

# Classification of 3-GNDB graphs

Amir Hosseini<sup>†</sup>, Mehdi Alaeiyan<sup>‡</sup>, Zohreh Aliannejadi<sup>§\*</sup>

**Abstract.** A nonempty graph  $\Gamma$  is called generalized 3-distance-balanced, (3-GDB) whenever for every edge ab,  $|W_{ab}| = 3|W_{ba}|$  or conversely. As well as a graph  $\Gamma$  is called generalized 3-nicely distance-balanced (3-GNDB) whenever for every edge ab of  $\Gamma$ , there exists a positive integer  $\gamma_{\Gamma}$ , such that:  $|W_{ba}| = \gamma_{\Gamma}$ . In this paper, we classify 3-GNDB graphs with,  $\gamma_{\Gamma} \in \{1, 2\}$ .

Keywords: Graphs, Generalize 3-distance-balanced graphs, Bipartite graphs. AMS Subject Classification 2010: 05C12, 05C40.

#### 1 Introduction

Throughout this paper, let  $\Gamma$  be a finite, undirected and connected graph with diameter d, and  $V(\Gamma)$  and  $E(\Gamma)$  denote the vertex and edge set of  $\Gamma$ , respectively. The distance d(a,b) between vertices  $a,b \in V(\Gamma)$  is the length of a shortest path between  $a,b \in V(\Gamma)$ . For an edge ab of a graph  $\Gamma$ , let  $W_{ab}$  be the set of vertices closer to a than to b, that is  $W_{ab} = \{x \in \Gamma | d(x,a) < d(x,b)\}$ . We call a graph  $\Gamma$ , distance-balanced (DB), if  $|W_{ab}| = |W_{ba}|$  for every edge  $ab \in E(\Gamma)$ . These graphs were studied by Handa [5] who considered DB. For recent results on DB and EDB see [1,3,4,6-8,10,11]. A graph  $\Gamma$  is called nicely distance-balanced, whenever there exists a positive integer  $\gamma_{\Gamma}$ , such that for two adjacent vertices a,b of  $\Gamma$ ;  $|W_{ab}| = |W_{ba}| = \gamma_{\Gamma}$ . These graphs were studied by Kutnur and Miklavič in [9].

A graph  $\Gamma$  is called generalized 3-distance-balanced (3-GDB) if for every edge  $ab \in E(\Gamma)$ ;  $|W_{ab}| = 3|W_{ba}|$  or conversely. Throughout of this paper, we assume that  $|W_{ab}| = 3|W_{ba}|$ . A graph  $\Gamma$  is called generalized 3-nicely distance-balanced (3-GNDB), if for every edge ab of  $\Gamma$ , there exists a positive integer  $\gamma_{\Gamma}$ , such that:  $|W_{ba}| = \gamma_{\Gamma}$ . For example we can show that  $K_{1,3}$  and  $K_{2,6}$  are 3-GNDB. The aim of this paper is classifying 3-GNDB graphs with  $\gamma_{\Gamma} \in \{1,2\}$ .

Received: 10 August 2023/ Revised: 17 December 2024/ Accepted: 01 February 2025

DOI: 10.22124/JART.2025.25226.1569

<sup>&</sup>lt;sup>†</sup> Department of Mathematics, Islamic Azad University, Nazarabad Branch, Nazarabad, Iran <sup>‡</sup>Department of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

<sup>§</sup> Department of Mathematics, Islamic Azad University, South Tehran Branch, Tehran, Iran Emails: hosseini.sam.52@gmail.com, alaeiyan@iust.ac.ir, z\_alian@azad.ac.ir

<sup>\*</sup>Corresponding author

### 2 Classification

In order to express the problem, it is better to start with parameter 3. In this section, we classify 3-GNDB graphs with  $\gamma_{\Gamma} \in \{1, 2\}$ .

