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Abstract. In this paper, we construct and formulate a new mathematical model for the spread of epi-
demic diseases with vaccination especially for Chinese measles. This model including susceptible (S),
exposed (E), infected (I), recovered (R), vaccinated (V ), quarantined (Q) and died individuals (D) is
been studied by applying Caputo fractional derivatives (CFD). We introduce the feasibility region and
prove positively invariant property for this region. Then we prove the existence of a unique solution
of our fractional measles model. Furthermore, the equilibrium points of the model are presented and
the stability analysis of the model is proved based on Lyapunov and Ulam-Hyer criteria. The basic re-
production number (R0) is calculated by the next generation matrix method in order to demonstrate the
level of measles virus invasion. Moreover, numerical simulations including data fitting are performed for
different fractional orders to illustrate and validate the efficiency of the proposed model.
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1 Introduction

Infectious diseases continue to debilitate and cause inconvenience in humans and animals originating
from the invasion and growth of germs in the body. In the global complex biological situation, more and
more attention is being paid overtime to fundamental specialized studies about infectious diseases such
as HIV [5, 30], HBV [6, 38], Ebola [24, 25], Measles [11, 33], COVID-19 [26, 39] and Zika [29, 32].

Mathematical models are essential tools for comprehending the spread of disease transmission. They
are also advantageous to control and forecast the severity and potential scope of epidemic diseases. Many
mathematical models have been performed to study the dynamics of epidemic disease. To study the
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research background overtime, we can refer to the Kermack–McKendrick epidemic model as a pioneer in
this field [8]. The authors in [5, 26] analyzed the spread of infectious diseases by employing differential
equations in the process of simulation. Some models ((SIR) [7], (SEIRQ) [39], (SIS) [9, 40], (SEIR)
[18, 31] and (SIRD) [5, 35]) are based on the idea of categorizing individuals in the category of infected,
deceased, susceptible, etc.

We can portray numerous biological problems related to real processes with a higher degree of re-
alism as can be seen in the research [3–5, 14, 26, 34]. It should be mentioned that the application of
fractional differential equations creates special properties which do not appear in integer-order differen-
tial equations. Articles in which the simulation of the disease outbreak process is carried out applying
classical integer order derivatives have some limitations. One of the reasons for using fractional deriva-
tives is the possibility of adapting the order of the fractional differential equation to the real data of the
epidemic disease. Therefore, according to the hidden carrying of the measles virus by individuals, the
number of infected individuals at time t will affect the number of infected individuals in the future days,
and the number of infected people at time t is affected by the number of infected individuals in previ-
ous days. Thus, we need to investigate the memory effect in the study of epidemic diseases by Caputo
fractional-order differential equations.

In this paper, we construct our model based on seven variables fractional differential equation (FDE)
with a network abbreviated name (SEIRVQD). We have divided the proposed model into several mu-
tually exclusive epidemiological compartments: susceptible individuals, exposed individuals, infectious
individuals with the infectious agents, recovered individuals, vaccinated individuals against the infectious
agents, quarantined individuals for limiting means of transmission and dead individuals due to infection.
This paper aims to create a new innovative epidemic model for the transmission of measles virus, taking
into account the vaccination and quarantine process which was not studied by the mentioned researchers
above. Furthermore, using fractional-order differential equations is the main motivation behind the de-
velopment of our epidemic model.

The current manuscript is organized and outlined as follows. In Section 2, we present some funda-
mental definitions and theorems related to the propoed model based on fractional differential equations.
In Section 3, we construct and formulate a new mathematical model for the spread of epidemic diseases
with vaccination in fractional approach and also the modified form of FDE. Moreover, in Section 4, the
theoretical approach of the model and dynamical analysis of solution including positively invariant prop-
erty of the solution and existence and uniqueness of the solution is presented. Section 5 is devoted to
present equilibrium points. Additionally, Section 6 is devoted to present stability analysis based on the
Lyapunov and Ulam-Hyer criteria. Finally, in Section 7, numerical simulations including data fitting are
performed to validate the theoretical results.

2 Fundamentals and preliminaries

In this section, we express some fundamental definitions and theorems related to the measles disease
modeling based on FDE.

Definition 1 ([22]). The Caputo fractional derivatives of order τ is given by

c
0D

τ
t H (t) =

1
Γ(m− τ)

∫ t

0
(t− x)m−τ−1H (m)(x)dx,
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where H is defined as H : [0,T ]→R, m−1 < τ ≤m is the order of fractional derivative operator and
m ∈ N.

Definition 2 ([22]). The Caputo fractional integral of order τ is given by

c
0I

τ
t H (t) =

1
Γ(τ)

∫ t

0
(t− x)τ−1H (x)dx

for the fractional integral order τ with Re(τ)> 0.

Definition 3. If G ( j) is the Laplace transform of H (t), then

L [c0D
τ
t H (t), j] = jτG ( j)−

m−1

∑
i=0

jτ−i−1G (i)(0), m−1 < τ ≤ m, m ∈ N.

Definition 4 ([22]). The generalized Mittag-Leffler functions are defined as

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk+β )
, (α,β > 0).

Mittag-Leffler functions satisfy the following relation

Eα,β (z) = zEα,α+β (z)+
1

Γ(β )
.

Theorem 1 ([22]). Suppose that f is a continuous function such that c
0D

τ
t H is also continuous for

τ ∈ (0,1]. Then there exists some K ∈ (0, t) such that

H (t) = H (0)+
1

Γ(τ +1)
c
0D

τ
t H (K)tτ .

