Journal of Algebra and Related Topics JQT
Vol. 13, No. 01, 2025, pp. 73-85. '<

On the solutions of the Diophantine equation
Fy, + Fy, + F,, + F,, =11°

Benjamin Earp-Lynchf, Simon Earp-Lynch?*, Asmae El Baz}

¥ Department of Mathematics, Carleton University, Ottawa, Canada
¥ Department of Mathematics, Carleton University, Ottawa, Canada
8 Department of Mathematics, La Faculté des Sciences Dhar El Mahraz Fés, Fés, Morocco
Emails: benjaminearplynch@cmail.carleton.ca, simonearplynch@cmail.carleton.ca,
asmae.elbaz@Qusmba.ac.ma

Abstract. Let F;, denote the nth Fibonacci number. In this paper, we solve the Diophantine
equation F,, + F,, + F,, + F,,, = y* in integers nj,na,ng,n4,a for y = 11. In doing so, we
disprove a recent conjecture made by Diouf and Tiebekabe in [3].
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1 Introduction

1_2‘/5. We

Let a and 8 be the roots of the polynomial 2> — z — 1 where a = 1*'27‘/5 and § =
define the Fibonacci sequence {F, }en by

an_ﬁn
F,=—
n 04_6’

which is known as Binet’s formula. Equivalently, each term F), in the sequence can be defined
by the recurrence

Fn=Fy 1+ Fnho,

with initial terms Fy = 0 and F; = 1.
Recently, the Diophantine equations

F,+F, =y (1)
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with n > m > 0,y,a > 2 have been studied. The equation F,, + F},, = y® has been solved in
the case y = 2 in [1], and for general y under the condition n = m (mod 2) in [7]. The equation
F,, — F,,, = y® has been solved when y = 2,3 and 5 in [9], [2], and [5] respectively. Most recently,
it was found in [6] that for any fixed y, the equations (1) have finitely many solutions, and all
solutions were found for y € [2,1000].

A recent paper [3] has investigated the equation

Fn1+Fn2+Fn3+Fn4:yaa (2)

with ny > no > ng > ng and a > 1. All solutions were found in the case when y = 2, and it was
conjectured that if y is any prime greater than 7, no solutions exist with a > 2.
Our main result is as follows.

Theorem 1. The solutions to equation (2) with y =11, ny > ng > ng >nyg and a > 1 are

(n17n27n3)n47a) = { 67 ]-7 ]-7 ]-7 1)7 (6727 ]-7 ]-7 1)7 (672727 ]-7 1)7
6,2,2,2,1),(5,4,3,1,1),(5,4,3,2,1),
5,3,3,3,1),(4,4,4,3,1),(11,8,6,4, 2),

(
(
(
(10,10,6,4,2), (26,23, 21,10,5), (25,25, 21,10,5)}.

The latter four of the listed solutions can be seen to be counterexamples to the aforemen-
tioned conjecture. A brief check reveals that counterexamples may be found for many different
primes. The largest found by the present authors was p = 4999, a = 2, for which there are three
solutions, one being Fia + F3g + F35 + F3 = (4999)2.

2 Preliminaries

We will use Baker’s method for bounding linear forms in logarithms of algebraic numbers to
obtain our results. The main tool will be the following theorem of Matveev.

Theorem 2 (Matveev [8]). Let n € Z*t. Let L be a number field of degree D and let 0y, ...,
be non-zero elements of L. Let by, ba, ..., b be integers and define

B := max{|b1],...,|b]},
and l
A= 7711’1 -"ng’l —1= (Hn?) - 1.
Let Aq, ..., A; be real numbers such that
4; > mas{ Dh(ny), | log (1;)],0.16},1 < j < L
Assume that A # 0 and L is real. Then we have

log|A] > —1.4 x 303 x 1*% x d? x Ay --- Aj(1 +log D)(1 + log B).
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We will use the following version of Baker-Davenport reduction in order to reduce our bounds.