For every two non-negative integers i, j, we denote:

$$D_i^i(a,b) = \{ x \in V(\Gamma) | d(x,a) = i \text{ and } d(x,b) = j \}.$$
 (1)

We now suppose that  $\Gamma$  is a 3-GNDB graph with diameter d. Since  $|W_{ab}| = 3|W_{ba}|$  for every two adjacent vertices a, b and by (1), we have

$$|\{a\}\bigcup_{i=1}^{d-1}D_{i+1}^{i}(a,b)| = 3|\{b\}\bigcup_{i=1}^{d-1}D_{i}^{i+1}(a,b)|.$$

Therefore,

$$\sum_{i=1}^{d-1} |D_{i+1}^i(a,b)| = 3\sum_{i=1}^{d-1} |D_i^{i+1}(a,b)| + 2.$$
 (2)

**Theorem 1.** If  $\Gamma$  be a connected k-GNDB graph, then  $\Gamma$  is a bipartite graph.

*Proof.* Inspired by the proof of Theorem 1.1 in [2], let  $\Gamma$  be a k-GNDB graph with diameter d, and the vertex set  $\{v_1, v_2, \dots, v_{2l+1}\}$  form an odd cycle with length 2l+1 such that  $v_i v_{i+1} \in E(\Gamma)$ . Set

$$A_{ij} = \{ v \in V(\Gamma) | d(v, v_{i+2l}) = m_j k,$$
  
$$m_j k = \{1, 2, \dots, d\}, k = 0, 1, \dots, 2l, 2 \leqslant j \leqslant r \},$$

and

$$W_{v_i,v_{i+l}}^{\Gamma} = (\bigcup_{j=1}^r A_{ij}) \bigcup \{v_i, v_{i+2l}\},$$
  
$$W_{v_{i+1},v_i}^{\Gamma} = (\bigcup_{j=1}^r A_{(i+1)j}) \bigcup \{v_{i+1}, v_{i+2}\},$$

where the calculation in indexes i are performed modulo 2l+1 and some  $r \in N$ . Taking  $|A_{ij}| = a_{ij}$  for  $i = 0, 1, \ldots, 2l$  and  $j = 1, 2, \ldots, r$ , by definition k - GNDB graphs, there exists  $e_i \in \{\pm 1\}, i = 0, 1, \ldots, 2l$  such that

$$\sum_{j=1}^{r} a_{0j} + 2 = k^{e_0} \left( \sum_{j=1}^{r} a_{1j} + 2 \right),$$

$$\sum_{j=1}^{r} a_{1j} + 2 = k^{e_1} \left( \sum_{j=1}^{r} a_{2j} + 2 \right),$$

$$\vdots$$

$$\sum_{j=1}^{r} a_{(2l-1)j} + 2 = k^{e_{2l-1}} \left( \sum_{j=1}^{r} a_{2l} + 2 \right),$$

$$\sum_{j=1}^{r} a_{(2l)j} + 2 = k^{e_{2l}} \left( \sum_{j=1}^{r} a_{0j} + 2 \right).$$

Now, multiplying all (2l+1) equations above implies that  $k^{\sum_{i=0}^{2i}e_i}=1$ , that is,  $\sum_{i=0}^{2i}e_i=0$ . On the other hand,  $e_i\in\{\pm 1\}\Longrightarrow 1\leqslant |\sum_i^{2i}=0e_i|$ , which is a contradiction and henes  $\Gamma$  has no odd cycle. This completes the proof.

**Theorem 2.** If  $\Gamma$  be a 3-GNDB graph with d=2, then deg(a)=3 deg(b) for every edge ab of  $\Gamma$ .

Proof. It follows from (1) that for a 3-GNDB graph with diameter 2,  $|D_2^1(a,b)| = 3|D_1^2(a,b)| + 2$ , for every edge ab of  $\Gamma$ . If  $|D_1^2(a,b)| = t$ , then  $|D_2^1(a,b)| = 3t + 2$ . Therefore, deg(b) = t + 1 and deg(a) = 3t + 3. Thus, deg(a) is always 3 deg(b).

