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Abstract. Let Fn denote the nth Fibonacci number. In this paper, we solve the Diophantine
equation Fn1 + Fn2 + Fn3 + Fn4 = ya in integers n1, n2, n3, n4, a for y = 11. In doing so, we
disprove a recent conjecture made by Diouf and Tiebekabe in [3].
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1 Introduction
Let α and β be the roots of the polynomial x2 − x − 1 where α = 1+

√
5

2 and β = 1−
√
5

2 . We
define the Fibonacci sequence {Fn}n∈N by

Fn :=
αn − βn

α− β
,

which is known as Binet’s formula. Equivalently, each term Fn in the sequence can be defined
by the recurrence

Fn = Fn−1 + Fn−2,

with initial terms F0 = 0 and F1 = 1.
Recently, the Diophantine equations

Fn ± Fm = ya, (1)
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with n ≥ m ≥ 0, y, a ≥ 2 have been studied. The equation Fn + Fm = ya has been solved in
the case y = 2 in [1], and for general y under the condition n ≡ m (mod 2) in [7]. The equation
Fn−Fm = ya has been solved when y = 2, 3 and 5 in [9], [2], and [5] respectively. Most recently,
it was found in [6] that for any fixed y, the equations (1) have finitely many solutions, and all
solutions were found for y ∈ [2, 1000].

A recent paper [3] has investigated the equation

Fn1 + Fn2 + Fn3 + Fn4 = ya, (2)

with n1 ≥ n2 ≥ n3 ≥ n4 and a ≥ 1. All solutions were found in the case when y = 2, and it was
conjectured that if y is any prime greater than 7, no solutions exist with a ≥ 2.

Our main result is as follows.

Theorem 1. The solutions to equation (2) with y = 11, n1 ≥ n2 ≥ n3 ≥ n4 and a ≥ 1 are

(n1, n2, n3, n4, a) = {(6, 1, 1, 1, 1), (6, 2, 1, 1, 1), (6, 2, 2, 1, 1),
(6, 2, 2, 2, 1), (5, 4, 3, 1, 1), (5, 4, 3, 2, 1),

(5, 3, 3, 3, 1), (4, 4, 4, 3, 1), (11, 8, 6, 4, 2),

(10, 10, 6, 4, 2), (26, 23, 21, 10, 5), (25, 25, 21, 10, 5)}.

The latter four of the listed solutions can be seen to be counterexamples to the aforemen-
tioned conjecture. A brief check reveals that counterexamples may be found for many different
primes. The largest found by the present authors was p = 4999, a = 2, for which there are three
solutions, one being F12 + F30 + F35 + F36 = (4999)2.

2 Preliminaries
We will use Baker’s method for bounding linear forms in logarithms of algebraic numbers to
obtain our results. The main tool will be the following theorem of Matveev.

Theorem 2 (Matveev [8]). Let n ∈ Z+. Let L be a number field of degree D and let η1, . . . , ηl
be non-zero elements of L. Let b1, b2, . . . , bl be integers and define

B := max{|b1|, . . . , |bl|},

and

Λ := ηb11 · · · ηbll − 1 =

(
l∏

i=1

ηbii

)
− 1.

Let A1, . . . , Al be real numbers such that

Aj ≥ max{Dh(ηj), | log (ηj)|, 0.16}, 1 ≤ j ≤ l.

Assume that Λ ̸= 0 and L is real. Then we have

log |Λ| > −1.4× 30l+3 × l4.5 × d2 ×A1 · · ·Al(1 + logD)(1 + logB).



The Equation
4∑

i=1
Fni = 11a 75

We will use the following version of Baker-Davenport reduction in order to reduce our bounds.

Lemma 1 (Dujella-Pethő [4]). Let M be a positive integer, let p/q be the convergent of the
continued fraction expansion of κ such that q > 6M and let A,B, µ be real numbers such that
A > 0 and B > 1. Let ϵ := ∥µq∥ −M∥κq∥.
If ϵ > 0, then there is no solution of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with
log (Aq/ϵ)

logB
≤ m ≤ M.