Lemma 1 (Dujella-Pethé [4]). Let M be a positive integer, let p/q be the convergent of the
continued fraction expansion of k such that ¢ > 6M and let A, B, be real numbers such that
A>0and B> 1. Let € := ||uq|| — M||xq]|.

If € > 0, then there is no solution of the inequality

O<mk—n+pu<AB™™

in integers m and n with
log (Ag/e)

< < M.
log B ==

3 Main Results
In this section we are concerned with the resolution of the following equation

Fo, +Fn, + F, + F,, =117 (3)
in positive integers ni, ng, n3,n4 and a with

ny=ng=>ng=>ng and ny = 1.

Assume that (n1,n2,n3,n4,a) is a solution to (3). Using the well-known inequality F, < o™ !,

11% = Fyy + Fy + Fy + Fpy, <a™ g am2t 4 st gna-!
<aml (14 4™ f ™™™
<Mt A4+14+141)
<11m x4
=11m" 1 x11
< 11™,

Hence, 11% < 11™, and it follows that a < nq.

3.1 A Bound on n; —ny
Using Binet’s formula, we may rewrite equation (3) as:

Lm_lla: ﬁnl
Vb Vb

Taking absolute values, we obtain

o o+ (Fuy + Py + Foy) < B (a7 o 0™ o), and

_(Fn2+Fn3+Fn4)

s
<[t

a™

V5

1
< —=+ (@ +a" +a™),

2V/5

—11¢
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where we have used the fact that 1 < a < nj. After dividing by o™ /v/5, we get

1_11a — f‘ <2\/7+an2 1+an3 1+an4 1>
1 V5 V5 V5
2an1 an1 ng + anlfng + anlfm;

< 2an _|_\f( n2—n1 4 N3 +an4*n1)

<% ng—mn1 +3\/5an2—n1
10

aQni—n2 ’

and so,

10

a —n
1-11%-a™ .5 < (4)

Now let us put
Ap=11%-a™™ .5 1.

n1 ni
a = Taking the conjugate in Q(1/5) gives —11¢ = f/g But [8]™ < |a|™
for ny > 1, and so A} # 0. We now apply Matveev’s theorem with v, := 11, vy :=a, ~3:=
Vb, bi:=a, by:=-n, and bz:=1. Since vi,v2,73 € K:= Q(+/5), we can take D := 2.
We compute the logarithmic height of each «; and choose an appropriate corresponding A; as
follows:
h(v) =log1l =2.3978..., so we can choose A; := 5.
h(y2) = 3 loga = 0.2406.. . ., so we can choose Ay := 0.5.
h (v3) = log /5 = 0.8047 .. ., it follows that we can choose As := 1.7.
Since a < n1, B := max {|b1], |ba|,|b3|} = n1.
Matveev’s result informs us that

If Ay =0, then 11% =

1—11%-a™ - /5| > exp(—ci - (1 +1logny) - 2.5-0.5-1.7),

where ¢; := 1.4-30°.3%5.22. (1 +1og2) < 9.7 x 10*!. Taking logarithms in the last inequality,
we get
log|A1] > —2.42 x 10" log ;.

Taking log in inequality (4), we get
log|A1] < log10 — (n1 — n2)log a.

Comparing the previous two inequalities, we get (n; — ng)loga < 2.5 x 10'2logny + log 10, and
so it follows that
(n1 —ng)loga < 2.5 x 10*2 logny. (5)
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3.2 A Bound on n; — ns
Now we write our equation differently to get another linear form in logarithms
ni n2 1 n2
L + L —11% = B + ﬂi _
V5 V5 V5 Vb

