
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,163 |
تعداد دریافت فایل اصل مقاله | 7,149,716 |
بررسی تاثیر حجم کف در ویژگی های منافذ تشکیل شده و مقاومت الکتریکی بتن های کفی | ||
تحقیقات بتن | ||
دوره 17، شماره 4 - شماره پیاپی 48، دی 1403، صفحه 5-16 اصل مقاله (1.5 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/jcr.2025.26955.1651 | ||
نویسندگان | ||
محمد مهدی رستگار* ؛ ابراهیم قیاسوند | ||
استادیار، گروه مهندسی عمران، دانشکده فنی مهندسی کبودراهنگ، دانشگاه بوعلی سینا، همدان، ایران | ||
چکیده | ||
در این پژوهش، تأثیر حجم تخلخل ناشی از کف روی ساختار منافذ و مقاومت الکتریکی بتنهای کفی، بررسی شده است. ساختار منافذ شامل متوسط قطر حفرات کفی، اندازه حفرات و فاصله آنها از یکدیگر در مخلوطهای بتن کفی با نسبت آب به سیمان 5/0 و میزان کف صفر، 20 و 35 درصد و همچنین بتن کفی سازهای با نسبت آب به سیمان 4/0 و حجم کف 20 درصد مقایسه شده است. تصاویر نمونههای بتن کفی در آزمایش SEM و آنالیز تصویری آنها توسط میکروسکوپ نوری و نرمافزار، تائیدکننده یکدیگر بوده و نتایج، بیانگر آن است که با افزایش تخلخل کفی، میانگین قطر حبابهای هوا افزایش و فاصله بین آنها کاهش یافته است. همچنین تعداد ریزترکها در دیواره حفرات و میزان حبابهای ادغامشده با یکدیگر افزایش یافته که میتواند باعث افزایش نفوذپذیری گردد. حفرات هوای غیر اشباع و منفک نیز در داخل بتن مشابه سنگدانه عمل نموده و هدایت الکتریکی بتن را کاهش میدهد. از آنجائیکه مسیر انتقال جریان الکتریکی از طریق حفرات موئینه صورت میگیرد لذا با افزایش حجم کف، حجم خمیر سیمان و به تبع، حجم کل حفرات موئینه کاهش مییابد. همچنین کاهش نسبت آب به سیمان باعث کاهش قطر و حجم کلی حفرات موئینه میگردد و در نتیجه مقاومت الکتریکی بتن افزایش مییابد. نتایج حاصل از این پژوهش نشان داد با کاهش نسبت آب به سیمان و افزایش درصد حفرات کفی، تا جائیکه منجر به ادغام حفرات و وجود ریزترک و سوراخ درون حباب نگردند، بتنهای کفی عملکرد بهتری در زمینه دوام از خود نشان میدهند. | ||
کلیدواژهها | ||
بتن کفی"؛ حجم کف"؛ تخلخل"؛ مقاومت الکتریکی"؛ "؛ آنالیز تصویری" | ||
مراجع | ||
[1] R. C. Valore, "Cellular concretes Part 2 physical properties." pp. 817-836.
[2] K. Ramamurthy, E. K. Nambiar, and G. I. S. Ranjani, “A classification of studies on properties of foam concrete,” Cement and concrete composites, vol. 31, no. 6, pp. 388-396, 2009.
[3] Y. M. Amran, N. Farzadnia, and A. A. Ali, “Properties and applications of foamed concrete; a review,” Construction and Building Materials, vol. 101, pp. 990-1005, 2015.
[4] A. Bagheri, and S. Samea, “Role of non-reactive powder in strength enhancement of foamed concrete,” Construction and Building Materials, vol. 203, pp. 134-145, 2019.
[5] C. Bing, W. Zhen, and L. Ning, “Experimental research on properties of high-strength foamed concrete,” Journal of Materials in Civil Engineering, vol. 24, no. 1, pp. 113-118, 2011.
[6] A. Bagheri, and S. Samea, “Parameters Influencing the Stability of Foamed Concrete,” Journal of Materials in Civil Engineering, vol. 30, no. 6, pp. 04018091, 2018.