Theorem 2 ([20]). Assume that g is a locally Lipschitz function defined over domain B ⊂ Rn, f (0) = 0
and ϖ ⊂ B is a compact set that is positively invariant. Also, let V (x) be a C1 fuction defined over
B such that V ′(x) ≤ 0 in ϖ . Then the origin is a globally asymptotically stable equilibrium point of
x′ = g(x).

Lemma 1 ([22]). The Caputo FDE, c
t0D

τ
t z(t) =X (t,z(t)) with initial value z(t0) =z0 and fractional

order 0 < τ ≤ 1 has equilibrium point at x∗ if X (t,x∗) = 0.

Lemma 2 ([22]). Let 0 < a ≤ 1, y(t) ∈ C[a,b], and C
a Dτ

t ∈ C(a,b]. Then y(t) is non-increasing for
t ∈ [a,b], if C

a Dτ
t ≤ 0,∀t ∈ (a,b). Similarly, y(t) is non-decreasing ∀t ∈ (a,b), if C

a Dτ
t ≥ 0, a < t < b.

3 Epidemic disease model

In this work, we formulate and construct a mathematical epidemic disease model. This model consists
of seven variables. In other words, in this model, the population is investigated in seven compartments.
Assume S and E refer to the number of susceptible and exposed people and I refers to the symptomatic
infected people. Additionally, R denotes recovered people, V denotes vaccinated people, Q refers to
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Figure 1: A schematic representation of the disease dynamics.

quarantined people and finally, D refers to dead people. The unit of the variables is according to the
number of cases that are considered at time t. Therefore, the resulting epidemic disease transmission
model comprising of seven dimensions ordinary differential equation is achieved by:

C
0 Dτ

t S = (1−q)Ω+δR+ εQ− (p+ρ +µ +αI)S,
C
0 Dτ

t E = ηV +αIS− (β1 +β2 +µ)E,
C
0 Dτ

t I = β1E− (ν + γ1 +µ +λ )I,
C
0 Dτ

t R = (1−ρ)γ2Q+ γ1I− (δ +µ)R, (1)
C
0 Dτ

t V = (Ωq+ pS− (µ +η)V ),
C
0 Dτ

t Q = λ I +β2E− (ε + kρ +µ +(1−ρ)γ2)Q,
C
0 Dτ

t D = kρQ,

where ε is the rate of exiting individuals from quarantine situations to the class of susceptible people, k is
the average days until death, ρ is the mortality rate emanating from disease invasion, Ω is the recruitment
rate which means a constant input of new members into the population per unit of time, q is the fraction
of vaccinated individuals who are recruited into the population, p is the fraction of vaccinated susceptible
individuals, δ is the rate of change of position from the recovered class to the susceptible class, δ is the
rate of reduced immunity in recovered individuals, µ is the natural death rate, ν is the rate of losing
immunity for vaccinated individuals, η is vaccine inefficacy, β1 is the rate of the intensification of the
clinical symptoms during quarantine, β2 is the quarantine rate of exposed individuals, α is the effective
contact rate, γ1 is the recovery rate in symptomatic individuals, γ2 is the average days until recovery,
λ is the quarantine rate of symptomatic individuals. These parameters are all positive. A schematic
representation of the disease dynamics can be comprehended in Fig. 1.
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3.1 Modified Caputo derivatives for the SEIRVQD measles model

Due to the mismatch of the dimensions of the equations, we modify the system through adding the
auxiliary parameter θ . To verify that the right and left sides of the FDE have the same dimensions
(time−1), we define the following time consistency transform

C
0 Dτ

t →
1

θ τ−1
C
0 Dτ

t , 0 < τ ≤ 1. (2)

The auxiliary parameter θ demonstrates the fractional time components in the system. This non-local
time is called cosmic time [15]. This auxiliary parameter modifies our FDE as follows

θ
τ−1C

0 Dτ
t S = (1−q)Ω+δR+ εQ− (p+ρ +µ +αI)S,

θ
τ−1C

0 Dτ
t E = ηV +αIS− (β1 +β2 +µ)E,

θ
τ−1C

0 Dτ
t I = β1E− (ν + γ1 +µ +λ )I,

θ
τ−1C

0 Dτ
t R = (1−ρ)γ2Q+ γ1I− (δ +µ)R, (3)

θ
τ−1C

0 Dτ
t V = (Ωq+ pS− (µ +η)V ),

θ
τ−1C

0 Dτ
t Q = λ I +β2E− (ε + kρ +µ +(1−ρ)γ2)Q,

θ
τ−1C

0 Dτ
t D = kρQ,

where 0 < τ ≤ 1 is non-integer order of FDE (3) and t ∈ [0,T ]. As can be seen, the fractional operator
of our model has been taken in the sense of Caputo as a great tool that can be implemented to describe
real-life biological phenomena with the so-called memory effect.

4 Theoretical results and dynamical analysis of solution

In this section, we will introduce the feasibility region and study the existence and uniqueness of the
solution of the proposed model (3).

4.1 Positively invariant solution

Theorem 3. The solution of fractional model (3) with non-negative initial conditions (S(0),E(0), I(0),R(0),
V (0),Q(0),D(0)) will be positively invariant for every t > 0 in the closed set

Π = {(S,E, I,R,V,Q,D) ∈R7
+ | N = S+E + I +R+V +Q+D≤ (1−q)Ω

µ +P+ρ
}.

Proof. Assume (S(0),E(0), I(0),R(0),V (0),Q(0),D(0)) is the initial vector with positive components.
According to the idea of [23], we compute c

0Dτ
t S by setting S = 0 in the first equation of model (3).