3 Main Results
In this section we are concerned with the resolution of the following equation

Fn1 + Fn2 + Fn3 + Fn4 = 11a (3)

in positive integers n1, n2, n3, n4 and a with

n1 ⩾ n2 ⩾ n3 ⩾ n4 and n1 ⩾ 1.

Assume that (n1, n2, n3, n4, a) is a solution to (3). Using the well-known inequality Fn ≤ αn−1,

11a = Fn1 + Fn2 + Fn3 + Fn4 ⩽ αn1−1 + αn2−1 + αn3−1 + αn4−1

< αn1−1
(
1 + αn2−n1 + αn3−n1 + αn4−n1

)
< 11n1−1 (1 + 1 + 1 + 1)

⩽ 11n1−1 × 4

= 11n1−1 × 11

< 11n1 .

Hence, 11a < 11n1 , and it follows that a < n1.

3.1 A Bound on n1 − n2

Using Binet’s formula, we may rewrite equation (3) as:

αn1

√
5
− 11a =

βn1

√
5
− (Fn2 + Fn3 + Fn4)

Taking absolute values, we obtain∣∣∣αn1√
5
− 11a

∣∣∣ ⩽ ∣∣∣βn1√
5

∣∣∣+ (Fn2 + Fn3 + Fn4) <
|β|n1√

5
+ (αn2 + αn3 + αn4), and∣∣∣∣αn1

√
5
− 11a

∣∣∣∣ < 1

2
√
5
+ (αn2 + αn3 + αn4) ,
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where we have used the fact that 1 ≤ a < n1. After dividing by αn1/
√
5, we get∣∣∣1− 11a · α−n1 ·

√
5
∣∣∣ < √

5

αn1

(
1

2
√
5
+ αn2−1 + αn3−1 + αn4−1

)
<

1

2αn1
+

√
5

αn1−n2
+

√
5

αn1−n3
+

√
5

αn1−n4

≤ 1

2αn1
+
√
5
(
αn2−n1 + αn3−n1 + αn4−n1

)
≤ 1

2
αn2−n1 + 3

√
5αn2−n1

<
10

αn1−n2
,

and so, ∣∣∣1− 11a · α−n1 ·
√
5
∣∣∣ < 10

αn1−n2
. (4)

Now let us put

Λ1 = 11a · α−n1 ·
√
5− 1.

If Λ1 = 0, then 11a =
αn1

√
5

. Taking the conjugate in Q(
√
5) gives −11a =

βn1

√
5

. But |β|n1 < |α|n1

for n1 > 1, and so Λ1 ̸= 0. We now apply Matveev’s theorem with γ1 := 11, γ2 := α, γ3 :=√
5, b1 := a, b2 := −n, and b3 := 1. Since γ1, γ2, γ3 ∈ K := Q(

√
5), we can take D := 2.

We compute the logarithmic height of each γi and choose an appropriate corresponding Ai as
follows:
h (γ1) = log 11 = 2.3978 . . ., so we can choose A1 := 5.
h (γ2) =

1
2 logα = 0.2406 . . ., so we can choose A2 := 0.5.

h (γ3) = log
√
5 = 0.8047 . . ., it follows that we can choose A3 := 1.7.

Since a < n1, B := max {|b1| , |b2| , |b3|} = n1.
Matveev’s result informs us that∣∣∣1− 11a · αn1 ·

√
5
∣∣∣ > exp (−c1 · (1 + log n1) · 2.5 · 0.5 · 1.7) ,

where c1 := 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011. Taking logarithms in the last inequality,
we get

log |Λ1| > −2.42× 1012 log n1.

Taking log in inequality (4), we get

log |Λ1| < log 10− (n1 − n2) logα.

