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Abstract. The primary focus of this paper is to introduce and investigate a fresh category of
projective modules, referred to as weak u-S-projective modules (w-u- is an abbreviation for weak
uniformly). These novel modules are utilized for characterizing u-S-von Neumann regular rings.
Additionally, the paper investigates a new type of rings, named u-S-semihereditary rings. This
leads to the introduction of the weak u-S-projective dimensions of modules and weak u-S-global
dimension of rings in this paper.
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1 Introduction
Throughout this paper, we denote by A a commutative ring with identity, M an A-module, and
S a multiplicative subset of A, where 1 ∈ S and s1s2 ∈ S for any s1 ∈ S and s2 ∈ S. The study
of commutative rings in terms of multiplicative sets started with Anderson and Dumitrescu [1],
who introduced the concept of S-Noetherian rings. A ring A is called S-Noetherian if for any
ideal J of A, there exists a finitely generated sub-ideal J ′ of J such that tJ ⊆ J ′ for some
fixed t ∈ S. However, the element t ∈ S in the definition of S-Noetherian rings is not generally
”uniform,” which complicates the study of S-Noetherian rings using module-theoretic methods.
To address this issue, Qi et al. [5] introduced the concept of uniformly S-Noetherian rings, which
are S-Noetherian rings in which the choice of t is fixed. A ring A is called a coherent ring if any
finitely generated ideal is finitely presented, and this concept is another important type of ring
defined by a finiteness condition. Coherent rings have been studied by many algebraists in terms
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of various modules. To extend coherent rings by multiplicative sets, Bennis et al. [4] introduced
the notions of S-coherent rings and c-S-coherent rings. Recently, Zhang [13] introduced the
concept of uniformly S-coherent rings, which are ”uniform” versions of S-coherent rings.

In this paper, we require a quick review of uniformly torsion theory. According to [8], an
A-module M is considered a u-S-torsion module (with respect to s) if there exists an element
t ∈ S such that tM = 0. A sequence 0 → M

f→ M ′ g→ M ′′ → 0 is labeled u-S-exact (at
M ′) if there is an element t ∈ S such that tKer(g) ⊆ Im(f) and t Im(f) ⊆ Ker(g). A long
sequence · · · −→ Mi−1

fi−→ Mi
fi+1−→ Mi+1 −→ · · · is deemed u-S-exact if for any i there

exists an element t ∈ S such that tKer(fi+1) ⊆ Im(fi) and t Im(fi) ⊆ Ker(fi+1). A u-S-exact
sequence 0 → M ′ → M → M ′′ → 0 is considered a short u-S-exact sequence. A homomorphism
f : M → N is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if 0 → M

f→ N

(resp., M f→ N → 0, 0 → M
f→ N → 0) is u-S-exact. One can verify that a homomorphism

f : M → N is a u-S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) if and only if
Ker(f) (resp., CoKer(f), both Ker(f) and CoKer(f)) is a u-S-torsion module. Suppose M and
N are A-modules, then M is said to be u-S-isomorphic to N if there exists a u-S-isomorphism
f : M → N .

Following [1], an A-module M is called S-finite provided that there is an element s ∈ S
and a finitely generated A-module F such that sM ⊆ F ⊆ M . Trivially, S-finite modules
are generalizations of finitely generated modules. For generalizing finitely presented A-modules,
Bennis et al. [4] introduced the notions of S-finitely presented modules and c-S-finitely presented
modules. Following [4], an A-module M is called S-finitely presented provided that there exists
an exact sequence of A-modules 0 → K → F → M → 0 with K S-finite and F finitely
generated free. Certainly, an A-module M is S-finitely presented if and only if there exists an
exact sequence of A-modules 0 → T1 → N → M → 0 with N finitely presented and sT1 = 0
for some s ∈ S. Following [4], an A-module M is called c-S-finitely presented provided that
there exists a finitely presented submodule N of M such that sM ⊆ N ⊆ M for some s ∈ S.
Trivially, an A-module M is called c-S-finitely presented if and only if there exists an exact
sequence of A-modules 0 → N → M → T2 → 0 with N finitely presented and sT2 = 0 for some
s ∈ S. Recently, Zhang [13] introduced and studied the notion of uniformly S-finitely presented
modules which generalize both S-finitely presented modules and c-S-finitely presented modules.
An A-module M is called u-S-finitely presented (abbreviates uniformly S-finitely presented)
provided that there is an exact sequence 0 → T1 → F → M → T2 → 0 with F finitely presented
and sT1 = sT2 = 0.

In [11], the author introduced the class of u-S-projective modules. An A-module P is called
uniformly S-projective (u-S-projective) provided that the induced sequence 0 → HomA(P,M) →
HomA(P,M

′) → HomA(P,M
′′) → 0 is u-S-exact for any u-S-short exact sequence 0 → M →

M ′ → M ′′ → 0. The class of u-S-projective modules can be seen as a ”uniform” generalization
of that of projective modules, since an A-module P is u-S-projective if and only if Ext1A(P,M)
is u-S-torsion for any A-module M .