Similarly, we compute c
0Dτ

t E |E=0, c
0Dτ

t I |I=0 , c
0Dτ

t R |R=0, c
0Dτ

t V |V=0, c
0Dτ

t Q |Q=0 and c
0Dτ

t D |D=0 based
on the model (3). So, for all t ≥ 0, we obtain

θ
τ−1c

0D
τ
t S |S=0= (1−q)Ω+δR+ εQ≥ 0,

θ
τ−1c

0D
τ
t E |E=0= ηV + τIS≥ 0,
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θ
τ−1c

0D
τ
t I |I=0= β1E ≥ 0,

θ
τ−1c

0D
τ
t R |R=0= (1−ρ)γ2Q+ γ1I ≥ 0,

θ
τ−1c

0D
τ
t V |V=0= Ωq+PS≥ 0,

θ
τ−1c

0D
τ
t Q |Q=0= λ I +β2E ≥ 0

θ
τ−1c

0D
τ
t D |D=0= KρQ≥ 0.

Now we consider the following auxiliary FDE:

c
0D

τ
t S(t) = θ

1−τ [(1−q)Ω+δR+ εQ− (P+ρ +µ +αI)S]+
1
e
,

0c
0D

τ
t E = θ

1−τ [ηV +αIS− (β1 +β2 +µ)E]+
1
e
,

0c
0D

τ
t I = θ

1−τ [β1E− (ν + γ1 +µ +λ )I]+
1
e
,

0c
0D

τ
t R = θ

1−τ [(1−ρ)γ2Q+ γ1I− (δ +µ)R]+
1
e
,

0C
0 Dτ

t V = θ
1−τ [(Ωq+ pS− (µ +η)V )]+

1
e
,

0C
0 Dτ

t Q = θ
1−τ [λ I +β2E− (ε + kρ +µ +(1−ρ)γ2)Q]+

1
e
,

0C
0 Dτ

t D = θ
1−τ [kρQ]+

1
e
,

where e ∈ N. We assume that there is an achievable time sample such that the solutions are negative and
we consider

tk = inf{t > 0 | (S1(t),E1(t), I1(t),R1(t),V1(t),Q1(t),D1(t)) /∈ (R+
0 )

4}.

Then there exists (S1(tk),E1(tk), I1(tk),R1(tk),V1(tk),Q1(tk),D1(tk)) /∈ (R+
0 )

4, and one of the components
is zero. So, we assume S1(tk) = 0. On the other hand, c

0D
τ
t S1(tk) is positive and continuous. According

to the Theorem 1 and Lemma 2 we obtain

∃ ε
′ > 0 : S1 ([tk, tk + ε))⊆ R+

0 ,

which demonstrate that S1 ≥ 0, therefore this statement (assertion) conducts to the contradiction. This
procedure can be implemented for E1, I1,R1,V1,Q1 and D1. Thus for all te ≥ 0 as e→ ∞; the solution
will be nonnegative. Now we consider the sum of the population components as follows

θ
τ−1Dτ

t (S+E + I +R+V +Q) = Ω−µ(S+E + I +R+V +Q)−ρ(S+κQ)−νI

≤Ω−µ(S+E + I +R+V +Q).

Using the Laplace transform (3) and using Eτ and Eττ as Mittag-Leffler functions mentioned in Defini-
tion 4, we achieve

(S+E + I +R+V +Q)(t) = (S+E + I +R+V +Q)(0)Eτ

(
−µθ

1−τtτ
)
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+
∫ t

0
Ωθ

1−τxτ−1Eτ,τ

(
−µθ

1−τxτ
)

dx.

By simplifying the above equation, we obtain

(S+E + I +R+V +Q)(t) = (S+E + I +R+V +Q)(0)Eτ

(
−µθ

1−τtτ
)

+
∫ t

0
Ωθ

1−τxτ−1
∞

∑
i=0

(−1)iµ iθ i(1−τ)xiτ

Γ(iτ + τ)
dx

=
Ω

µ
+Eτ

(
−µθ

1−τtτ
)(

(S+E + I +R+V +Q)(0)− Ω

µ

)
.

Thus if (S+E + I +R+V +Q)(0) ≤ Ω

µ
, then for t > 0 we conclude (S+E + I +R+V +Q)(t) ≤ Ω

µ
.

By considering the feasible region

Π = {(S, I,E,R,V,Q,D) ∈ R7
+ | N = S+E + I,R+V +Q+D≤ (1−q)Ω

µ + p+ρ
≤ Ω

µ
}, (4)

and according to Lemma 2 we can conclude that the set Π is positively invariant with respect the model
(3).

4.2 Existence and uniqueness of the solution

The proposed epidemic disease model (3) is a dynamical system on the biologically feasible region (Π),
introduced in (4). In this section, the existence of a unique solution of model (3) will be proved. First,
we define the following kernels

θ
τ−1C

0 Dτ
t S(t) = φ1(t,S(t)), θ

τ−1C
0 Dτ

t V (t) = φ2(t,V (t)),

θ
τ−1C

0 Dτ
t E(t) = φ3(t,E(t)), θ

τ−1C
0 Dτ

t I(t) = φ4(t, I(t)),

θ
τ−1C

0 Dτ
t R(t) = φ5(t,R(t)), θ

τ−1C
0 Dτ

t Q(t) = φ6(t,Q(t)),

θ
τ−1C

0 Dτ
t D(t) = φ7(t,D(t)).

By applying fractional integral operators to the both sides of the above equation, we obtain

G(t)−G(0) =
θ 1−τ

Γ(τ)

∫ t

0
φ1(ζ ,G(ζ ))(t−ζ )τ−1dζ ,

where G is a delegate of the seven variables of the proposed model. It is necessary to mention that
kernels φ1,φ2, ...,φ7 can be defined for variables S,V,E, I,R,Q and D, respectively. Now, in the following
theorem, we will consider the Lipshitz property and contraction condition for the kernels φ1,φ2, ...,φ7.

