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Abstract. A nonempty graph Γ is called generalized 3-distance-balanced, (3-GDB) whenever
for every edge ab, |Wab| = 3|Wba| or conversely. As well as a graph Γ is called generalized
3-nicely distance-balanced (3-GNDB) whenever for every edge ab of Γ, there exists a positive
integer γΓ, such that: |Wba| = γΓ.In this paper, we classify 3-GNDB graphs with, γΓ ∈ {1, 2}.
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1 Introduction
Throughout this paper, let Γ be a finite, undirected and connected graph with diameter d, and
V (Γ) and E(Γ) denote the vertex and edge set of Γ, respectively. The distance d(a, b) between
vertices a, b ∈ V (Γ) is the length of a shortest path between a, b ∈ V (Γ). For an edge ab of a graph
Γ, let Wab be the set of vertices closer to a than to b , that is Wab = {x ∈ Γ|d(x, a) < d(x, b)}.
We call a graph Γ, distance-balanced (DB), if |Wab| = |Wba| for every edge ab ∈ E(Γ). These
graphs were studied by Handa [5] who considered DB. For recent results on DB and EDB
see [1, 3, 4, 6–8, 10, 11]. A graph Γ is called nicely distance-balanced, whenever there exists a
positive integer γΓ, such that for two adjacent vertices a, b of Γ; |Wab| = |Wba| = γΓ. These
graphs were studied by Kutnur and Miklavič in [9].
A graph Γ is called generalized 3-distance-balanced (3-GDB) if for every edge ab ∈ E(Γ);
|Wab| = 3|Wba| or conversely. Throughout of this paper, we assume that |Wab| = 3|Wba|. A
graph Γ is called generalized 3-nicely distance-balanced (3-GNDB), if for every edge ab of Γ,
there exists a positive integer γΓ, such that: |Wba| = γΓ. For example we can show that K1,3

and K2,6 are 3−GNDB. The aim of this paper is classifying 3-GNDB graphs with γΓ ∈ {1, 2}.
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2 Classification
In order to express the problem, it is better to start with parameter 3. In this section, we classify
3-GNDB graphs with γΓ ∈ {1, 2}.
For every two non-negative integers i, j, we denote:

Di
j(a, b) = {x ∈ V (Γ)|d(x, a) = i and d(x, b) = j}. (1)

We now suppose that Γ is a 3-GNDB graph with diameter d. Since |Wab| = 3|Wba| for every
two adjacent vertices a, b and by (1), we have

|{a}
∪d−1

i=1 Di
i+1(a, b)| = 3|{b}

∪d−1
i=1 Di+1

i (a, b)|.

Therefore,
d−1∑
i=1

|Di
i+1(a, b)| = 3

d−1∑
i=1

|Di+1
i (a, b)|+ 2. (2)

Theorem 1. If Γ be a connected k −GNDB graph, then Γ is a bipartite graph.

Proof. Inspired by the proof of Theorem 1.1 in [2], let Γ be a k−GNDB graph with diameter d,
and the vertex set {v1, v2, . . . , v2l+1} form an odd cycle with length 2l+1 such that vivi+1 ∈ E(Γ).
Set

Aij = {v ∈ V (Γ)|d(v, vi+2l) = mjk,

mjk = {1, 2, . . . , d}, k = 0, 1, . . . , 2l, 2 ⩽ j ⩽ r},

and

WΓ
vi,vi+l

= (
∪r

j=1Aij)
∪
{vi, vi+2l},

WΓ
vi+1,vi

= (
∪r

j=1A(i+1)j)
∪
{vi+1, vi+2},

where the calculation in indexes i are performed modulo 2l + 1 and some r ∈ N . Taking
|Aij | = aij for i = 0, 1, . . . , 2l and j = 1, 2, . . . , r, by definition k −GNDB graphs, there exists
ei ∈ {±1}, i = 0, 1, . . . , 2l such that

r∑
j=1

a0j + 2 =ke0(

r∑
j=1

a1j + 2),

r∑
j=1

a1j + 2 =ke1(
r∑

j=1

a2j + 2),

...
r∑

j=1

a(2l−1)j + 2 =ke2l−1(
r∑

j=1

a2l + 2),
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r∑
j=1

a(2l)j + 2 =ke2l(

r∑
j=1

a0j + 2).