In [12], the authors introduced and studied the u-S-projective dimensions of modules and
rings. They defined the u-S-projective dimension u-S-pdA(M) of an A-module M to be the
length of the shortest u-S-projective u-S-resolution of M . We characterize u-S-projective di-
mensions of A-modules using the uniform torsion property of the Ext functors in [12, Proposi-
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tion 2.4]. The u-S-global dimension u-S-gl.dim(A) of a commutative ring A is defined to be the
supremum of u-S-projective dimensions of all A-modules.

u-S-gl.dim(A) = sup{u-S-pdA(M) | M is an A-module}.

Zhang [8] introduced the class of u-S-flat modules F for which the functor F ⊗A − preserves
u-S-exact sequences. The class of u-S-flat modules can be seen as a ”uniform” generalization of
that of flat modules, since an A-module F is u-S-flat if and only if TorA1 (F,M) is u-S-torsion for
any A-module M . In [10], the author introduced the u-S-flat dimensions of modules and rings.
Let A be a ring, S a multiplicative subset of A and n be a positive integer. We say that an
A-module has a u-S-flat dimension less than or equal to n, u-S-fdA(M) ≤ n, if TorAn+1(M,N)
is u-S-torsion A-module for all A-modules N . Hence, the u-S-weak global dimension of A is
defined to be

u-S-w.gl.dim(A) = sup{u-S-fdA(M) | M is an A-module}.

Zhang [8] defined the u-S-von Neumann regular ring as follows: Let A be a ring and S a
multiplicative subset of A. A is called a u-S-von Neumann regular ring provided there exists
an element s ∈ S satisfies that for any a ∈ A there exists r ∈ A such that sa = ra2. Thus,
by [8, Theorem 3.13], A is a u-S-von Neumann regular ring if and only if every A-module is
u-S-flat.

In Section 2, we introduce the concept of weak u-S-projective modules and study some
characterizations of such modules. We prove that a ring A is u-S-von Neumann regular if and
only if every u-S-finitely presented A-module is weak u-S-projective, also we prove that if an A-
module F is weak u-S-projective, then FS is free over AS . Furthermore, we introduce and study a
new class of rings called u-S-semihereditary rings. We prove that a ring A is u-S-semihereditary
if and only if A is u-S-coherent and u-S-w.gl.dim(A) ≤ 1.

In Section 3, we introduce and study the weak u-S-projective dimensions of modules and the
weak u-S-global dimension of rings. We prove that a ring A is u-S-semihereditary if and only if
w-u-S-w.gl.dim(A) = 0 if and only if every ideal of A is u-S-flat.

2 weak u-S-projective modules
In this section, we introduce a class of modules called weak u-S-projective modules, study their
properties and characterize them. We begin this section with the following results which we will
need in this paper.

Throughout the paper, U†
S denote the class of S-torsion-free A-modules N with the property

that ExtiA(M,N) = 0 for all u-S-projective A-modules M and for all integers i ≥ 1. Clearly,
every S-torsion-free injective A-module belongs to U†

S .

Remark 1. If S is composed of units, we have every A-module belongs to U†
S, since every

u-S-projective A-module is projective and every A-module is S-torsion-free.

Proposition 1. 1. Let {Mi}i∈I be a family of S-torsion-free A-modules. Then Πi∈IMi ∈ U†
S

if and only if Mi ∈ U†
S for all i ∈ I.
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2. If X ∈ U†
S, then ExtiA(T,X) = 0 for all u-S-torsion A-module T and for all integer i ≥ 1.

3. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules with M ′ ∈ U†
S. Then

M ∈ U†
S if and only if so is M ′′.

Proof. (1) Follows from [6, Theorem 3.3.9 and Example 1.6.11(6)].
(2) Trivial, by [11, Corollary 2.11].
(3) Let M ′ ∈ U†

S , then for any u-S-torsion A-module T , there exists an exact sequence of
A-module

HomA(T,M
′) → HomA(T,M) → HomA(T,M

′′) → Ext1A(T,M
′).

The left term is zero by [8, Proposition 2.5] and the right term is zero by (2). Hence by [8,
Proposition 2.5] again, M is S-torsion-free if and only if so is M ′′. Moreover, for any u-S-
projective A-module P and for any integer i ≥ 1, we have

ExtiA(P,M
′) → ExtiA(P,M) → ExtiA(P,M

′′) → Exti+1
A (P,M ′).

Hence ExtiA(P, P
′) = Exti+1

A (P,M ′) = 0 since M ′ ∈ U†
S .

Thus, ExtiA(P,M) ∼= ExtiA(P,M
′′) which implies that M ∈ U†

S if and only if so is M ′′.

Proposition 2. Every AS-module, as an A-module, is in U†
S.

Proof. Let N be an AS-module, and let M be a u-S-projective A-module. By [11, Theorem
2.9], ExtnA(M,N) is u-S-torsion for any n ≥ 1. Hence it is an S-torsion A-module for any n ≥ 1.
ExtnA(M,N) is an S-torsion-free A-module by [6, Example 1.6.12(2)] and since ExtnA(M,N) is
an AS-module. Consequently, we have ExtnA(M,N) = 0 by [6, Example 1.6.13(5)]. Hence we
conclude that N ∈ U†

S .