Theorem 4. The Lipschitz and contraction property are established for the kernels φ1,φ2, ...,φ7, if 0 ≤
µi < 1 for i = 1,2, ...,7, where µ1 = αb1+ p+ρ +µ , µ2 = µ +n, µ3 = β1, µ4ν +γ1+µ +λ , µ5 = δ +µ

and µ6 = ε + kρ +µ +(1−ρ)γ2 are the Lipschitz-contraction coefficients.



400 M. Fahimi, K. Nouri, L. Torkzadeh

Proof. First, we have

‖φ1(t,S(t))−φ1(t,S1(t))‖= ‖− (p+ρ +µ +αI)(S(t)−S1(t))‖
≤ (α‖I‖+P+ρ +µ)‖S(t)−S1(t)‖.

By considering µ1 = αb1+ p+ρ +µ , where ‖I(t)‖ ≤ b1 is a bounded function, we obtain ‖φ1(t,S(t))−
φ1(t,S1(t))‖ ≤ µ1‖S(t)−S1(t)‖. Similarly, it can be written for the other kernels, as follows

‖φ2(t,V (t))−φ2(t,V1(t))‖= ‖− (µ +n)(V (t)−V1(t))‖ ≤ (µ +η)‖V (t)−V1(t)‖.

Having in mind that µ2 = µ +n, we obtain ‖φ2(t,S(t))−φ2(t,S1(t))‖ ≤ µ2‖V (t)−V1(t)‖. In the same
way, we obtain

‖φ3(t,E(t))−φ3(t,E1(t))‖= ‖β1(E(t)−E1(t))‖ ≤ β1‖E(t)−E1(t)‖.

On the other hand, from µ3 = β , we obtain ‖φ3(t,E(t))−φ3(t,E1(t))‖ ≤ µ3‖E(t)−E1(t)‖. Similarly,
we obtain

‖φ4(t, I(t))−φ4(t, I1(t))‖= ‖− (ν + γ1 +µ +λ )(I(t)− I1(t))‖
≤ (ν + γ1 +µ +λ )‖I(t)− I1(t)‖.

It follows from µ4 = ν +γ1+µ +λ , that ‖φ4(t, I(t))−φ4(t, I1(t))‖ ≤ µ4‖I(t)− I1(t)‖. Similarly, we see
that

‖φ5(t,R(t))−φ5(t,R1(t))‖= ‖− (δ +µ)(R(t)−R1(t))‖ ≤ (δ +µ)‖R(t)−R1(t)‖.

By considering µ5 = δ +µ , we obtain ‖φ5(t,R(t))−φ5(t,R1(t))‖ ≤ µ5‖R(t)−R1(t)‖. Similarly, we get

‖φ6(t,Q(t))−φ6(t,Q1(t))‖= ‖− (ε + kρ +µ +(1−ρ)γ2)(Q(t)−Q1(t))‖
≤ (ε + kρ +µ +(1−ρ)γ2)‖Q(t)−Q1(t)‖.

By considering µ6 = ε +kρ +µ +(1−ρ)γ2, we obtain ‖φ6(t,Q(t))−φ6(t,Q1(t))‖ ≤ µ6‖Q(t)−Q1(t)‖.
Similarly, we deduce that

‖φ7(t,D(t))−φ7(t,D1(t))‖= ‖kρQ− kρQ‖= 0.

By considering µ7 = 0, the condition for establishing Lipshitz-contraction property will be provided.
Thus the kernels φ2,φ3, ...,φ7 are also contraction because 0≤ µi < 1 for i = 2,3, ...,7.

To present the existence analysis, we construct the following recursive formulas. Therefore we sup-
pose the following recursive formulas concerning the system (3):

ψ1,i = Si(t)−Si−1(t) =
θ 1−τ

Γ(τ)

∫ t

0

(
φ1(χ,Sn−1(χ))−φ1(χ,Sn−2(χ))

)
dχ.

By taking the norm of ψ1,i(t) we obtain

‖ψ1,i(t)‖= ‖Si(t)−Si−1(t)‖= ‖
θ 1−τ

Γ(τ)

∫ t

0
(φ1(χ,Sn−1(χ))−φ1(χ,Sn−2(χ)))(t−χ)τ−1dχ‖
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≤ θ 1−τ

Γ(τ)

∫ t

0
‖(φ1(χ,Sn−1(χ))−φ1(χ,Sn−2(χ))(t−χ)τ−1‖dχ. (5)

Similarly, the norms of ψ2,i(t),ψ3,i(t), ...,ψ7,i(t) can be defined for variables E, I,R,V,Q and D respec-
tively.

Theorem 5. Model (3) has a solution if 0 ≤ θ 1−τ

Γ(τ)
T µi < 1 holds, where T is a time instant such that

T > 0.

Proof. By the Lipschitz condition proved in Theorem 4 and recursive formulas (5), we get

‖ψ1,i(t)‖ ≤
θ 1−τ

Γ(τ)
µ1

∫ 1

0
‖ψ1,i−1(χ)‖dχ.