Comparing the previous two inequalities, we get (n1 − n2) logα < 2.5× 1012 log n1+ log 10, and
so it follows that

(n1 − n2) logα < 2.5× 1012 log n1. (5)
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3.2 A Bound on n1 − n3

Now we write our equation differently to get another linear form in logarithms

αn1

√
5
+

αn2

√
5
− 11a =

βn1

√
5
+

βn2

√
5
− (Fn3 + Fn4) .

Taking absolute values on the above equation, we get∣∣∣∣αn1

√
5

(
1 + αn2−n1

)
− 11a

∣∣∣∣ ⩽ |β|n1 + |β|n2

√
5

+ | Fn3 + Fn4 |

≤ 1√
5
+ αn3−1 + αn4−1

<
1√
5
+ αn3 + αn4

Dividing both sides of the above inequality by αn1√
5
(1 + αn2−n1), we obtain that

∣∣∣1− 11a · αn1 ·
√
5
(
1 + αn2−n1

)−1
∣∣∣ < ( 1√

5
+ αn3 + αn4

)
×

√
5

αn1 + αn2

<
1

(αn1 + αn2)
+

√
5

(
αn3 + αn4

αn1 + αn2

)
<

1

(αn1 + αn2)
+

√
5

(
αn3

αn1
+

αn4

αn1

)
<

1

(αn1 + αn2)
+

2
√
5

αn1−n3

<
1

αn1−n3
+

2
√
5

αn1−n3

<
6

αn1−n3
.

So, ∣∣∣1− 11a · αn1 ·
√
5
(
1 + αn2−n1

)−1
∣∣∣ < 6

αn1−n3
. (6)

Let us consider
Λ2 = 11a · αn1 ·

√
5
(
1 + αn2−n1

)−1 − 1.

Before applying Matveev’s theorem with the parameters:

γ1 := 11, γ2 := α, γ3 :=
√
5
(
1 + αn2−n1

)−1
,

b1 := a, b2 := −n1, and b3 := 1,

we must ensure that Λ2 ̸= 0, otherwise, we would get the relation

11a
√
5 = αn1 + αn2 .
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Conjugating in the field Q(
√
5), we get

−11a
√
5 = βn1 + βn2 .

Combining the two expressions, we get

αn1 < αn1 + αn2 = |βn1 + βn2 | ⩽ |β|n1 + |β|n2 < 1,

which is impossible. Hence Λ2 ̸= 0.
Since γ1, γ2, γ3 ∈ K := Q(

√
5), we can take D := 2. We know that, h (γ1) = log 11 and

h (γ2) =
1
2 logα. We estimate h (γ3) using the fact that

γ3 =

√
5

1 + αn2−n1
<

√
5 and γ−1

3 =
1 + αn2−n1

√
5

<
2√
5
,

so |log γ3| < 1.
Using proprieties of logarithmic height , we have

h (γ3) = h

( √
5

1 + αn2−n1

)
≤ h

(√
5
)
+ h

(
1 + αn2−n1

)
⩽ log

√
5 + |n2 − n1|

(
logα

2

)
+ log 2

= log(2
√
5) + (n1 − n2)

(
logα

2

)
.

Hence, we can take

A3 := 2 + (n1 − n2) logα > max {2h (γ3) , |log γ3| , 0.16} .

Matveev’s theorem implies that

|Λ2| > exp (−c1 (1 + log n1) · 2.5 · 0.5 · (2 + (n1 − n2) logα))

where c1 := 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011.
Since (1 + log n1) < 2 log n1 hold for n1 ⩾ 3, from the first inequality, we have

(n1 − n3) logα < 1.4× 1012 log n1 (3 + (n1 − n2) logα) .

combining this with (5), we get

(n1 − n3) logα < 3.6× 1024 log2 n1. (7)
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3.3 A Bound on n1 − n4

Let us consider a third linear form in logarithms. Rewriting equation (3) yields
αn1 + αn2 + αn3

√
5

− 11a =
βn1 + βn2 + βn3

√
5

− Fn4 .