Proposition 3. Let E be an S-torsion-free injective A-module. Then HomA(M,E) ∈ U†
S for

any A-module M .

Proof. Let M be an A-module, and let E be an S-torsion-free injective A-module. By [6,
Theorem 3.4.11], we have

ExtnA(P,HomA(M,E)) ∼= HomA(Tor
A
n (P,M), E)

for any u-S-projective A-module P . Thus, P is a u-S-flat A-module by [11, Proposition 2.13].
Hence TorAn (P,M) is u-S-torsion by [8, Theorem 3.2]. By [8, Proposition 2.5],
HomA(Tor

A
n (P,M), E) = 0. Therefore, we have ExtnA(P,HomA(M,E)) = 0, which implies that

HomA(M,E) ∈ U†
S .

Next, we will introduce a new class of modules called the weak uniformly S-projective mod-
ules.

Definition 1. An A-module M is said to be w-u-S-projective (abbreviates weak uniformly S-
projective) if Ext1A(M,N) = 0 for any N ∈ U†

S.
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Clearly the following containments hold.

{projective} ⊆ {u-S-projective} ⊆ {w-u-S-projective}.

Remark 2. 1. If S consists of units, it is easy to see that the three classes of modules
previous coincide.

2. Using [11, Theorem 3.5], it is easy to see that every w-u-S-projective is u-S-projective over
a u-S-semisimple ring.

3. Every projective module is w-u-S-projective but the converse is not true in general by [11,
Example 3.11].

The following proposition summarizes some of the properties of weak uniformly S-projective
modules.

Proposition 4. The following statements hold for any ring A and multiplicative subset S of A:

1. An A-module M is w-u-S-projective if and only if ExtjA(M,N) = 0 for any N ∈ U†
S and

any j ≥ 1.

2. The class of all w-u-S-projective modules is closed under direct sums and under direct
summands.

3. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of A-modules with M ′′ is w-u-S-
projective. Then M ′ is w-u-S-projective if and only if so is M .

Proof. (1) Suppose M is a w-u-S-projective module, and let N ∈ US†. If j = 1, the result is
trivial by definition of w-u-S-projective. For any j > 1, by Proposition 1, there exists an exact
sequence of A-modules

0 → N → I0 → I1 → · · · → Ij−2 → L → 0

where I0, . . . , Ij−2 are S-torsion-free injective and L ∈ U†
S . Thus, we have ExtjA(M,N) ∼=

Ext1A(M,L) = 0. The converse is obvious.
(2) The statement follows from [6, Theorem 3.3.9].
(3) Let N ∈ U†

S , and let 0 → M ′ → M → M ′′ → 0 be an exact sequence with M ′′ being
w-u-S-projective. By the long exact sequence of Ext’s associated to this short exact sequence,
we get

Ext1A(M
′′, N) → Ext1A(M,N) → Ext1A(M

′, N) → Ext2A(M
′′, N).

Since M ′′ is w-u-S-projective, we have Ext1A(M
′′, N) = Ext2A(M

′′, N) = 0 by (1). Hence
Ext1A(M,N) ∼= Ext1A(M

′, N), which implies that M ′ is w-u-S-projective if and only if M is.

Corollary 1. Let 0 → L → F → M → 0 be a u-S-exact sequence of A-modules with F is
w-u-S-projective. Then for any N ∈ U†

S and integre n ≥ 1, ExtnA(L,N) is u-S-isomorphic to
Extn+1

A (M,N).

Proof. By [9, Theorem 1.4] and Proposition 4.
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The following example shows that w-u-S-projective modules may not necessarily be u-S-
projective in general.

Example 1. Let A = Z be the ring of integers, p a prime in Z and S = {pn|n ∈ N}. Since Z/⟨pn⟩
is u-S-torsion, and so is w-u-S-projective. Thus, by Proposition 4, the A-module N =

∞⊕
n=1

Z/⟨pn⟩

is w-u-S-projective. However, we claim that it is not u-S-projective. Indeed, first, we note that
Ext1Z(Z/⟨pn⟩,Z/⟨pm⟩) ∼= Z/⟨pmin{m,n}⟩. So we have

Ext1Z(N,N) ∼=
∏
n∈N

(
⊕
m∈N

Ext1Z(Z/⟨pn⟩,Z/⟨pm⟩)) ∼=
∏
n∈N

(
⊕
m∈N

Z/⟨pmin{m,n}⟩).

Note that the abelian group
∏
n∈N

(
⊕
m∈N

Z/⟨pmin{m,n}⟩) contains a subgroup
∏
n∈N

Z/⟨pn⟩. Since∏
n∈N

Z/⟨pn⟩ is not u-S-torsion, Ext1Z(
∞⊕
n=1

Z/⟨pn⟩,
∞⊕
n=1

Z/⟨pn⟩) is also not u-S-torsion. Conse-

quently,
∞⊕
n=1

Z/⟨pn⟩ is not u-S-projective.