**Lemma 1.** Let  $\Gamma$  be a 3-GNDB graph with diameter 2. Then  $\Gamma$  is only  $K_{n,3n}$ .

*Proof.* Let  $\Gamma$  be a 3-GNDB graph with diameter 2. We claim that  $\Gamma$  is a complete bipartite graph. Otherwise, it does not have diameter 2. It follows from Theorem 2 that deg(a) = 3 deg(b). Since  $\Gamma$  is complete bipartite graph,  $\Gamma$  must be  $K_{n,3n}$ .

**Lemma 2.** Let  $\Gamma$  be a connected k-GNDB graph with diameter d. Then  $d \leqslant k\gamma_{\Gamma}$ 

Proof. Pick vertices  $x_0$  and  $x_d$  of  $\Gamma$  such that  $d(x_0, x_d) = d$  and a shortest path  $x_0, x_1, x_2, \ldots, x_d$  between  $x_0$  and  $x_d$ . We may assume without loss of generality that  $|W_{x_0,x_1}| = k|W_{x_0,x_1}|$ . Then  $\{x_1, x_2, \ldots, x_d\} \in W_{x_1,x_0}$ . Hence,  $|\{x_1, x_2, \ldots, x_d\}| \leq |W_{x_1,x_0}| = k|W_{x_0,x_1}|$ . This shows that  $d \leq k\gamma_{\Gamma}$ .

We now classify 3 - GNDB graphs  $\Gamma$  with,  $\gamma_{\Gamma} \in \{1, 2\}$ .

First we consider when  $\gamma_{\Gamma} = 1$ . By the Lemma 2,  $d \leq 3$ .

If d=1, then  $\Gamma$  is complete graph.

If d = 2, by the Lemma 1,  $\Gamma$  is only  $K_{1,3}$ .

If d = 3, then we have only a path of length 2, that it would not be 3 - GNDB.

Now we consider the case  $\gamma_{\Gamma} = 2$ .

**Theorem 3.** A graph  $\Gamma$  is 3-GNDB with  $\gamma_{\Gamma}=2$  if and only if it is  $K_{2.6}$ .

Proof. For adjacent vertices a,b of  $\Gamma$ , we say that the edge ab is consistent if  $|W_{ab}|=3|W_{ba}|$ . Let d be the diameter of  $\Gamma$ . By the Lemma 2,  $d \leq 6$ . If d=1, then  $\Gamma$  is a complete graph. Therefore,  $d \in \{2,3,4,5,6\}$ . Pick an edge  $xy \in E(\Gamma)$  and for non-negative integers i,j set  $D^i_j = D^i_j(x,y)$ . Note that, by triangle inequality,  $D^i_j = \phi$  whenever |i-j| > 1. If d=2, then by Lemma 1,  $\Gamma$  is only  $K_{2,6}$ .

Note that  $|V(\Gamma)| = 8$ . Consider that  $xy \in E(\Gamma)$  and  $d \in \{3, 4, 5, 6\}$ . Therefore,  $|V(\Gamma)| \setminus \{x, y\} = 6$ . Since for every  $D_j^i$ , in which  $i, j \neq 0$ , then there must be at least a neighbour for either vertex x or vertex y. Suppose that  $|D_1^2| = 1$  for all cases. We now consider all different cases of  $|D_j^i|$ , where  $i, j \neq 0$  for the 6 remaining vertices in  $\Gamma$  and edge xy. Now we show that,

there is no graph for  $3 \le d \le 6$ .

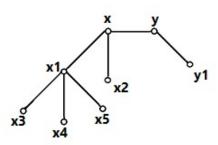
If d=3, then we split our proof into the following subcases.

**Subcase 1:** 
$$|D_2^1| = 1$$
,  $|D_3^2| = 4$  and  $|D_1^2| = 1$ .

We will show that this case cannot occur. Denote the vertex in  $D_2^1$  by  $x_1$ , the vertices in  $D_3^2$  by  $x_2, x_3, x_4$  and  $x_5$ , and also the vertex in  $D_1^2$  by  $y_1$ . The vertices  $x_2$  up to  $x_5$  cannot be adjacent with  $y_1$ , because which is created an odd cycle. Therefore, the vertices  $x_2$  up to  $x_5$  must be adjacent to each other. In this case we have an odd cycle.