This property can be similarly extended to to ψ2,i(t),ψ3,i(t),ψ4,i(t),ψ5,i(t), ψ6,i(t) and ψ7,i(t). According

to the condition 0≤ θ 1−τ

Γ(τ)
T µi < 1, we conclude

‖ψ1,i(t)‖ ≤
θ 1−v

Γ(τ)
µ1T µ1

∫ t

0
‖ψ1,i−1(χ)‖dχ ≤

(
θ 1−τ

Γ(τ)
µ1T

)2
‖Si(0)‖

∫ t

0
‖φ1,i−2‖

≤ · · · ≤ ‖Si(0)‖
(

θ 1−v

Γ(τ)
µ1T

)i
,

where Sn,Vn,En, In,Rn,Vn,Qn and Dn can be defined as Sn(t) =
n
∑

i=1
ψ1,i(t), Vn(t) =

n
∑

i=1
ψ2,i(t), En(t) =

n
∑

i=1
ψ3,i(t), In(t) =

n
∑

i=1
ψ4,i(t), Rn(t) =

n
∑

i=1
ψ5,i(t), Qn(t) =

n
∑

i=1
ψ6,i(t), Dn(t) =

n
∑

i=1
ψ7,i(t). This property

can be similarly extended to ψ2,i(t),ψ3,i(t),ψ4,i(t),ψ5,i(t), ψ6,i(t) and ψ7,i(t). Therefore the system has
a continuous solution. Now we define the function

U1, j(t) =
θ 1−τ

Γ(τ)

∫ t

0

(
φ1(η ,S(η))−φ1(η ,S j−1(η))

)
dη .

So, we obtain

S(t)−S(0) = S j(t)−U1, j(t), V (t)−V (0) =Vj(t)−U2, j(t),

E(t)−E(0) = E j(t)−U3, j(t), I(t)− I(0) = I j(t)−U4, j(t),

R(t)−R(0) = R j(t)−U5, j(t), Q(t)−Q(0) = Q j(t)−U6, j(t),

D(t)−D(0) = D j(t)−U7, j(t).

As a result, we achieve

‖U1, j(t)‖= ‖
θ 1−τ

Γ(τ)

∫ t

0

(
φ1(η ,S(η))−φ2(η ,S j−1(η))

)
dη‖

≤ θ 1−τ

Γ(τ)

∫ t

0
‖φ1(η ,S(η))−φ2(η ,S j−1(η))‖dη ≤ θ 1−τ

Γ(τ)
µ1‖S(t)−S j−1(t)‖.
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We repeat the method, so we achieve

‖U1, j(t)‖ ≤
(θ 1−τ

Γ(τ)
t
) j+1

µ
j+1

1 .

By applying T we have

‖U1, j(t)‖ ≤
(θ 1−τ

Γ(τ)
T
) j+1

µ1
j+1.

So, lim
j→∞

U1, j(t) = 0. Similarly, we have lim
j→∞

Ui, j(t) = 0 for i = 2,3, . . . ,7.

Theorem 6. If the inequality

1− θ 1−τ

Γ(τ)
T µi > 0

holds, then the solution of model (3) is unique.

Proof. We assume that another solutions S2,V2,E2, I2,R2,Q2 and D2 exist for system (3). So, we can

write S2(t)− S1(t) =
θ 1−τ

Γ(τ)

∫ t
0

(
φ2(η ,S2(η))− φ1(η ,S1(η))

)
dη . According to the Lipschitz property,

we take the norm and achieve

‖S2(t)−S1(t)‖ ≤
θ 1−τ

Γ(τ)
µ1T ‖S2(t)−S1(t)‖,

then ‖S2(t)−S1(t)‖
(

1− θ 1−τ

Γ(τ)
µ1T

)
≤ 0, due to the condition 1− θ 1−v

Γ(τ)
µ1T > 0, we conclude that

‖S2(t)−S1(t)‖
(

1− θ 1−τ

Γ(τ)
µ1T

)
> 0.

Additionally, we can conclude ‖S2(t)−S1(t)‖ = 0. Thus S1(t) = S2(t). Similarly we can conclude that
E1 = E2, I1 = I2,R1 = R2,Q1 = Q2,V1 =V2 and D1 = D2.

5 Equilibrium points

To obtain equilibrium points, the derivatives must be set to zero. Due to the existence of fractional
derivatives operators and according to Lemma 1, we set the fractional derivatives to zero and we achieve
equilibrium points of our proposed biological model by establishing the following system:

C
0 Dτ

t S(t) = C
0 Dτ

t E(t) = C
0 Dτ

t I(t) = C
0 Dτ

t R(t) = C
0 Dτ

t V (t) = C
0 Dτ

t Q(t) = C
0 Dτ

t D(t) = 0.

In the first step, we investigate disease-free equilibrium (DFE) in which I = E = R =V = Q = 0. There-
fore, the situation of the studied population sample will be immune and disease-free at this point. By
simplifying equations we achieve the point E0 = (S∗0,0,0,0,0,0,D

∗
0). The second equilibrium point is

E1 = (S∗1,E
∗
1 , I
∗
1 ,R

∗
1,V

∗
1 ,0,0) such that

S∗1 =
(1−q)Ω+δR
p+ρ +µ +αI

, E∗1 =
ηV +αIS

β1 +β2 +µ
, I∗1 =

β1E
V + γ1 +µ +λ

, R∗1 =
γ1I

δ +µ
, V ∗1 =

Ωq+PS
µ +η

.
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At this point, the process of vaccination and immunity continuity of the population is complete and
mortality and quarantine rates originating from infection are zero. The third equilibrium point is E2 =
(0,E∗2 , I

∗
2 ,0,V

∗
2 ,0,0) where

E∗2 =
ηV

β1 +β2 +µ
, I∗2 =

β1E
V + γ1 +µ +λ

, V ∗2 =
Ωq

µ +η
.

At this point, the susceptible population is considered to be zero.