The following proposition gives some characterizations of w-u-S-projective modules.

Proposition 5. The following statements are equivalent for any A-module M :

1. M is w-u-S-projective,

2. M ⊗ F is w-u-S-projective for any projective A-module F ,

3. HomA(F,M) is w-u-S-projective for any finitely generated projective A-module F .

Proof. (1) ⇒ (2) Let F be a projective A-module. For any A-module N ∈ U†
S . By [6, Theo-

rem 3.3.10], we have Ext1A(F ⊗M,N) ∼= HomA(F,Ext
1
A(M,N)). Since M is w-u-S-projective,

Ext1A(M,N) = 0, and Ext1A(F ⊗M,N) = 0. Hence F ⊗M is a w-u-S-projective A-module.
(1) ⇒ (3) Let N ∈ U†

S , for any finitely generated projective A-module F . By [6, Theorem
3.3.12], we have F ⊗ Ext1A(M,N) ∼= Ext1A(HomA(F,M), N). Since M is w-u-S-projective, so
Ext1A(M,N) = 0. Hence Ext1A(HomA(F,M), N) = 0, which implies that HomA(F,M) is a
w-u-S-projective A-module.

(2) ⇒ (1) and (3) ⇒ (1) Follow by letting F = A.

Proposition 6. Let A = A1 ×A2 be a direct product of rings A1 and A2 and S = S1 × S2 be a
direct product of multiplicative subsets of A1 and A2. Then M is a w-u-S-projective A-module
if and only if Mi is a w-u-Si-projective Ai-module for each i = 1, 2.

Proof. Suppose M be a w-u-S-projective A-module so M = M1 ×M2. Let N be an A1-module
and N ∈ P†

S1
. Then we have 0 = Ext1A(M,N × 0) ∼= Ext1A1

(M1, N). Consequently, M1 is a
w-u-S1-projective A1-module. Similarly, M2 is a w-u-S2-projective A2-module. Now, suppose
that Mi is a w-u-Si-projective Ai-module for each i = 1, 2. Let N be an A-module and N ∈ U†

S ,
so N = N1 × N2. Hence Ext1A(M,N) ∼= Ext1A1

(M1, N1) × Ext1A2
(M2, N2) = 0. Thus, M is a

w-u-S-projective A-module.
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Proposition 7. If M is w-u-S-projective, then MS is projective over AS. The converse holds,
if M is u-S-finitely presented and S is finite.

Proof. Let N be an AS-module and let 0 → L → F → M → 0 be an exact sequence with F free.
Hence by Proposition 2, N ∈ U†

S and so Ext1A(M,N) = 0. Consider the following diagramme
with exact rows

HomAS
(FS , N) HomAS

(LS , N) Ext1AS
(MS , N) 0

HomA(F,N) HomA(L,N) Ext1A(M,N) 0

By [6, Theorem 2.2.16], the first two vertical maps are isomorphisme. Thus, we have Ext1AS
(MS , N)

∼= Ext1A(M,N) = 0. Hence MS is a projective over AS . The converse, suppose that MS is a
projective AS-module, so MS is flat. Hence by [8, Proposition 3.8], we have M is a u-S-flat
A-module and by [13, Proposition 2.8], M is u-s-projective and so w-u-s-projective.

Corollary 2. Let S be finite. Every w-u-S-projective module is u-S-flat.

Proof. By Proposition 7 and [8, Proposition 3.8].

Proposition 8. If P is a w-u-S-projective A-module and E is an S-torsion-free injective A-
module. Then HomA(Tor

A
n (P,M), E) = 0.

Proof. Let P be a w-u-S-projective A-module, E be S-torsion-free injective, and let M be an
A-module. Hence by [6, Theorem 3.4.11], we have

ExtnA(P,HomA(M,E)) ∼= HomA(Tor
A
n (P,M), E).

Since HomA(M,E) ∈ U†
S by Proposition 3, we have ExtnA(P,HomA(M,E)) = 0 . Hence

HomA(Tor
A
n (P,M), E) = 0.

Proposition 9. Let S be finite, and M be an S-torsion-free A-module. The following assertions
holds.

1. MS/M is w-u-S-projective.

2. M is w-u-S-projective if and only if so is MS.

Proof. (1) Since M is a S-torsion-free A-module, MS/M is S-torsion by [6, Example 1.6.13].
Hence by [8, Propositin 2.3], MS/M is u-S-torsion. Thus, by [11, Corollary 2.11], MS/M is
u-S-projective which implies that is a w-u-S-projective A-module.

(2) Let N ∈ U†
S , by (1) we have MS/M is u-S-projective. Consider the following exact

sequence 0 → M → MS → MS/M . Hence by Proposition 4, we have M is w-u-S-projective if
and only if MS is w-u-S-projective.
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From [2], an A-module M is said to be weak u-S-flat (w-u-S-flat) if TorA1 (A/I,M) is u-S-
torsion for any ideal I of A.

Lemma 1. Let S be finite, and M be a u-S-finitely presented A-module. The following assertions
are equivalent.