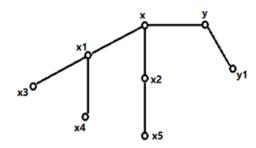
**Subcase 2:** 
$$|D_2^1| = 2$$
,  $|D_3^2| = 3$  and  $|D_1^2| = 1$ .

Denote the vertices in  $D_2^1$  by  $x_1$  and  $x_2$ , the vertices in  $D_3^2$  by  $x_3$ ,  $x_4$  and  $x_5$ , and also the vertex in  $D_1^2$  by  $y_1$ . The vertices  $x_3$ ,  $x_4$  and  $x_5$  cannot be adjacent with  $y_1$ . The vertices  $x_3$ ,  $x_4$  and  $x_5$  can only be adjacent with  $x_2$ . Since the diameter of graph is 3, the vertex  $y_1$  must be adjacent with  $x_1$  or  $x_2$  or both. In each case, the edges  $x_1$  or  $y_1$  are not consistent.



**Subcase 3:** 
$$|D_2^1| = 2$$
,  $|D_3^2| = 3$  and  $|D_1^2| = 1$ .

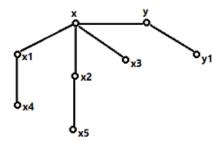
Denote the vertices in  $D_2^1$  by  $x_1$  and  $x_2$ , the vertices in  $D_3^2$  by  $x_3, x_4$  and  $x_5$ , and also the vertex in  $D_1^2$  by  $y_1$ . The vertices  $x_3, x_4$  and  $x_5$  cannot be adjacent with  $y_1$ . The vertices  $x_3, x_4$  and  $y_1$  cannot be adjacent with  $x_5$ . The vertices  $x_3$  and  $x_4$  must be adjacent with  $x_2$ , and vertex  $x_5$  must be adjacent with  $x_1$ . The vertex  $y_1$  can be adjacent with  $x_1$  or  $x_2$  or both. In each case the edge  $xx_1$  is not consistent.



**Subcase 4:**  $|D_2^1| = 3$ ,  $|D_3^2| = 2$ ,  $|D_1^2| = 1$ .

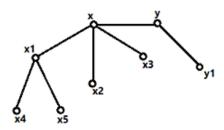
Denote the vertices in  $D_2^1$  by  $x_1, x_2$  and  $x_3$ , the vertices in  $D_3^2$  by  $x_4$  and  $x_5$ , and also the vertex

in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_4$  and  $x_5$ . The vertex  $x_3$  can be adjacent with  $x_4$ ,  $x_5$  and  $y_1$ , and also The vertex  $x_4$  can be adjacent with  $x_2$  and  $x_3$ . Since the diameter of graph is 3, the vertices  $y_1$  and  $x_4$  must be adjacent with  $x_2$  or the vertices  $y_1$  and  $x_5$  must be adjacent with  $x_1$  or the vertex  $y_1$  must be adjacent with  $x_1$  and  $x_2$ . In each case the edges  $x_2$  and  $x_2$  are not consistent.



**Subcase 5:**  $|D_2^1| = 3, |D_3^2| = 2, |D_1^2| = 1.$ 

Denote the vertices in  $D_2^1$  by  $x_1, x_2$  and  $x_3$ , the vertices in  $D_3^2$  by  $x_4$  and  $x_5$ , and also the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_4$  and  $x_5$ . The vertices  $x_4$  and  $x_5$  can only be adjacent with  $x_2$  and  $x_3$ . The vertices  $x_2$  and  $x_3$  can be adjacent with  $x_4, x_5$  and  $y_1$ . Since the diameter of graph is 3, the vertices  $y_1$  must be adjacent with  $x_1$ . In each case the edges  $xx_1$  and  $yy_1$  are not consistent.