In a similar manner to our earlier two bounds, we obtain∣∣∣∣αn1

√
5

(
1 + αn2−n1 + αn3−n1

)
− 11a

∣∣∣∣ ⩽ |β|n1 + |β|n2 + |β|n3

√
5

+ Fn4

<
α√
5
+ αn4 .

Thus we have ∣∣∣∣∣1− 11a · α−n1 ·
√
5

(1 + αn2−n1 + αn3−n1)

∣∣∣∣∣ <
(

α√
5
+ αn4

)( √
5

αn1 + αn2 + αn3

)
<

4

αn1−n4
.

We apply Matveev’s theorem a third time with

Λ3 = 11a · α−n1 ·
√
5
(
1 + αn2−n1 + αn3−n1

)−1 − 1,

where we can take the parameters

γ1 := 11, γ2 := α, γ3 :=
√
5
(
1 + αn2−n1 + αn3−n1

)−1
,

b1 := a, b2 := −n1, and , b3 := 1.

Since γ1, γ2, γ3 ∈ K := Q(
√
5), we can also in this case take D := 2.

Suppose, for a contradiction, that |Λ3| = 0. Then

11a
√
5 = αn1 + αn2 + αn3 .

Taking the conjugate in the field Q(
√
5), we get

−11a
√
5 = βn1 + βn2 + βn3 ,

which leads to

αn1 < αn1 + αn2 + αn3 = |βn1 + βn2 + βn3 | ⩽ |β|n1 + |β|n2 + |β|n3 < 1

and leads to a contradiction since n1 > 1. Hence Λ3 ̸= 0.
As we did before, we can take A1 := 5, A2 := 0.5 and B := n1. We can also see that

γ3 =
√
5

1+αn2−n1+αn3−n1
<

√
5 and γ−1

3 = 1+αn2−n1+αn3−n1√
5

≤ 3√
5
, so |log γ3| < 1. We apply

the proprieties of the logarithmic height to estimate h (γ3)

h (γ3) ⩽ log
√
5 + |n2 − n1|

(
logα

2

)
+ |n3 − n1|

(
logα

2

)
+ log 3

= log(3
√
5) + (n1 − n2)

(
logα

2

)
+ (n1 − n3)

(
logα

2

)
;
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so we can take

A3 = 3 + (n1 − n2) logα+ (n1 − n3) logα

> max {2h (γ3) , |log γ3| , 0.16} ,

which yields the bound

|Λ3| > exp (−c1 (1 + log n1) (2.5)(0.5) (3 + (2n1 − n2 − n3) logα))

where c1 = 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011.
Using the bounds (5) and (7), this leads to the upper bound

(n1 − n4) logα < 1.69× 1037 × log3 n1. (8)

3.4 An absolute bound on n1

Let us now consider a final linear form in logarithms. Rerwriting equation (3) once again, we
get

αn1 + αn2 + αn3 + αn4

√
5

− 11a =
βn1 + βn2 + βn3 + βn4

√
5

.

Taking absolute values on both sides, we get∣∣∣∣αn1

√
5

(
1 + αn2−n1 + αn3−n1 + αn4−n1

)
− 11a

∣∣∣∣
⩽ |β|n1 + |β|n2 + |β|n3 + |β|n4

√
5

<
2√
5
.

Dividing both sides of the above relation by

αn1

√
5

(
1 + αn2−n1 + αn3−n1 + αn4−n1

)
,

we get ∣∣∣1− 11a · α−n1 ·
√
5
(
1 + αn2−n1 + αn3−n1 + αn4−n1

)−1
∣∣∣ < 2

αn1

let us take
Λ4 = 11a · α−n1 ·

√
5
(
1 + αn2−n1 + αn3−n1 + αn4−n1

)−1 − 1

In the last application of Matveev’s theorem, we have the following parameters:

γ1 := 11, γ2 := α, γ3 :=
√
5
(
1 + αn2−n1 + αn3−n1 + αn4−n1

)−1
,

and we can also take b1 := a, b2 := −n and b3 := 1.
Since γ1, γ2, γ3 ∈ K := Q(

√
5), we can take D := 2. To ensure that Λ4 ̸= 0 suppose, for a

contradiction, that Λ4 = 0. It follows that

11a
√
5 = αn1 + αn2 + αn3 + αn4 .
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by taking the conjugate of the above relation in the field Q(
√
5), we get

−11a
√
5 = βn1 + βn2 + βn3 + βn4 .