Taking absolute values on the above equation, we get

o (I4am™™) —11% < 18[™ + 18"
V5

V5
1
< 4 C¥n3—1 + ™
VA

1
< —+a™+a™

V5

a™l

Dividing both sides of the above inequality by el (1 + a™~™)  we obtain that

(Fng + Fa) -

+ | Fog + Fu,

1

1—11”0/‘“\/5(1—}—05”27"1)71’ < (1+a"3+a"4> V5

V5
1 o o
<GV (o)
a™ oM
- 5 R
@ TV (a " >

1 2V/5
(anl + anQ) on1—n3

1 25

<

am1i—ns3 aQmi—ns3
6
anlfng'
So,
-1 6
1-11%am VB (L+am ) T < 2

Let us consider
1

Ap=11"-a™ - V5 (1 +a™ ™) —1.
Before applying Matveev’s theorem with the parameters:

yii=11, v:=a, ~v3:=V5 (1+ 04”2_"1)_1,
b1 :=a, by:=-ny, and b3:=1,

we must ensure that As # 0, otherwise, we would get the relation

119V5 = o™ + ™.

a™ + an2

7
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Conjugating in the field Q(v/5), we get
—11%V5 = g™ + "2,
Combining the two expressions, we get
o™ <a™+a™ ="+ " < [B"M + (8™ < 1,
which is impossible. Hence Ay # 0.

Since 71,72,73 € K := Q(v/5), we can take D := 2. We know that, h(vy;) = log1l and
h(y2) = log . We estimate h (73) using the fact that

V5 4 l4amm 2
= Ty < Vo and ot = = < O
so |logys| < 1.
Using proprieties of logarithmic height , we have
V5
hlw) =k (1+a

<h (\/5) +h(1+am™™™)

1
glog\/§+]n2—n1]<0ga>+log2
log
zlog(Z\/5)+(n1—n2)< g >

Hence, we can take
Ag =2+ (n1 — n2)logaw > max {2h (v3),|logy3|,0.16} .
Matveev’s theorem implies that
|Aa| > exp (—c1 (1 +1logng)-2.5-0.5-(2+ (n1 — n2)log))

where ¢; := 1.4-30°.3%5.22. (1 4+10g2) < 9.7 x 101,
Since (1 + logn;) < 2logn; hold for n; > 3, from the first inequality, we have

(n1 —n3)loga < 1.4 x 10 logny (34 (n1 — ng) loga).
combining this with (5), we get

(n1 —n3)loga < 3.6 x 10**log?® n. (7)
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3.3 A Bound on n; —ny
Let us consider a third linear form in logarithms. Rewriting equation (3) yields
o™ + a2 + o™ IBHI + 5”2 + IBTLS

Y

In a similar manner to our earlier two bounds, we obtain

Fo,.

1 ni na n3
(j/g (1+amm 4 qmom) —110| < ’5\/’5 nall /Y
(6%
< — +a™.
V5
Thus we have
1 11% .~ ™ . \/5 a na \/5
- (1 _|_ q2—n1 + angfnl) < % +a ot + a2 + a3
4
Qni—n4 :

We apply Matveev’s theorem a third time with

Ay =11%-a ™ VB (14 a™ ™ 4o m) 7 1,
where we can take the parameters
yii=11, v :=a, v3:=V5 (1+am™™ 4 a”37"1)_1 ,
b1 :=a, by:=-n;, and, bz:=1.

Since v1,7v2,73 € K := Q(\/g), we can also in this case take D := 2.
Suppose, for a contradiction, that |[Asz| = 0. Then

11%V5 = ™ + o™ + o™,
Taking the conjugate in the field Q(v/5), we get
—119V5 = g™ + g™ + g™,
which leads to
a™ <a™ +a"™ o =" 4B+ B+ B+ B < 1
and leads to a contradiction since n; > 1. Hence Az # 0.
As we did before, we can take Ay := 5,49 := 0.5 and B := n;. We can also see that

Vs = Tramigmer < VB and oyt = MR < B o flogys| < 1. We apply

the proprieties of the logarithmic height to estimate h (y3)

log o log v
h(V3)<10g\/5+n2—n1|< i )+|n3—n1|< g )—|—log3

— log(3v/5) + (1 — n2) <1"§0‘> T (n1 — ng) <1°§O‘> ;
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so we can take
A =3+ (n1 —ng)loga + (n1 —ns)loga
> max {2h (v3) , |logv3|,0.16} ,
which yields the bound
|As| > exp (—c1 (1 + logni) (2.5)(0.5) (34 (2n1 — na — n3) log a))

where ¢; = 1.4-300 - 3%%.22. (1 +log2) < 9.7 x 10!,
Using the bounds (5) and (7), this leads to the upper bound

(n1 —ny)loga < 1.69 x 1037 x log®ny. (8)

3.4 An absolute bound on n;

Let us now consider a final linear form in logarithms. Rerwriting equation (3) once again, we
et

g O[nl +an2 +an3 +an4 a ﬁ’ru +l8n2 _{_ﬁ’ng +/6n4
—11% = .