**Subcase 6:**  $|D_2^1| = 4, |D_3^2| = 1, |D_1^2| = 1.$ 

Denote the vertices in  $D_2^1$  by  $x_1, x_2, x_3$  and  $x_4$ , and the vertex in  $D_3^2$  and  $D_1^2$  by  $x_5$  and  $y_1$  respectively. The vertex  $y_1$  cannot be adjacent with  $x_5$ . The vertex  $y_1$  can be adjacent with  $x_1, x_2, x_3$  and  $x_4$ , and also the vertex  $x_5$  can be adjacent with  $x_1, x_2$  and  $x_3$ . In each case the edges  $x_4x_5$  and  $yy_1$  are not consistent.

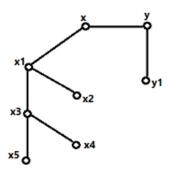
If d = 4 we split our proof into the following subcases.

**Subcase 1:**  $|D_2^1| = 1, |D_3^2| = 2, |D_4^3| = 2, |D_1^2| = 1.$ 

Denote the vertex in  $D_2^1$  by  $x_1$ , the vertices in  $D_3^2$  by  $x_2$  and  $x_3$ , the vertices in  $D_4^3$  by  $x_4$  and  $x_5$ , and the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_2$  and  $x_3$ . The vertex  $y_1$  can be adjacent with  $x_4$  and  $x_5$ , and also the vertices  $x_4$  and  $x_5$  can only be adjacent with  $x_2$  and  $y_1$ . In each case the edge  $x_1x_3$  is not

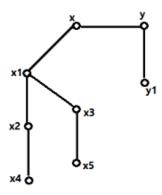
58

consistent.



**Subcase 2:**  $|D_2^1| = 1, |D_3^2| = 2, |D_4^3| = 2, |D_1^2| = 1.$ 

Denote the vertex in  $D_2^1$  by  $x_1$ , the vertices in  $D_3^2$  by  $x_2$  and  $x_3$ , the vertices in  $D_4^3$  by  $x_4$  and  $x_5$ , and the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_2$  and  $x_3$ . The vertex  $y_1$  can be adjacent with  $x_1, x_4$  and  $x_5$ . The vertex  $x_4$  can be adjacent with  $x_3$  and  $y_1$ , and also the vertex  $x_5$  can be adjacent with  $x_2$  and  $y_1$ . In each case the edge  $x_2x_4$  is not consistent.



**Subcase 3:**  $|D_2^1| = 1, |D_3^2| = 1, |D_4^3| = 3, |D_1^2| = 1.$ 

Denote the vertex in  $D_2^1$  by  $x_1$ , the vertex in  $D_3^2$  by  $x_2$  and  $x_3$ , the vertices in  $D_4^3$  by  $x_3$ ,  $x_4$  and  $x_5$ , and the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_2$ . The vertices  $x_3$ ,  $x_4$  and  $x_5$  must be adjacent with  $y_1$ . The vertex  $y_1$  can be adjacent with  $x_1$ ,  $x_3$ ,  $x_4$  and  $x_5$ . In each case the edge  $x_1x_2$  is not consistent.

**Subcase 4:**  $|D_2^1| = 1, |D_3^2| = 3, |D_4^3| = 1, |D_1^2| = 1.$ 

Denote the vertex in  $D_2^1$  by  $x_1$ , the vertices in  $D_3^2$  by  $x_2$ ,  $x_3$  and  $x_4$ , the vertex in  $D_4^3$  by  $x_5$ , and the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_2$ ,  $x_3$  and  $x_4$ . The vertices  $x_3$  and  $x_4$  most be adjacent with  $x_5$ . The vertex  $x_5$  can be adjacent with  $x_3$ ,  $x_4$  and  $y_1$ , and also the vertex  $y_1$  can be adjacent with  $x_1$  and  $x_5$ . In each case the edge  $x_4x_5$  is not consistent.