6 Stability analysis of the model

In this section, we investigate the stability analysis of the fractional model (3) based on Ulam-Hyers and
Lyapunov criteria.

6.1 Ulam-Hyer stability

We define g(t,y(t)) such that the following inequality holds

‖c
0Dτ

t y(t)−g(t,y(t))‖ ≤ ε, ∀t ∈ [o,T ]. (6)

Now y ∈Π is solution of (3) if and only if there is h ∈Π such that [19, 36]:

|h(t)| ≤ ε, (7)
c
0Dτ

t y(t) = g(t,y(t))+h(t), ∀t ∈ [0,T ]. (8)

Definition 5. If there exists a constant ξg > 0 such that for any ε > 0, and any J (t) satisfying (6), then
the SEIRVQD model (3) comprises a solution J (t) satisfying

‖J (t)−J (t)‖ ≤ ε ·ξg, ∀t ∈ [0,T ].

Theorem 7. Assume |h(t)| ≤ ε and c
oDτ

t = g(t,J (t)) + h(t) holds. Then the SEIRVQD model has
Hyers-Ulam stability on [0,T ], if Γ(τ +1)> T τhθ 1−τ holds.

Proof. Due to the Theorem 6, we assume that J (t) is a unique solution of the proposed fractional model
(3). Furthermore we let J (t) satisfies (6). Now, apply the fractional Caputo integral to both sides of
(8), that gives

J (t) = J (0)+
θ 1−τ

Γ(τ)

∫ t

0
(t−ζ )τ−1g(ζ ,J (ζ ))dζ +

θ 1−τ

Γ(τ)

∫ t

0
(t−ζ )τ−1h(ζ )dζ , ∀t ∈ [0,T ].

By mentioned condition (7), we get

‖J (t)−J (0)− θ 1−τ

Γ(τ)

∫ t

0
(t−ζ )τ−1g(ζ ,J (ζ ))dζ‖ ≤ εθ 1−τ

Γ(v)

∫ t

0
(t−ζ )τ−1dζ .

So, we have

‖J (t)−J (0)− θ 1−τ

Γ(τ)

∫ t

0
(t−ζ )τ−1g(ζ ,J (ζ ))dζ‖ ≤ εT vθ 1−τ

vΓ(τ)
=

εT τθ 1−τ

Γ(τ +1)
, ∀t ∈ [0,T ].
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So, we have

‖J (t)−J (t)‖= ‖J (t)−J (0)− θ 1−τ

Γ(v)

∫ t

0
(t−ζ )τ−1g(ζ ,J (ζ ))dζ‖

≤ ‖J (t)−J (0)− θ 1−τ

Γ(τ)

∫ t

0
(t−ζ )τ−1g(ζ ,J (ζ ))dζ‖

+‖θ 1−τ

Γ(τ)

∫ t

0
(t−ζ )τ−1 (g(ζ ,J (ζ ))−g(ζ ,J (ζ ))

)
dζ‖.

According to the Lipzchits property, we achieve

‖J (t)−J (t)‖ ≤ εT τθ 1−τ

Γ(τ +1)
+

T τhθ 1−τ

vΓ(τ +1)
‖J (t)−J (t)‖.

So, we obtain

‖J (t)−J (t)‖
(

1− T τhθ 1−τ

Γ(τ +1)

)
≤ εT τhθ 1−τ

Γ(τ +1)
.

So, we get

‖J (t)−J (t)‖ ≤ εT τhθ 1−τ

Γ(τ +1)−T τhθ 1−τ
.

By assuming

ξg =
T τhθ 1−τ

Γ(τ +1)−T τhθ 1−τ
,

and using definition 7 we obtain ‖J (t)−J (t)‖ ≤ ξgε . Therefore, we conclude that model (3) has
Ulam-Hyers stability.

6.2 Lyapunov stability of fractional model

The DFE of system (3) is E0 = (S∗0,0,0,0,0,0,D
∗
0) at which the population remains in the absence of

disease. In this point, S∗0 and D∗0 are defined as follows

S∗0 =
(1−q)Ω
p+ρ +µ

, D∗0 = N− (1−q)Ω
p+ρ +µ

.

Now, we will compute the basic reproduction number (R0) using the next generation matrix method
(NGM) [12] and computing the matrix FV−1 as follows:

FV−1 =
1

µ + p+ρ



−αI 0
−αS(µ + p+ρ)

λ +µ +δ1 +V
− αIδγ1

(µ +δ )(µ +δ1 +V +λ )

−αIδ

(µ +δ )

−αI 0
−αS(µ + p+ρ)

λ +µ +δ1 +V
− αIδγ1

(µ +δ )(µ +δ1 +V +λ )

−αIδ

(µ +δ )

0
β1(µ + p+ρ)

µ +β1 +β2
0 0

0 0 0 0


,
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where F is a non-negative matrix and V is a non-singular matrix, defined in [12]. Considering the spectral
radius definition of R0 as R0 = ρ ′(FV−1) and implementing DFE point E0 = (S∗0,0,0,0,0,0,D

∗
0), we

achieve

R0 =

√
−αS∗0β1

(
(p2 +ρ2 +2µ p+2µρ +2pρ)(µ +δ )+µ(δ +µ2)

)
µ + p+ρ

. (9)

Theorem 8. Assume that h∈C([t0,+∞)×R,R) is a function and h(t,0)≡ 0. There exists a constant ι >
0, a function ϖ ∈ ι([t0,+∞),Sι) with ϖ(1,0) = 0 and for any initial value x0 ∈ Sι , x(t) = x(t; t0,x0) ∈ Sι

for t ≥ t0. Furthermore, assume that g(||x||) ≤ ϖ(t,x) ≤ f (||x||) for t > t0, x ∈ Sι where f ,g ∈K and
the generalized proportional Caputo fractional derivative [1] has the property

C
0 Dτ

t (·,x(·))(t)≤ h(t,ϖ(t,x(t))), t ≥ t0.