Now, multiplying all (2l+1) equations above implies that k
∑2i

i=0ei = 1, that is,
∑2i

i=0 ei = 0. On
the other hand, ei ∈ {±1} =⇒ 1 ⩽ |

∑2i
i = 0ei|, which is a contradiction and henes Γ has no

odd cycle. This completes the proof.

Theorem 2. If Γ be a 3-GNDB grpah with d = 2, then deg(a) = 3 deg(b) for every edge ab of
Γ.

Proof. It follows from (1) that for a 3−GNDB graph with diameter 2, |D1
2(a, b)| = 3|D2

1(a, b)|+2,
for every edge ab of Γ. If |D2

1(a, b)| = t, then |D1
2(a, b)| = 3t+ 2. Therefore, deg(b) = t+ 1 and

deg(a) = 3t+ 3. Thus, deg(a) is always 3 deg(b).

Lemma 1. Let Γ be a 3−GNDB graph with diameter 2. Then Γ is only Kn,3n.

Proof. Let Γ be a 3−GNDB graph with diameter 2. We claim that Γ is a complete bipartite
graph. Otherwise, it does not have diameter 2. It follows from Theorem 2 that deg(a) = 3 deg(b).
Since Γ is complete bipartite graph, Γ must be Kn,3n.

Lemma 2. Let Γ be a connected k −GNDB graph with diameter d. Then d ⩽ kγΓ

Proof. Pick vertices x0 and xd of Γ such that d(x0, xd) = d and a shortest path x0, x1, x2, . . . , xd
between x0 and xd. We may assume without loss of generality that |Wx0,x1 | = k|Wx0,x1 |. Then
{x1, x2, . . . , xd} ∈ Wx1,x0 . Hence, |{x1, x2, . . . , xd}| ⩽ |Wx1,x0 | = k|Wx0,x1 |. This shows that
d ⩽ kγΓ.

We now classify 3−GNDB graphs Γ with, γΓ ∈ {1, 2}.
First we consider when γΓ = 1. By the Lemma 2, d ⩽ 3.
If d = 1, then Γ is complete graph.
If d = 2, by the Lemma 1, Γ is only K1,3.
If d = 3, then we have only a path of length 2, that it would not be 3−GNDB.

Now we consider the case γΓ = 2.

Theorem 3. A graph Γ is 3−GNDB with γΓ = 2 if and only if it is K2,6.

Proof. For adjacent vertices a, b of Γ, we say that the edge ab is consistent if |Wab| = 3|Wba|. Let
d be the diameter of Γ. By the Lemma 2, d ⩽ 6. If d = 1, then Γ is a complete graph. Therefore,
d ∈ {2, 3, 4, 5, 6}. Pick an edge xy ∈ E(Γ) and for non-negative integers i, j set Di

j = Di
j(x, y).

Note that, by triangle inequality, Di
j = ϕ whenever |i− j| > 1. If d = 2, then by Lemma 1, Γ is

only K2,6.
Note that |V (Γ)| = 8. Consider that xy ∈ E(Γ) and d ∈ {3, 4, 5, 6}. Therefore, |V (Γ)| \
{x, y} = 6. Since for every Di

j , in which i, j ̸= 0, then there must be at least a neighbour for
either vertex x or vertex y. Suppose that |D2

1| = 1 for all cases. We now consider all different
cases of |Di

j |, where i, j ̸= 0 for the 6 remaining vertices in Γ and edge xy. Now we show that,
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there is no graph for 3 ⩽ d ⩽ 6.
If d = 3, then we split our proof into the following subcases.

Subcase 1: |D1
2| = 1, |D2

3| = 4 and |D2
1| = 1.

We will show that this case cannot occur. Denote the vertex in D1
2 by x1, the vertices in D2

3 by
x2, x3, x4 and x5, and also the vertex in D2

1 by y1. The vertices x2 up to x5 cannot be adjacent
with y1, because which is created an odd cycle. Therefore, the vertices x2 up to x5 must be
adjacent to each other. In this case we have an odd cycle.

Subcase 2: |D1
2| = 2, |D2

3| = 3 and |D2
1| = 1.

Denote the vertices in D1
2 by x1 and x2, the vertices in D2

3 by x3, x4 and x5, and also the vertex
in D2

1 by y1. The vertices x3, x4 and x5 cannot be adjacent with y1. The vertices x3, x4 and x5
can only be adjacent with x2. Since the diameter of graph is 3, the vertex y1 must be adjacent
with x1 or x2 or both. In each case, the edges xx1 or yy1 are not consistent.