Subcase 5:  $|D_2^1| = 2, |D_3^2| = 1, |D_4^3| = 2, |D_1^2| = 1.$ 

Denote the vertices in  $D_2^1$  by  $x_1$  and  $x_2$ , the vertex in  $D_3^2$  by  $x_3$ , the vertices in  $D_4^3$  by  $x_4$  and  $x_5$ , and the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_3$ . The vertices  $x_4$  and  $x_5$  must be adjacent with  $y_1$ . The vertex  $y_1$  can be adjacent with  $x_2, x_3, x_4$  and  $x_5$ . The vertex  $x_2$  can only be adjacent with  $x_3$  and  $y_1$ . In each case the edge  $x_1x_3$  is not consistent.

**Subcase 6:** 
$$|D_2^1| = 2, |D_3^2| = 2, |D_4^3| = 1, |D_1^2| = 1.$$

Denote the vertices in  $D_2^1$  by  $x_1$  and  $x_2$ , the vertices in  $D_3^2$  by  $x_3$  and  $x_4$ , the vertex in  $D_4^3$  by  $x_5$ , and the vertex in  $D_2^1$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_3$  and  $x_4$ . The vertex  $x_4$ can be adjacent with  $x_1$  and  $x_5$ . The vertex  $y_1$  can be adjacent with  $x_1, x_2$  and  $x_5$ . The vertex  $x_2$  can be adjacent with  $x_3$  and  $y_1$ . The vertex  $x_3$  can only be adjacent with  $x_2$ . The vertex  $x_5$ can be adjacent with  $x_4$  and  $y_1$ . In each case the edge  $xx_1$  is not consistent.

**Subcase 7:** 
$$|D_2^1| = 3$$
,  $|D_3^2| = 1$ ,  $|D_4^3| = 1$ ,  $|D_1^2| = 1$ .

Denote the vertices in  $D_2^1$  by  $x_1, x_2$  and  $x_3$ , the vertex in  $D_3^2$  by  $x_4$ , the vertex in  $D_4^3$  by  $x_5$  and the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_4$ . The vertices  $x_2$  and  $x_3$  can be adjacent with  $y_1$  and  $x_4$ . The vertex  $y_1$  can be adjacent with  $x_1, x_2, x_3$  and  $x_5$ . The vertex  $x_4$  can be adjacent with  $x_2$  and  $x_3$ . The vertex  $x_5$  must be adjacent with  $y_1$ . In each case the edge  $xx_1$  is not consistent.

If d=5 we split our proof into the following subcases.

**Subcase 1:** 
$$|D_2^1| = |D_3^2| = |D_4^3| = 1, |D_5^4| = 2$$
 and  $|D_1^2| = 1$ .

**Subcase 1:**  $|D_2^1| = |D_3^2| = |D_4^3| = 1$ ,  $|D_5^4| = 2$  and  $|D_1^2| = 1$ . Denote the vertex in  $D_2^1$ ,  $D_3^2$  and  $D_4^3$  by  $x_1, x_2$  and  $x_3$  respectively, the vertices in  $D_5^4$  by  $x_4$  and  $x_5$ , and also the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_2, x_4$  and  $x_5$ . In this case the vertices  $x_4$  and  $x_5$  cannot be adjacent with other vertices.

**Subcase 2:** 
$$|D_2^1| = |D_3^2| = 1, |D_4^3| = 2, |D_5^4| = 1 \text{ and } |D_1^2| = 1.$$

**Subcase 2:**  $|D_2^1| = |D_3^2| = 1$ ,  $|D_4^3| = 2$ ,  $|D_5^4| = 1$  and  $|D_1^2| = 1$ . Denote the vertex in  $D_2^1$ ,  $D_3^2$  by  $x_1$  and  $x_2$  respectively, the vertex in  $D_4^3$  by  $x_3$  and  $x_4$ , the vertex in  $D_5^4$  by  $x_5$  and also the vertex in  $D_1^2$  by  $y_1$ . The vertices  $y_1$  cannot be adjacent with  $x_2$  and  $x_5$ . The vertex  $x_4$  must be adjacent with  $x_5$ . The vertex  $y_1$  can be adjacent with  $x_3$  and  $x_4$ . In each case the edge  $x_1x_2$  is not consistent.