1. M is u-S-projective,

2. M is w-u-S-projective,

3. M is w-u-S-flat,

4. M is u-S-flat,

5. MS is a projective AS-module.

Proof. (1) ⇒ (2) Obvious.
(2) ⇒ (3) By Corollary 2.
(3) ⇒ (4) By [2, Corollary 2.11].
(4) ⇔ (5) Let M be a u-S-finitely presented A-module, so MS is a finitely presented AS-

module by [13, Proposition 2.4]. Hence MS is a flat AS-module by [8, Corollary 3.6]. Thus, MS

is a projective AS-module.
(5) ⇒ (1) By Proposition 7.

Proposition 10. If M is w-u-S-projective then Ext1A(M,N) = 0 for any AS-module N . The
converse holds if M is u-S-finitely presented and S is finite.

Proof. Let N be an AS-module, then by Proposition 2, N ∈ U†
S . Hence Ext1A(M,N) = 0 since

M is w-u-S-projective. Conversitely, suppose that Ext1A(M,N) = 0 for any AS-module N , so
MS is a projective AS-module. Hence by Lemma 1, M is w-u-S-projective.

Next, we give a new characterizations of u-S-Von Neumann regular rings in terms of w-u-S-
projective modules.

Proposition 11. Let S be finite. The following assertions are equivalent.

1. Every u-S-finitely presented A-module is w-u-S-projective,

2. Every u-S-finitely presented A-module is w-u-S-flat,

3. A is u-S-Von Neumann regular.

Proof. (1) ⇔ (2) Follows from Lemma 1.
(2) ⇒ (3) Let M be a finitely presented A-module, so M is w-u-S-flat by (2). Thus, M is

u-S-flat by Lemma 1. Hence A is u-S-Von Neumann regular ring by [3, Proposition 3.19].
(3) ⇒ (1) Let M be a u-S-finitely presented A-module. Hence M is u-S-flat since A is

u-S-Von Neumann regular and so M is w-u-S-projective by Lemma 1.
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Recall that a ring A is said to be semihereditary if every finitely generated ideal of A is
projective. It is proved in [6, Theorem 3.7.10], that a ring is semihereditary if and only if A is
coherent and every ideal of A is flat.

In the next part, we introduce a new class of rings, which is a u-S-version of semihereditary
rings.

Definition 2. A ring A is called a u-S-semihereditary (abbreviates uniformly S-semihereditary)
if every finitely generated ideal of A is u-S-projective.

Obviously, every semisimple and semihereditary rings are u-S-semihereditary but the con-
verse is not true in general (see Example 2). Also, every u-S-semisimple rings are u-S-semihereditary
rings (see [11, Theorem 3.5]).

Lemma 2. Let {Mi|i ∈ I} be a direct system of u-S-flat sub-modules of M which are all with
respect to some s ∈ S. Then lim−→Mi is u-S-flat.

Proof. Set M = lim−→Mi. Hence sTorA1 (F, lim−→Mi) ∼= s(lim−→TorA1 (F,Mi)) ∼= lim−→(sTorA1 (F,Mi)) =

0 by [13, Lemma 4.1]. So, TorA1 (F, lim−→Mi) is u-S-torsion, which implies that lim−→Mi is u-S-flat
by [8, Theorem 3.2].

Proposition 12. Let A = A1 × A2 be direct product of rings A1 and A2, S = S1 × S2 a
multiplicative subset of A. Then A is u-S-semihereditary if and only if Ai is u-Si-semihereditary
for any i = 1, 2.

Proof. This is straightforward.

In the following example, we show that there exists a u-S-semihereditary ring but not semi-
hereditary.

Example 2. Let A1 be a semihereditary ring and A2 a non-semihereditary ring. Denote by
A = A1 ×A2. Then A is not a semihereditary. Set S = S1 × S2, where S1 = {1} and S2 = {0}.
Hence A is u-S-semihereditary ring by Proposition 12 (A2 is u-S-semihereditary because 0 ∈ S2

and so A2 is u-S-semisimple ring).

Recall from [13], that an A-module M is called u-S-coherent (with respective to s) provided
that there is s ∈ S such that it is S-finite with respect to s and any finitely generated submodule
of M is u-S-finitely presented with respective to s. A ring A is called u-S-coherent (with
respective to s) if A itself is a u-S-coherent A-module with respective to s.

In the following result we give a new characterization of u-S-coherent.

Proposition 13. The following statements are equivalent.

1. A is u-S-coherent ring,

2. Every finitely generated ideal of A is u-S-finitely presented with respect to some fixed s ∈ S,

3. Every finitely generated submodule of a free module is u-S-finitely generated with respect
to some fixed s ∈ S.
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Proof. (3) ⇒ (2) This is trivial.
(2) ⇒ (1) By [13, Theorem 2.2].
(1) ⇒ (3) Let M be a finitely generated submodule of a free module F . So by [13, Theorem

3.2(3)], F is u-S-coherent. Hence M is u-S-finitely presented.

In the following Proposition we characterize a ring with u-S-w.gl.dim(A) ≤ 1.

Proposition 14. The following statements are equivalent.