Then, the solution of FDE has Lyapunov stability, where Lyapunov functions are satisfied on the ball Sι ,
x is strictly increasing and the sets K and Sι are defined as follows

K = {x ∈C([0,+∞), [0,+∞))}, Sι = {x ∈ Rn : ||x|| ≤ ι}. (10)

Proof. We use the following Lyapunov function to prove the global stability

L = f1S+ f2V + f3E + f4I + f5R+ f6Q+ f7D,

where fi > 0 for i = 1,2, . . . ,7. Additionally, fi; i = 1,2, . . . ,7 are constant functions that will be intro-
duced later. By applying Caputo fractional differential operator, we obtain

c
0DtL = c

0D
τ
t S f1 +

c
0D

τ
t V f2 +

c
0D

τ
t E f3 +

c
0D

τ
t I f4 +

c
0D

τ
t R f5 +

c
0D

τ
t Q f6 +

c
0D

τ
t D f7.

We derive the Lyapunov function and substitute them into the equations of the main model (3). Therefore,
by simplification and classification, we obtain

c
0DtL =

(
f1δ − f5(δ +µ)

)
R+

(
f1ε + f5(1−ρ)δ2− f6(ε + kρ +µ +(1−ρ)γ2)+ f7kρ

)
Q

+
(

f2 p− f1(p+ρ +µ +αI)+ f3αI
)

S+
(
− f3(β1 +β2 +µ)+ f4β1 + f6β2

)
E

+
(
− f2(µ +η)+ f3η

)
V +

(
− f4(V + γ1 +µ +λ )+ f5γ1 + f6λ

)
I +
(

f1(1−q)Ω

+ f2Ωq
)
.

Now we choose f1 = f2 = f3 = f4 = δ +µ, f5 = f6 = f7 = δ . So, we achieve

c
0DtL =µ(ε−δ )Q− (δ +µ)(ρ +µ)S− (δ +µ)µE− (δ +µ)µV

−
(

δ (V +µ)+µ(V +µ + γ1 +λ )
)

I +(δ +µ)Ω.

In the special case, if we set γ1 =−λ , then we conclude c
0DtL≥ 0. It is impossible due to the positiveness

of all the model parameters. Furthermore c
0DtL ≤ 0 if and only if Q = E = I = V = 0. As long as in
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model (3), (S,E, I,R,V,Q,D) tends to E0 = (S∗0,0,0,0,0,0,D
∗
0) for t→+∞. Now the essential condition

for establishing R0 < 1 is

R0 =

√
αS∗0B

µ + p+ρ
< 1 =⇒

√
αS∗0B < µ + p+ρ =⇒ αS∗0B < (µ + p+ρ)2, (11)

where B is defined as

B =−µ
3
β1−µ

2
β1δ −µβ1 p2−2µ

2
β1 p−µβ1ρ

2−2µ
2
β1ρ−β1δρ

2

−β1δρ
2−2µβ1δρ−2µβ1 +δρ−2µβ1 pρ−2β1δ pρ. (12)

By substituting (12) into (11), and considering the equilibrium point E0 and substituting into c
0DtL, we

obtain

c
0DtL =−(δ +µ)(ρ +µ)S∗0 +(δ +µ)Ω≤ −(µ + p+ρ)2(ρ +µ)

αβ1(p2 +ρ2 +2µ p+2µρ +2pρ)
+(δ +µ)Ω≤ 0.

Therefore we can conlude c
0DtL ≤ 0. Hence E0 will be the largest invariant set. Thus according to

Barbashin-Krasovskii-Lasalle’s invariance principle [20] mentioned in Theorem 2, we conclude that the
system (3) is global asymptotically stable.

7 Numerical simulation and data fitting

In this section, we will present numerical simulations of the solution of our fractional epidemic model. To
underpin and evaluate the analysis of the model’s dynamical behavior, we solve our proposed model us-
ing Caputo fractional order derivatives. We investigate numerical simulations employing the mathemat-
ical software MATLAB (R2020 version). To apply the fractional Euler method (FEM), we reconstruct
the interval [0,T ] to partition it into n subintervals [(k− 1)M,kM] where M = T/n and k = 1,2, ...,n.
Therefore, the approximated solution can be calculated from the discretized equations below

S(tk) =S(t0)+
Mτ

Γ(τ +1)

k−1

∑
j=0

C j,k[(1−q)Ω+δR+ εQ− (p+ρ +µ +αI)S(t j)],

E(tk) =S(t0)+
Mτ

Γ(τ +1)

k−1

∑
j=0

C j,k[ηV +αIS− (β1 +β2 +µ)E(t j)],

I(tk) =I(t0)+
Mτ

Γ(τ +1)

k−1

∑
j=0

C j,k[β1E− (ν + γ1 +µ +λ )I(t j)],

R(tk) =V (t0)+
Mτ

Γ(τ +1)

k−1

∑
j=0

C j,k[(1−ρ)γ2Q+ γ1I− (δ +µ)R(t j)],

V (tk) =V (t0)+
Mτ

Γ(τ +1)

k−1

∑
j=0

C j,k[(Ωq+ pS− (µ +η))V (t j)],

Q(tk) =V (t0)+
Mτ

Γ(τ +1)

k−1

∑
j=0

C j,k[λ I +β2E− (ε + kρ +µ +(1−ρ)γ2)Q(t j)],
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Table 1: The parameter values used in Example 1.