V5 V5

Taking absolute values on both sides, we get

Lm (1 + ang—nl + ang—n1 + an4—n1) _ 11(1
V5
o B+ 18" + 18" + |B8]™

V5

2
< —=.

V5

Dividing both sides of the above relation by

ni
- (1 _’_anzfru + angfnl 4 an4fn1) ,

%Q

we get
1-11%a ™ -5 (1+am™™ 4 a™™ ™ 4 an4—n1)_1‘ < 2
am™
let us take

Ay=11%- o™ .5 (1 4+ QT ™M a"“_”l)*l -1

In the last application of Matveev’s theorem, we have the following parameters:

yi=11, v:=a, ~v3:=V5 (L+am™ ™ o™ 4 04”4*”1)71,

and we can also take b; :=a, by := —n and b3 := 1.
Since v1,72,7v3 € K := Q(v/5), we can take D := 2. To ensure that Ay # 0 suppose, for a
contradiction, that Ay = 0. It follows that

1195 = o™ + o™ + o™ + o™,
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by taking the conjugate of the above relation in the field Q(v/5), we get
_11(1\/5: Bn1 +Bn2 +6n3 +6n4.
Combining the above two equations, we get

a™ <a™ +a™ +a o™ =[N 4 B+ B 4 B
<IBI™ + 18" + 16" + 18" < 1

which leads to a contradiction since n; > 0. Moving to the logarithmic heights, we can take
A1 :=5,45:=0.5 and B :=n;. For h(y3), we can see that,

Y3 V5 <V5

T 14 qneTn 4o gns—n1 4 gna—m

and v3 ' = 1+0‘"27"1+0‘7’57n1+0‘n47"1 < %. Hence [logvs| < 1. Then by using the properties of

the logarithmic height we get

log
P () < 108(4V5) + (1 ml + Ina = |+ s — i) (252

=bﬁ%®+«m—mrum—mwum—m»Cﬁa»

and so we can take
Az =4+ (n1 —ng)loga + (np —ng)loga + (n1 — ny) log a.
Matveev’s theorem then yields the bound
|A4] > exp (—c1 - (1 4+1logny) (1.25) (4 4 (3n1 —ng —ng — ng) loga)),
where ¢; = 1.4 - 300 - 315 . 22. (1 + log2) < 9.7 x 10
But since

2
|A4] < P

so by taking log and using the both inequalities we have

niloga < 1.25 x 10" logny - (4 + (3n1 — ng — n3 —nyg) loga) . 9)

This, in combination with (5), (7) and (8) allows us to get an upper bound M on n;. We will
take
M =15 x 10

This is still too large to allow us to compute all solutions to (3), so in the next section we will
focus on reducing it.
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3.5 Reduction of the Bounds
Let
21 :=alog 11 — ny log a + log V/5.

Recall that from (4), we have
10

aqni—n2

|1 —e| <

By Binet’s formula, we have

ni ni
\/5 :Fnl—i—ﬁ <Fn1+Fn2+Fn3+Fn4 :]_1(1,

R

hence
n1

a
— < 117
V5
which yields z; > 0, and so
10

ani—nz’

O<znn<e—1<

Dividing both sides of the resulting inequality by log «, we get

log 11 | 1
O<a<0g )—n1+<0g\/5>< 0 ST < 21 ™M T2, (10)

log log o log

Now, we define

__log11 ' log v/5
" loga’ N

A:=21, and B:=a.