1. Every submodule of u-S-flat modules is u-S-flat,

2. Every submodule of flat modules is u-S-flat,

3. Every ideal of A is u-S-flat with respect to some fixed s ∈ S,

4. Every finitely generated ideal of A is u-S-flat with respect to some fixed s ∈ S.

5. u-S-w.gl.dim(A) ≤ 1

Proof. (1) ⇔ (2) ⇔ (5) By [10, Proposition 3.9].
(4) ⇒ (3) Let I be an ideal of A. Then I = ∪B where B ranges over the set of all finitely

generated subideal of I. Thus, I is u-S-flat by Lemma 2.
(2) ⇒ (3) ⇒ (4) Theses are obvious.
(3) ⇒ (5) Let I be an ideal of A, so is u-S-flat with respect to some fixed s ∈ S by (3).

Hence u-S-fdA(A/I) ≤ 1. By [10, Proposition 2.3], we have sTorA2 (A/I,A/J) = 0 for all ideal
J of A. Thus, u-S-w.gl.dim(A) ≤ 1 by [10, Proposition 3.2].

Proposition 15. Let A be a u-S-coherent ring and S be finite. Then

u-S-w.gl.dim(A) ≤ n if and only if u-S-fdA(A/m) ≤ n for any m ∈ Max(A).

Proof. Let A be a u-S-coherent ring with respect to some s ∈ S. Then As is coherent ring
by [13, Proposition 3.14]. Hence u-S-w.gl.dim(A) ≤ n if and only if w.gl.dim(As) ≤ n by [10,
Corollary 3.5] if and only if fdAs(As/mAs) ≤ n for any m ∈ Max(A) by [7, Lemma 3.7] if and
only if u-S-fdA(A/m) ≤ n for any m ∈ Max(A) by [10, Corollary 2.6].

Recall from [5], that an A-module E is called u-S-injective provided that the induced se-
quence 0 → HomA(M

′′, E) → HomA(M,E) → HomA(M
′, E) → 0 is u-S-exact for any u-S-exact

sequence 0 → M ′ → M → M ′′ → 0.

Proposition 16. An A-module N is S-torsion if and only if HomA(N,E) = 0 for any u-S-
injective S-torsion-free A-module E.

Proof. Let N be a S-torsion A-module, so HomA(N,E) = 0 by [8, Proposition 2.5].
Converstely, Set T = torS(N) and C = N/T . Thus, C is S-torsion-free by [6, Example

1.6.13]. Set E = E(C), so E is S-torsion-free by [6, Exercise 2.34] and so E is u-S-injective
S-torsion-free. Hence HomA(N,E) = 0 by hypothesis. Since, 0 → HomA(C,E) → HomA(N,E)
is exact, HomA(C,E) = 0 and so the inclusion map C ↪→ E it the zero homomorphism. Hence
C = 0 which implies that N is S-torsion.
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Recall from [4], that a ring A is called c-S-coherent, if every S-finite ideal of A is S-finitely
presented.

Proposition 17. Let S be finite. If AS is a von Neumann regular ring, then A is u-S-coherent.

Proof. Let AS be a von Neumann regular ring, so A is c-S-coherent by [8, Corollary 3.11]. Hence
by [13, Proposition 3.13], we have A is u-S-coherent.

Corollary 3. Let S be finite. Then any u-S-von Neumann regular ring is u-S-coherent.

Proof. By [8, Corollary 3.14] and Proposition 17.

Proposition 18. Every u-S-semihereditary ring is u-S-coherent.

Proof. Let J be a finitely generated ideal of A. Hence J is u-S-projective. Thus, J is u-S-finitely
presented by [13, Proposition 2.8]. Hence A is u-S-coherent by Proposition 13.

Corollary 4. Every u-S-semihereditary ring is S-coheren (resp., c-S-coheren).

Proof. By Proposition 18 and [13, Proposition 3.12].

Recall from [6], that a ring A is semihereditary if and only if A is coherent and w.gl.dim(A) ≤
1.

Next, we give a u-S-analogue of this result.

Proposition 19. The following statements are equivalent.

1. A is u-S-semihereditary,

2. A is u-S-coherent and every finitely generated ideal of A is u-S-flat with respect to some
fixed s ∈ S,

3. A is u-S-coherent and u-S-w.gl.dim(A) ≤ 1.

Proof. (1) ⇒ (2) By Proposition 18, we have every u-S-semihereditary ring is u-S-coherent. The
secand part, let J is a finitely generated ideal of A, so J is u-S-projective. Hence J is u-S-flat
by [11, Proposition 2.13].

(2) ⇒ (3) By Proposition 14.
(3) ⇒ (1) Let J be a finitely generated ideal of A, so J is u-S-flat by Proposition 14 and J

is u-S-finitely presented by Proposition 13. Hence J is u-S-projective by [13, Proposition 2.8].
So A is u-S-semihereditary.