Combining the above two equations, we get

αn1 < αn1 + αn2 + αn3 + αn4 = |βn1 + βn2 + βn3 + βn4 |
⩽ |β|n1 + |β|n2 + |β|n3 + |β|n4 < 1

which leads to a contradiction since n1 > 0. Moving to the logarithmic heights, we can take
A1 := 5, A2 := 0.5 and B := n1. For h (γ3), we can see that,

γ3 =

√
5

1 + αn2−n1 + αn3−n1 + αn4−n1
<

√
5

and γ−1
3 = 1+αn2−n1+αn3−n1+αn4−n1√

5
< 4√

5
. Hence |log γ3| < 1. Then by using the properties of

the logarithmic height we get

h (γ3) ⩽ log(4
√
5) + (|n2 − n1|+ |n3 − n1|+ |n4 − n1|)

(
logα

2

)
= log(4

√
5) + ((n1 − n2) + (n1 − n3) + (n1 − n4))

(
logα

2

)
,

and so we can take

A3 := 4 + (n1 − n2) logα+ (n1 − n3) logα+ (n1 − n4) logα.

Matveev’s theorem then yields the bound

|Λ4| > exp (−c1 · (1 + log n1) (1.25) (4 + (3n1 − n2 − n3 − n4) logα)) ,

where c1 = 1.4 · 306 · 34.5 · 22 · (1 + log 2) < 9.7× 1011.
But since

|Λ4| <
2

αn1
,

so by taking log and using the both inequalities we have

n1 logα < 1.25× 1012 log n1 · (4 + (3n1 − n2 − n3 − n4) logα) . (9)

This, in combination with (5), (7) and (8) allows us to get an upper bound M on n1. We will
take

M = 1.5× 1058.

This is still too large to allow us to compute all solutions to (3), so in the next section we will
focus on reducing it.
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3.5 Reduction of the Bounds
Let

z1 := a log 11− n1 logα+ log
√
5.

Recall that from (4), we have
|1− ez1 | < 10

αn1−n2
.

By Binet’s formula, we have

αn1

√
5
= Fn1 +

βn1

√
5
< Fn1 + Fn2 + Fn3 + Fn4 = 11a,

hence
αn1

√
5
< 11a

which yields z1 > 0, and so
0 < z1 < ez1 − 1 <

10

αn1−n2
.

Dividing both sides of the resulting inequality by logα, we get

0 < a

(
log 11

logα

)
− n1 +

(
log

√
5

logα

)
<

10

logα
· αn1−n2 < 21 · αn1−n2 . (10)

Now, we define

τ :=
log 11

logα
, µ :=

log
√
5

logα
, A := 21, and B := α.

We use the Baker-Davenport reduction method with these parameters. Observe that the inequal-
ities A > 0, B > 1 are satisfied. We find that the 123rd convergent of the continued fraction
expansion of τ has denominator q satisfying the conditions q > 6M and ε = ∥µq∥− ∥τq∥N > 0.
As a ⩽ n1 < M and (10) holds for a, n1 and n1 − n2 integers, we must have n1 − n2 <

log(Aq/ε)
logB ,

from which we may deduce that n1 − n2 ≤ 291.
A similar method allows us to reduce the bound on n1 − n3. Set

z2 := a log 11− n1 logα+ log
√
5
(
1 + α−(n1−n2)

)−1

From (6), we have ∣∣∣1− 11a · αn1 ·
√
5
(
1 + αn2−n1

)−1
∣∣∣ < 6

αn1−n3
,

which yields
|1− ez2 | < 6

αn1−n3
.