We use the Baker-Davenport reduction method with these parameters. Observe that the inequal-
ities A > 0, B > 1 are satisfied. We find that the 123rd convergent of the continued fraction
expansion of 7 has denominator ¢ satisfying the conditions ¢ > 6M and ¢ = ||ug|| — ||7¢||N > 0.

As a < ny; < M and (10) holds for a,n; and n; — ny integers, we must have n; — ng < %%m’
from which we may deduce that n; — ngy < 291.
A similar method allows us to reduce the bound on n; — ng. Set
—1

29 :=alog 11 — ni loga + log V5 (1 + a*(”l’”2)>

From (6), we have
_ a _ni, n2—mni -1 6
1—11%-a™ - V5 (1 +a™ ™) ‘<7am_n3,
which yields
6
|1 —e*?| < .
aqni—n3
As
O[nl Oén2 Bnl 5”2
+—=F, +F,+—F=+—F=<Fy, +F, +1<F,, +Fy, +Fh, +Fy,

V5 Vb VERRRYS]
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Therefore, 1 < 119y/5a~™ (1 + o/LT"l)_1 and so zo > 0. This gives

6

ani—ns’

0<zm<e®?-1<

and so we obtain

log 11 log V/5 (1 + ~(m=n2)) ™!
0<a(°g )—n1+ V5 (l+a ) 13, (11)

log log

We apply the Baker-Davenport reduction with the parameters:

o log 11 L log V5 (1 + a_(”l_"Q))il
" loga’ o= log a
A:=20, B:=a and N =M.

)

We attempt to find L convergent of 7 such that € = ||uq|| — ||7¢||N > 0, but since p depends
q

on (n1 — ng), we must exclude the values of (n; — ny) which lead to the linear dependence of 7
and p. Since we have established a reasonable bound on n; — ng, these exceptional cases may
be found through a direct check for all values of n; — ng € [0,291], which reveals that only the
case ni —ng = 2 must be dealt with separately. We use Maple™ to apply the Baker-Davenport
reduction method to (11), for all n; — ng € [0,291] not equal to to 2, finding that in all cases,
either the 122nd or 123rd convergent suffices, and we obtain the bound n; — ng < 303. When
ny — ng = 2, equation (11) becomes

log 11
a
log

0< —ny+1<13. o (m—n3),

Since a is less than the denominator of the 122nd convergent of llcz)gg 1(11, we check the first 123
partial quotients, finding that the largest of them is 57, and so

log 11 1
— -1 >—.
“ log (m ) 99a
This gives ™™™ < 13- 59a, and so
log 767a
ny —ng < s
log

which yields n; — ng < 292 in the case n; — no = 2. So in either case, n; — ng < 303.
We repeat this process again in order to bound n; — ng4. In this case, we use the inequality

log 11 n log \/5(1 + o (m—n2) a*(ﬂqf’ng))f]. 18
—-n

0 < |a 1 < )
log o log Qni—n4

(12)
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and apply Lemma 1 for all choices of n; — no < 291 and n; — n3 < 303 apart from the pairs
(n1—na,n1—n3) € {(1,1),(0,3), (3,4)}, which we deal with separately using the same continued
fraction method as above. In all cases, we find that nqy — ng < 318.

We may use the bounds we have obtained for ny — no,n; — ng and n; — ng to reduce the
bound on n; immediately using (9). We obtain ny < 4.42 x 1016, We apply Lemma 1 once more,
using the inequality

log 11 log V/5(1 + a~(m=n2) 4 q=(m=n3) 4 o= (m—na))-1
—n _|_

0<la 1
log v log v

9

am™’

along with the bound a < 4.42 x 10'0. A check reveals that the cases that must be dealt with
separately this time are (n; —ng, n1 —ng,n1 —n4) € {(0,0,1),(0,4,5),(1,2,3),(3,5,6), (4,4,5)}.
In all cases, n; was found to be no greater than 210, and a search for m; up to this bound
revealed only the solutions listed in the statement of Theorem 1.

Throughout this paper, calculations were carried out in Maple™ with results rounded to
an accuracy of 200 decimal places.
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