3 Weak u-S-projective dimension of modules and weak u-S-global
dimension of rings

In this section, we introduce and investigate the notion of weak u-S-projective dimension of
modules and rings. We begin this section with the following definition.
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Definition 3. The weak u-S-projective dimension of M , denoted by w-u-S-pdA(M), is the
smallest integer n ≥ 0 such that Extn+1

A (M,N) = 0 for any N ∈ U†
S. If no such integer exists,

set w-u-S-pdA(M) = ∞.
The weak u-S-global dimension of A is defined by

w-u-S-gl.dim(A) = sup{w-u-S-pdA(M) : M is an A-module}

Clearly, w-u-S-pdA(M) ≤ u-S-pdA(M) ≤ pdA(M), where pdA(M) denotes the classical
projective dimension of M , with equality when S is composed of units, also the equality when A
is a semisimple ring. However, this inequality may be strict (see, Example 1 and [11, Example
3.11]. It is also obvious that an A-module M is w-u-S-projective if and only if w-u-S-pdA(M) =
0. Also, w-u-S-gl.dim(A) ≤ u-S-gl.dim(A) ≤ gl.dim(A), where gl.dim(A) denotes the global
dimension of A, with equality when S is composed of units or A is a semisimple ring. This
inequality may be strict (see, Example 3 and [12, Example 3.5]).

The next result gives a description of the w-u-S-projective dimensions of modules.

Proposition 20. The following statements are equivalent for any A-module M .

1. w-u-S-pdA(M) ⩽ n,

2. Extn+1
A (M,N) = 0 for any N ∈ U†

S,

3. Extn+i
A (M,N) = 0 for any N ∈ U†

S and any i > 0,

4. If the sequence 0 → Pn → Pn−1 → · · · → P0 → M → 0 is exact with P0, . . . , Pn−1 are
w-u-S-projective A-modules, then Pn is w-u-S-projective,

5. If the sequence 0 → Pn → Pn−1 → · · · → P0 → M → 0 is exact with P0, . . . , Pn−1 are
projective A-modules, then Pn is w-u-S-projective,

6. There exists an exact sequence 0 → Pn → Pn−1 → · · · → P0 → M → 0 where each Pi are
w-u-S-projective.

Proof. (3) ⇒ (2) ⇒ (1) and (4) ⇒ (5) ⇒ (6) These are obvious.
(6) ⇒ (3) We prove (3) by induction on n. For the case n = 0, (2) holds by Proposition

4 as M is a w-u-S-projective module. If n > 0, then there is an exact sequence 0 → Pn →
Pn−1 → · · · → P0 → M → 0 with all Pi are w-u-S-projective. Set K0 = ker(P0 → M), we have
two exact sequences 0 → K0 → P0 → M → 0 and 0 → Pn → Pn−1 → · · · → P1 → K0 → 0.
Hence by induction we have, Extn−1+i

A (K0, N) = 0 for any N ∈ U†
S and any i > 0. Thus,

Extn+i
A (M,N) = 0.
(1) ⇒ (4) Let 0 → Pn → Pn−1 → · · · → P0 → M → 0 be an exact sequence with all Pi are

w-u-S-projective (i = 0, . . . , n − 1). Set K0 = ker(P0 → M) and Ki = ker(Pi → Pi−1), where
(i = 1, . . . , n − 1). Hence Kn−1 = Pn. Since all Pi, (i = 0, . . . , n − 1) are w-u-S-projevtive,
Ext1A(Pn, N) ∼= Extn+1

A (M,N) = 0 for any N ∈ U†
S by Proposition 4. Thus, Pn is a w-u-S-

projective module.

Corollary 5. pdAS
(MS) ≤ w-u-S-pdA(M). Moreover, if S is finite and M be u-S-finitely

presented, then w-u-S-pdA(M) = pdAS
(MS).
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Proof. Let 0 → Pn → Pn−1 → · · · → P1 → P0 → M → 0 be an exact sequence, where
P0, P1, . . . , Pn−1 are projective A-modules. By localizing at S, we get an exact sequence of AS-
modules, 0 → (Pn)S → (Pn−1)S → · · · → (P1)S → (P0)S → (M)S → 0. By Proposition 7, if Pn

is w-u-S-projective, so (Pn)S is projective over AS , and the converse by Proposition 7.

Proposition 21. Let 0 → M ′′ → M ′ → M → 0 be an exact sequence of A-modules. If two of
w-u-S-pdA(M ′′), w-u-S-pdA(M ′) and w-u-S-pdA(M) are finite, so is the third. Moreover,

1. w-u-S-pdA(M ′′) ≤ max {w-u-S-pdA(M ′), w-u-S-pdA(M)− 1}.

2. w-u-S-pdA(M ′) ≤ max{w-u-S-pdA(M ′′), w-u-S-pdA(M)}.

3. w-u-S-pdA(M) ≤ max{w-u-S-pdA(M ′), w-u-S-pdA(M ′′) + 1}.

Proof. Standard in homological algebra.

Corollary 6. Let 0 → M ′′ → M ′ → M → 0 be an exact sequence of A-modules. If M ′ is
w-u-S-projective and w-u-S-pdA(M) > 0, then

w-u-S-pdA(M) = w-u-S-pdA(M ′′) + 1.