Subcase 3: |D1
2| = 2, |D2

3| = 3 and |D2
1| = 1.

Denote the vertices in D1
2 by x1 and x2, the vertices in D2

3 by x3, x4 and x5, and also the vertex
in D2

1 by y1. The vertices x3, x4 and x5 cannot be adjacent with y1. The vertices x3, x4 and y1
cannot be adjacent with x5. The vertices x3 and x4 must be adjacent with x2, and vertex x5
must be adjacent with x1. The vertex y1 can be adjacent with x1 or x2 or both. In each case
the edge xx1 is not consistent.

Subcase 4: |D1
2| = 3, |D2

3| = 2, |D2
1| = 1.

Denote the vertices in D1
2 by x1, x2 and x3, the vertices in D2

3 by x4 and x5, and also the vertex
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in D2
1 by y1. The vertex y1 cannot be adjacent with x4 and x5. The vertex x3 can be adjacent

with x4, x5 and y1, and also The vertex x4 can be adjacent with x2 and x3. Since the diameter
of graph is 3, the vertices y1 and x4 must be adjacent with x2 or the vertices y1 and x5 must be
adjacent with x1 or the vertex y1 must be adjacent with x1 and x2. In each case the edges xx2
and x2x5 are not consistent.

Subcase 5: |D1
2| = 3, |D2

3| = 2, |D2
1| = 1.

Denote the vertices in D1
2 by x1, x2 and x3, the vertices in D2

3 by x4 and x5, and also the vertex
in D2

1 by y1. The vertex y1 cannot be adjacent with x4 and x5. The vertices x4 and x5 can only
be adjacent with x2 and x3. The vertices x2 and x3 can be adjacent with x4, x5 and y1. Since
the diameter of graph is 3, the vertices y1 must be adjacent with x1. In each case the edges xx1
and yy1 are not consistent.

Subcase 6: |D1
2| = 4, |D2

3| = 1, |D2
1| = 1.

Denote the vertices in D1
2 by x1, x2, x3 and x4, and the vertex in D2

3 and D2
1 by x5 and y1

respectively. The vertex y1 cannot be adjacent with x5. The vertex y1 can be adjacent with
x1, x2, x3 and x4, and also the vertex x5 can be adjacent with x1, x2 and x3. In each case the
edges x4x5 and yy1 are not consistent.
If d = 4 we split our proof into the following subcases.

Subcase 1: |D1
2| = 1, |D2

3| = 2, |D3
4| = 2, |D2

1| = 1.
Denote the vertex in D1

2 by x1, the vertices in D2
3 by x2 and x3, the vertices in D3

4 by x4 and
x5, and the vertex in D2

1 by y1. The vertex y1 cannot be adjacent with x2 and x3. The vertex
y1 can be adjacent with x1, x4 and x5. The vertex x2 can be adjacent with x4 and x5, and also
the vertices x4 and x5 can only be adjacent with x2 and y1. In each case the edge x1x3 is not



58 A. Hosseini, M. Alaeiyan, Z. Aliannejadi

consistent.

Subcase 2: |D1
2| = 1, |D2

3| = 2, |D3
4| = 2, |D2

1| = 1.
Denote the vertex in D1

2 by x1, the vertices in D2
3 by x2 and x3, the vertices in D3

4 by x4 and
x5, and the vertex in D2

1 by y1. The vertex y1 cannot be adjacent with x2 and x3. The vertex
y1 can be adjacent with x1, x4 and x5. The vertex x4 can be adjacent with x3 and y1, and also
the vertex x5 can be adjacent with x2 and y1. In each case the edge x2x4 is not consistent.

Subcase 3: |D1
2| = 1, |D2

3| = 1, |D3
4| = 3, |D2

1| = 1.
Denote the vertex in D1

2 by x1, the vertex in D2
3 by x2 and x3, the vertices in D3

4 by x3, x4 and
x5, and the vertex in D2

1 by y1. The vertex y1 cannot be adjacent with x2. The vertices x3, x4
and x5 must be adjacent with y1. The vertex y1 can be adjacent with x1, x3, x4 and x5. In each
case the edge x1x2 is not consistent.

