} is equal to torsion-free injective A-modules. Hence w-u-S-gl.dim(A) = 0.

Corollary 8. The following statements are equivalent.

- 1. w-u-S- $\operatorname{gl.dim}(A) \leq 1$,
- 2. Every submodule of a w-u-S-projective A-module is w-u-S-projective,
- 3. Every submodule of a projective A-module is w-u-S-projective,
- 4. Every ideal of A is w-u-S-projective,
- 5. $\operatorname{id}_A(N) \leq 1$ for any $N \in \mathcal{U}_S^{\dagger}$.

Recall from [2], The weak u-S-flat dimension of A is defined by

$$w$$
- u - S - w .gl.dim $(A) = \sup\{w$ - u - S - $fd_A(M) : M \text{ is an } A$ - m odule $\},$

where w-u-S-fd_A(M) denotes the weak u-S-flat dimension of M.

Proposition 24. Let S be finite. Then

$$w-u-S-\operatorname{fd}_A(M) < u-S-\operatorname{fd}_A(M) < w-u-S-\operatorname{pd}_A(M)$$
.

Consequently,

$$w$$
- u - S - w .gl. $\dim(A) \le u$ - S - w .gl. $\dim(A) \le w$ - u - S -gl. $\dim(A)$.

The equivalence holds, if M is a u-S-finitely presented A-module.

Proof. Follows from Corollary 2 and Lemma 1.

Recall from [1], a ring A is said to be S-Noetherian if every ideal of A is S-finite.

Proposition 25. Let A be an S-Noetherian and S be finite.

$$u$$
- S -w.gl.dim $(A) = w$ - u - S -w.gl.dim $(A) = \sup\{w$ - u - S -pd $_A(A/I) \mid I \text{ is an ideal of } A\}.$

<i>Proof.</i> Let I be an ideal of A, so A/I is u-S-finitely presented by [13, Proposition 2.3]. Hence by	ЭУ
Proposition 24, we have w - u - S - $\operatorname{fd}_A(A/I) = u$ - S - $\operatorname{fd}_A(M) = w$ - u - S - $\operatorname{pd}_A(M)$ and so w - u - S - $\operatorname{w.gl.d}$	im(A)
= u-S-w.gl.dim $(A) = w$ - u -S-gl.dim (A) . Thus, by Proposition 23, we have the result.	
Corollary 9. Let A be an S-Noetherian ring and S be finite. The following are equivalent.	

- 1. A is u-S-semihereditary ring,
- 2. A is u-S-von Neumann regular ring,
- 3. Every ideal of A is u-S-flat,
- 4. w-u-S-w.gl.dim(A) = 0.

Proof. (2) \Leftrightarrow (4) By [10, Corollary 3.8] and Proposition 25.

- (1) \Rightarrow (4) Since A u-S-semihereditary ring, so every finitely generated ideal is w-u-S-projective. Hence w-u-S-pd_A(A/I) = 0, and by Proposition 25, we have the result.
- $(2) \Rightarrow (3)$ By [8, Theorem 3.13].
- $(3) \Rightarrow (4)$ By Proposition 14 and Proposition 25.
- $(4) \Rightarrow (1)$ By Corollary 7, we have every finitely generated module is w-u-S-projective, and so A is u-S-semihereditary ring.

Proposition 26. Every u-S-semihereditary ring is S-Noetherian.

Proof. Let I be an ideal of A, so A/I is w-u-S-projective since A is u-S-semihereditary. Hence by [13, Proposition 2.8], A/I is u-S-finitely presented and by [13, Theorem 2.2], I is S-finite. Hence A is S-Noetherian.

Corollary 10. Let S be finite. Every u-S-semihereditary ring is u-S-Noetherian.

Proof. By Proposition 26 and [5, Proposition 2.4].

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra, 30 (2002), 4407-4416.
- [2] R. A. K. Assaad and X. Zhang, Weak u-S-flat modules and dimensions, Kyu. Math. J., 36 (2023), 333-344.
- [3] R. A. K. Assaad and X. Zhang, S-FI-flat and S-FI-injective modules, submitted.
- [4] D. Bennis and M. El Hajoui, On S-coherence, J. Korean Math. Soc., **55** (2018), 1499-1512.

- [5] W. Qi, H. Kim, F. G. Wang, M. Z. Chen and W. Zhao, *Uniformly S-Noetherian rings*, Quaestiones Mathematicae, (2022).
- [6] F. Wang and H. Kim, Foundations of commutative rings and their modules, Springer Nature Singapore Pte Ltd., Singapore, 2016.
- [7] F. Wang and L. Qiao, The w-weak global dimension of commutative rings, Bull. Korean Math. Soc., **52** (2015), 1327-1338.
- [8] X. L. Zhang, Characterizing S-flat modules and S-von Neumann regular rings by uniformity, Bull. Korean Math. Soc., (3) **59** (2022), 643-657.
- [9] X. L. Zhang, On uniformly S-absolutely pure modules, J. Korean Math. Soc., (3) **60** (2023), 521-536.
- [10] X. L. Zhang, The u-S-weak global dimension of commutative rings, Commun. Korean Math. Soc., (1) **38** (2023), 97-112.
- [11] X. L. Zhang and W. Qi, Characterizing S-projective modules and S-semisimple rings by uniformity, J. Commut. Algebra, (2021).
- [12] X. L. Zhang and W. Qi, The u-S-global dimensions of commutative rings, Bull. Korean Math. Soc., (6) **60** (2023), 1523-1537.
- [13] X. L. Zhang, On uniformly S-coherent rings, Rocky Mountain J. Math., to appear.