**Subcase 3:** 
$$|D_2^1| = 1, |D_3^2| = 2, |D_4^3| = 1, |D_5^4| = 1 \text{ and } |D_1^2| = 1$$

**Subcase 3:**  $|D_2^1| = 1$ ,  $|D_3^2| = 2$ ,  $|D_4^3| = 1$ ,  $|D_5^4| = 1$  and  $|D_1^2| = 1$ . Denote the vertex in  $D_2^1$  by  $x_1$ , the vertices in  $D_3^2$  by  $x_2$  and  $x_3$ , the vertex in  $D_4^3$  by  $x_4$ , the vertex in  $D_5^4$  by  $x_5$ , and also the vertex in  $D_1^2$  by  $y_1$ . The vertex  $y_1$  cannot be adjacent with  $x_2, x_3$  and  $x_5$ . In this case the vertex  $x_5$  cannot be adjacent with other vertices.

If 
$$d=6$$
, we have  $|D_2^1|=|D_3^2|=|D_4^3|=|D_5^4|=|D_6^5|=|D_1^2|=1$ .

Denote the vertex in  $D_2^1$ ,  $D_3^2$ ,  $D_4^3$ ,  $D_5^4$ ,  $D_5^5$  and  $D_1^2$  by  $x_1, x_2, x_3, x_4, x_5$  and  $y_1$ , respectively. The vertex  $y_1$  cannot be adjacent with  $x_2$  and  $x_4$ , and also the vertex  $y_1$  can be adjacent with  $x_1, x_3$ and  $x_5$ . In each case the edge  $x_1x_2$  is not consistent. 

## Acknowledgments

The authors would like to thank the referee for careful reading.

### References

- [1] Z. Aliannejadi, M. Alaeiyan and A. Gilani, Strongly edge distance-balanced graph products, 7th International Conference on Combinatorics, Cryptography, Computer Science and Computing, (2022).
- [2] Z. Aliannejadi, A. Gilani, M. Alaeiyan and J. Asadpour, On some properties of edge quasidistance-balanced graphs, Journal of Mathematical Extension, 16 (2022), 1–13.
- [3] K. Balakrishman, M. Changat, I. Peterin, S. P. Špacapan, P. Šparal and A. R. Subhamathi, Strongly distance-balanced graph and graph product, European J. Combin., 30 (2009), 1048– 1053.
- [4] S. Cabello and P. Lukšič, *The complexity of obtaining a distance-balanced graph*, Electron. J. combin., (18) **1** (2011), Paper 49.
- [5] K. Handa, Bipartite graphs with balanced (a, b)-partitions, Ars Combin., 51 (1999), 113–119.
- [6] A. Ilič, S. Klavžar and M. Milanović, On distance-balanced graphs, European J. Combin., **31** (2010), 733–737.
- [7] K. Kutnar, A. Malnič, D. Marušič and Š. Miklavič, *Distance-balanced graphs:symmetry conditions*, Discrete Math., **306** (2006), 1881–1894.
- [8] K. Kutnar, A. Malnič, D. Marušič and Š. Miklavič, The strongley distance-balanced property of generalized petersen graphs, Ars Math. Contemp., 2 (2009), 41–47.
- [9] K. Kutnar and Š. Miklavič, *Nicely distance-balanced graphs*, European j. Combin., **39** (2014), 57–67.
- [10] Š. Miklavič and P. Šparl, On the connectivity of bipartite distance-balanced graphs, European J. Combin., **33** (2012), 237–247.
- [11] R. Yang, X. Hou, N. Li and W. Zhong, A note on the distance-balanced property of generalized petersen graphs, Electron. J. Combin., (16) 1 (2009), Note 33.