Subcase 4: |D1
2| = 1, |D2

3| = 3, |D3
4| = 1, |D2

1| = 1.
Denote the vertex in D1

2 by x1, the vertices in D2
3 by x2, x3 and x4, the vertex in D3

4 by x5, and
the vertex in D2

1 by y1. The vertex y1 cannot be adjacent with x2, x3 and x4. The vertices x3
and x4 most be adjacent with x5. The vertex x5 can be adjacent with x3, x4 and y1, and also
the vertex y1 can be adjacent with x1 and x5. In each case the edge x4x5 is not consistent.

Subcase 5: |D1
2| = 2, |D2

3| = 1, |D3
4| = 2, |D2

1| = 1.
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Denote the vertices in D1
2 by x1 and x2, the vertex in D2

3 by x3, the vertices in D3
4 by x4 and

x5, and the vertex in D2
1 by y1. The vertex y1 cannot be adjacent with x3. The vertices x4 and

x5 must be adjacent with y1. The vertex y1 can be adjacent with x2, x3, x4 and x5. The vertex
x2 can only be adjacent with x3 and y1. In each case the edge x1x3 is not consistent.

Subcase 6: |D1
2| = 2, |D2

3| = 2, |D3
4| = 1, |D2

1| = 1.
Denote the vertices in D1

2 by x1 and x2, the vertices in D2
3 by x3 and x4, the vertex in D3

4 by x5,
and the vertex in D1

2 by y1. The vertex y1 cannot be adjacent with x3 and x4. The vertex x4
can be adjacent with x1 and x5. The vertex y1 can be adjacent with x1, x2 and x5. The vertex
x2 can be adjacent with x3 and y1. The vertex x3 can only be adjacent with x2. The vertex x5
can be adjacent with x4 and y1. In each case the edge xx1 is not consistent.

Subcase 7: |D1
2| = 3, |D2

3| = 1, |D3
4| = 1, |D2

1| = 1.
Denote the vertices in D1

2 by x1, x2 and x3, the vertex in D2
3 by x4, the vertex in D3

4 by x5 and
the vertex in D2

1 by y1. The vertex y1 cannot be adjacent with x4. The vertices x2 and x3 can
be adjacent with y1 and x4. The vertex y1 can be adjacent with x1, x2, x3 and x5. The vertex
x4 can be adjacent with x2 and x3. The vertex x5 must be adjacent with y1. In each case the
edge xx1 is not consistent.
If d = 5 we split our proof into the following subcases.

Subcase 1: |D1
2| = |D2

3| = |D3
4| = 1, |D4

5| = 2 and |D2
1| = 1.

Denote the vertex in D1
2, D

2
3 and D3

4 by x1, x2 and x3 respectively, the vertices in D4
5 by x4 and

x5, and also the vertex in D2
1 by y1. The vertex y1 cannot be adjacent with x2, x4 and x5. In

this case the vertices x4 and x5 cannot be adjacent with other vertices.

Subcase 2: |D1
2| = |D2

3| = 1, |D3
4| = 2, |D4

5| = 1 and |D2
1| = 1.

Denote the vertex in D1
2, D

2
3 by x1 and x2 respectively, the vertex in D3

4 by x3 and x4, the vertex
in D4

5 by x5 and also the vertex in D2
1 by y1. The vertices y1 cannot be adjacent with x2 and

x5. The vertex x4 must be adjacent with x5. The vertex y1 can be adjacent with x3 and x4. In
each case the edge x1x2 is not consistent.

Subcase 3: |D1
2| = 1, |D2

3| = 2, |D3
4| = 1, |D4

5| = 1 and |D2
1| = 1.

Denote the vertex in D1
2 by x1, the vertices in D2

3 by x2 and x3, the vertex in D3
4 by x4, the

vertex in D4
5 by x5, and also the vertex in D2

1 by y1. The vertex y1 cannot be adjacent with
x2, x3 and x5. In this case the vertex x5 cannot be adjacent with other vertices.
If d = 6, we have |D1

2| = |D2
3| = |D3

4| = |D4
5| = |D5

6| = |D2
1| = 1.

Denote the vertex in D1
2, D

2
3, D

3
4, D

4
5, D

5
6 and D2

1 by x1, x2, x3, x4, x5 and y1, respectively. The
vertex y1 cannot be adjacent with x2 and x4, and also the vertex y1 can be adjacent with x1, x3
and x5. In each case the edge x1x2 is not consistent.
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