As
αn1

√
5
+

αn2

√
5
= Fn1 + Fn2 +

βn1

√
5
+

βn2

√
5
< Fn1 + Fn2 + 1 ⩽ Fn1 + Fn2 + Fn3 + Fn4
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= 11a.

Therefore, 1 < 11a
√
5α−n1 (1 + αn2−n1)

−1 and so z2 > 0. This gives

0 < z2 ⩽ ez2 − 1 <
6

αn1−n3
,

and so we obtain

0 < a

(
log 11

logα

)
− n1 +

log
√
5
(
1 + α−(n1−n2)

)−1

logα
< 13 · α−(n1−n3). (11)

We apply the Baker-Davenport reduction with the parameters:

τ :=
log 11

logα
, µ :=

log
√
5
(
1 + α−(n1−n2)

)−1

logα
,

A := 20, B := α and N = M.

We attempt to find p

q
a convergent of τ such that ε = ∥µq∥ − ∥τq∥N > 0, but since µ depends

on (n1 − n2), we must exclude the values of (n1 − n2) which lead to the linear dependence of τ
and µ. Since we have established a reasonable bound on n1 − n2, these exceptional cases may
be found through a direct check for all values of n1 − n2 ∈ [0, 291], which reveals that only the
case n1−n2 = 2 must be dealt with separately. We use MapleTM to apply the Baker-Davenport
reduction method to (11), for all n1 − n2 ∈ [0, 291] not equal to to 2, finding that in all cases,
either the 122nd or 123rd convergent suffices, and we obtain the bound n1 − n3 ≤ 303. When
n1 − n2 = 2, equation (11) becomes

0 < a
log 11

logα
− n1 + 1 < 13 · α−(n1−n3).

Since a is less than the denominator of the 122nd convergent of log 11
logα , we check the first 123

partial quotients, finding that the largest of them is 57, and so∣∣∣∣a log 11logα
− (n1 − 1)

∣∣∣∣ > 1

59a
.

This gives αn1−n3 < 13 · 59a, and so

n1 − n3 <
log 767a

logα
,

which yields n1 − n3 ≤ 292 in the case n1 − n2 = 2. So in either case, n1 − n3 ≤ 303.
We repeat this process again in order to bound n1 − n4. In this case, we use the inequality

0 <

∣∣∣∣∣a log 11logα
− n1 +

log
√
5(1 + α−(n1−n2) + α−(n1−n3))−1

logα

∣∣∣∣∣ < 18

αn1−n4
, (12)
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and apply Lemma 1 for all choices of n1 − n2 ≤ 291 and n1 − n3 ≤ 303 apart from the pairs
(n1−n2, n1−n3) ∈ {(1, 1), (0, 3), (3, 4)}, which we deal with separately using the same continued
fraction method as above. In all cases, we find that n1 − n4 ≤ 318.

We may use the bounds we have obtained for n1 − n2, n1 − n3 and n1 − n4 to reduce the
bound on n1 immediately using (9). We obtain n1 < 4.42×1016. We apply Lemma 1 once more,
using the inequality

0 <

∣∣∣∣∣a log 11logα
− n1 +

log
√
5(1 + α−(n1−n2) + α−(n1−n3) + α−(n1−n4))−1

logα

∣∣∣∣∣
<

9

αn1
,

along with the bound a < 4.42 × 1016. A check reveals that the cases that must be dealt with
separately this time are (n1−n2, n1−n3, n1−n4) ∈ {(0, 0, 1), (0, 4, 5), (1, 2, 3), (3, 5, 6), (4, 4, 5)}.
In all cases, n1 was found to be no greater than 210, and a search for n1 up to this bound
revealed only the solutions listed in the statement of Theorem 1.

Throughout this paper, calculations were carried out in MapleTM, with results rounded to
an accuracy of 200 decimal places.
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