Proposition 22. Let {Mi} be a family of A-modules. Then

w-u-S-pdA(⊕iMi) = supi{w-u-S-pdA(Mi)}.

Proof. The proof is straightforward.

Proposition 23. Let n ≥ 0 be an integer. The following statements are equivalent.

1. w-u-S-gl.dim(A) ≤ n,

2. w-u-S-pdA(M) ≤ n for any finitely generated A-module M ,

3. w-u-S-pdA(A/I) ≤ n for any ideal I of A,

4. idA(N) ≤ n for any N ∈ U†
S.

Consequently, we have

w-u-S-gl.dim(A) = sup{w-u-S-pdA(M) | M is a finitely generated A-module}
= sup{w-u-S-pdA(A/I) | I is an ideal of A}

= sup{idA(N) | N ∈ U†
S}.

Proof. (1) ⇒ (2) and (2) ⇒ (3) These are obvious.
(3) ⇒ (4) Let N ∈ U†

S . For any ideal I of A, ExtAn+1(A/I,N) = 0, so idA(N) ≤ n.
(4) ⇒ (1) Let M be an A-module. For any N ∈ U†

S , we have ExtAn+1(M,N) = 0. Thus,
w-u-S-pdA(M) ≤ n, which implies that w-u-S-gl.dim(A) ≤ n.

Corollary 7. The following statements are equivalent.
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1. w-u-S-gl.dim(A) = 0,

2. Every finitely generated A-module is w-u-S-projective,

3. A/I is w-u-S-projective for any ideal I of A,

4. Every A-module belong to U†
S is injective.

Every u-S-von Neumann regular ring A has w-u-S-gl.dim(A) = 0. However, the converse is
not true in general.

Example 3. Let A = Z be the ring of integers and S = Z−{0}. Then A is not u-S-von Neumann
regular since S is composed of regular elements and A is not von Neumann. But each A/⟨s⟩ is
u-S-torsion, so U†

S is equal to torsion-free injective A-modules. Hence w-u-S-gl.dim(A) = 0.

Corollary 8. The following statements are equivalent.

1. w-u-S-gl.dim(A) ≤ 1,

2. Every submodule of a w-u-S-projective A-module is w-u-S-projective,

3. Every submodule of a projective A-module is w-u-S-projective,

4. Every ideal of A is w-u-S-projective,

5. idA(N) ≤ 1 for any N ∈ U†
S.

Recall from [2], The weak u-S-flat dimension of A is defined by

w-u-S-w.gl.dim(A) = sup{w-u-S-fdA(M) : M is an A-module},

where w-u-S-fdA(M) denotes the weak u-S-flat dimension of M .

Proposition 24. Let S be finite. Then

w-u-S-fdA(M) ≤ u-S-fdA(M) ≤ w-u-S-pdA(M).

Consequently,

w-u-S-w.gl.dim(A) ≤ u-S-w.gl.dim(A) ≤ w-u-S-gl.dim(A).

The equivalence holds, if M is a u-S-finitely presented A-module.

Proof. Follows from Corollary 2 and Lemma 1.

Recall from [1], a ring A is said to be S-Noetherian if every ideal of A is S-finite.

Proposition 25. Let A be an S-Noetherian and S be finite.

u-S-w.gl.dim(A) = w-u-S-w.gl.dim(A) = sup{w-u-S-pdA(A/I) | I is an ideal of A}.
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Proof. Let I be an ideal of A, so A/I is u-S-finitely presented by [13, Proposition 2.3]. Hence by
Proposition 24, we have w-u-S-fdA(A/I) = u-S-fdA(M) = w-u-S-pdA(M) and so w-u-S-w.gl.dim(A)
= u-S-w.gl.dim(A) = w-u-S-gl.dim(A). Thus, by Proposition 23, we have the result.

Corollary 9. Let A be an S-Noetherian ring and S be finite. The following are equivalent.

1. A is u-S-semihereditary ring,

2. A is u-S-von Neumann regular ring,

3. Every ideal of A is u-S-flat,

4. w-u-S-w.gl.dim(A) = 0.

Proof. (2) ⇔ (4) By [10, Corollary 3.8] and Proposition 25.
(1) ⇒ (4) Since A u-S-semihereditary ring, so every finitely generated ideal is w-u-S-projective.
Hence w-u-S-pdA(A/I) = 0, and by Proposition 25, we have the result.
(2) ⇒ (3) By [8, Theorem 3.13].
(3) ⇒ (4) By Proposition 14 and Proposition 25.
(4) ⇒ (1) By Corollary 7, we have every finitely generated module is w-u-S-projective, and so
A is u-S-semihereditary ring.

Proposition 26. Every u-S-semihereditary ring is S-Noetherian.

Proof. Let I be an ideal of A, so A/I is w-u-S-projective since A is u-S-semihereditary. Hence
by [13, Proposition 2.8], A/I is u-S-finitely presented and by [13, Theorem 2.2], I is S-finite.
Hence A is S-Noetherian.

Corollary 10. Let S be finite. Every u-S-semihereditary ring is u-S-Noetherian.

Proof. By Proposition 26 and [5, Proposition 2.4].
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