Parameters Value Source
α 0.09 [11]
β1 0.025 [11, 17]
β2 0.1 [11, 17]
δ 0.02 [17, 28]
µ 0.0003 [2]
ν 0.02 [11, 28]
η 0.05 [11]
ε 0.03 [11, 17]
k 8 [10]
ρ 0.6 [11]
Ω 397338 [2]
q 0.02 [2]
p 0.175 [11]
λ 0.8 [11, 17]
γ1 0.5 [2]
γ2 12 [10]

D(tk) =D(t0)+
Mτ

Γ(τ +1)

k−1

∑
j=0

C j,k[kρQ],

for k = 1, . . . ,N. In these equations, C j,k are defined as the weights illustrated below

C j,k = (k− j)τ − (k−1− j)τ . (13)

Example 1. In this numerical example, the parameter values taken from the literature and estimated are
used to perform the solutions of the proposed model. The values and the sources of these parameters
are presented in Table 1. This paper studies the variables of the human population model. Thus, the
parameters and initial values of the model variables are presented in Table 1, on a scale of 10−4.

Although global evolution in measles control has been achieved, measles extinction has not been
achieved. However, China still faces challenges in measles control, especially in children under eight
years old who were not licensed for vaccination. According to the reported data [16], we set the average
life expectancy of Chinese people (both sexes) equal to 77.47 years. Thus the recruitment rate of this
region is Ω = 397338 considered and estimated in [2, 10]. In Fig. 2, we present a graphical simulation
of the process of measles transmission under the proposed model (SEIRVQD) in China. This figure
depicts that overtime, the number of susceptible individuals increases in initial observation, and after
reaching the peak of the disease outbreak and the increase in immunity due to vaccination and infection,
the number of susceptible individuals starts a descending trend until it reaches the equilibrium point.

As conceived, we have observed that the more time taken, the number of the exposed individuals
has decreased. Furthermore, the number of infected and recovered and quarantined individuals increases
in initial observation, and after reaching the peak of the disease outbreak and the increase in immunity
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due to vaccination and infection, the number of susceptible individuals starts a descending trend until it
reaches the equilibrium point.

According to the applied vaccination rates (p,q), the number of vaccinated individuals has increased
and finally reached an equilibrium level. Finally, death cases have increased steeply at first, and after
reaching the peak of the epidemic wave, it has taken a downward trend. It is also very important to
mention this calculation matter that according to the relation (9), we find the basic reproduction number
(R0 = 1.159) for Chinese measles.

By assuming (S0,E0, I0,R0,V0,Q0,D0) = (100,9000,1000,600,100,800,0) as an initial point, we
can calculate the basic reproduction number R0 = 1.159. We find the equilibrium point as
(S1,E1, I1,R1,V1,Q1,D1)= (3251,892,292,182,13245,98,41) which tends to E2 presented as third equi-
librium point in Section 5 and can be clearly recognized in Fig. 2 as the level of reaching equilibrium
and stability of values.

The stability of the system can be illustrated in Fig. 3. This explanatory numerical simulation depicts
the stable behavior of the model for various orders of fractional derivatives. In order to show the validity,
accuracy and efficiency of the presented model, Fig. 3 obtained by FEM method is presented. Fig. 3
demonstrate that the fractional model constructed with the Caputo fractional operator is more accurate
in approximating and simulating the real number of Chinese measles patients. This real data is extracted
from the World Health Organization (WHO) and China CDC weekly reports [13, 21, 37].

Furthermore, by analyzing the numerical results of other related models, such as models SEIR [26]
and SV EIR [27], we can understand the accuracy, efficiency, and predictability of the proposed model in
Fig. 3.

8 Conclusion and remarks

In this paper, we construct and formulate a new mathematical model for the spread of epidemic diseases
namely SEIRVQD model using fractional calculus. The Caputo fractional operator is implemented in the
model, which has memory according to the inherent property of its definition. Also, we have presented
an analytical approach to this model. For the stability analysis, the Lyapunov and Ulam-Hyer criteria
are applied. The theoretical results of the model and dynamical analysis of solution including positively
invariant property and existence and uniqueness of the solution. The basic reproduction number (R0)
is calculated by the next generation matrix method in order to demonstrate the level of measles virus
invasion. Moreover, numerical simulations including data fitting are performed for different fractional
orders. Thereupon, we conclude that the fractional model constructed with the Caputo fractional op-
erator is more accurate in approximating and simulating the real number of Chinese measles patients.
This real data is extracted from the World Health Organization (WHO) and China CDC weekly reports.
Additionally, the stability of the system can be illustrated based on the graphical output of the FEM
numerical method. This explanatory numerical simulation depicts the stable behavior of the model for
various orders of fractional derivatives.

As an innovation of this paper, various components of epidemiology are considered such that the
factors vaccination, quarantine, and treatment of infection are applied together in the simulation of the
proposed model using fractional Caputo derivatives. Due to the mismatch of the dimensions of the
equations, we modify the system through adding the auxiliary parameter θ . This auxiliary parameter
modifies our FDE for measles transmission modeling. This idea yields a comprehensive model with
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Figure 2: Graphical representation of the susceptible, exposed, infected, recovered, vaccinated, quarantined and
died cases in China (measles) based on SEIRVQD model (Number of individuals×10−4, t-Year).
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Figure 3: Measles infected cases in China vs. model fitting (Number of individuals×10−4, t-Year).

realistic and useful results for the prediction of the level of invasion and the spread of the virus. On
the other hand, it is necessary to devote further research to extend this idea to other epidemic systems,
especially in stochastic or hybrid approaches.
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