[7] A. A. Hilal, N. H. Thom, and A. R. Dawson, “On entrained pore size distribution of foamed concrete,” Construction and Building Materials, vol. 75, pp. 227-233, 2015.
[8] M. Jones, and A. McCarthy, “Preliminary views on the potential of foamed concrete as a structural material,” Magazine of concrete research, vol. 57, no. 1, pp. 21-31, 2005.
[9] Y. Fu, X. Wang, L. Wang et al., “Foam Concrete: A State of the Art and State of the Practice Review,” Advances in Materials Science and Engineering, vol. 2020, 2020.
[10] A. Bagheri, and M. M. Rastegar, “Investigation of passive layer formation on steel rebars in foamed concrete,” Materials and Corrosion, vol. 70, no. 7, pp. 1252-1261, 2019.
[11] A. Bagheri, and M. M. Rastegar, “Effects of foam content on chloride ingress and steel corrosion in foamed concrete,” Magazine of Concrete Research, vol. 73, no. 7, pp. 356-365, 2021.
[12] M. M. Rastegar, and A. Bagheri, “Effect of foam volume on penetration parameters of foamed concrete,” Magazine of Concrete Research, vol. 74, no. 19, pp. 989-998, 2022.
[13] H.-W. Song, and V. Saraswathy, “Corrosion monitoring of reinforced concrete structures-A,” Int. J. Electrochem. Sci, vol. 2, no. 1, pp. 1-28, 2007.
[14] R. Polder, C. Andrade, B. Elsener et al., “Test methods for on site measurement of resistivity of concrete,” Materials and Structures, vol. 33, no. 10, pp. 603-611, 2000.
[15] R. Rodrigues, S. Gaboreau, J. Gance et al., “Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring,” Construction and Building Materials, vol. 269, pp. 121240, 2021.
[16] M. Maghrebi, M. Khanzadi, M. Habibian et al., “Study the Influences of Nano-Silica on Electrical Resistivity of Cement Paste,” Modares Civil Engineering journal, vol. 14, no. 1, pp. 99-108, 2014.
[17] امیر شیبانی، محسن تدین، تأثیرمواد حبابزا بر جذب آب نیم ساعته و مقاومت ویژه الکتریکی بتن، دومین کنفرانس ملی بتن ایران، مهرماه 1389
[18] اعظم کامل، مجتبی لزگی نظرگاه، مرتضی طیبینیا، بررسی تأثیر مواد افزودنی حبابزا بر روی نفوذپذیری و دوام بتن ساخته شده با سیمان پرتلند 1-525، تحقیقات بتن، سال شانزدهم، شماره سوم، پائیز1402 ، صفحات 93-104.
[19] A. A. Hilal, N. H. Thom, and A. R. Dawson, “Pore structure and permeation characteristics of foamed concrete,” Journal of Advanced Concrete Technology, vol. 12, no. 12, pp. 535-544, 2014.
[20] E. Kearsley, and P. Wainwright, “Porosity and permeability of foamed concrete,” Cement and concrete research, vol. 31, no. 5, pp. 805-812, 2001.
[21] E. K. Nambiar, and K. Ramamurthy, “Sorption characteristics of foam concrete,” Cement and concrete research, vol. 37, no. 9, pp. 1341-1347, 2007.
[22] L. Cox, and S. Van Dijk, “Foam concrete: a different kind of mix,” Concrete, vol. 36, no. 2, 2002.
[23] W. She, Y. Zhang, C. Miao et al., “Water transport in foam concrete: visualisation and numerical modelling,” Magazine of Concrete Research, pp. 1-13, 2019.
[24] K. Brady, G. Watts, and M. R. Jones, Specification for foamed concrete: TRL Limited Crowthorne, UK, 2001.
[25] ASTM C150 “Standard specification for Portland cement,” Annual book of ASTM standards, vol. 4, 2002.
[26] ASTM C796 “Standard test method for foaming agents for use in producing cellular concrete using preformed foam,” 2012.
[27] BS EN 12390 part 3 “Testing hardened concrete Part 3: Compressive strength of test specimens”, British Standards Institution, London, UK, 2009.
[28] A. A. Hilal, N. H. Thom, and A. R. Dawson, “On void structure and strength of foamed concrete made without/with additives,” Construction and Building Materials, vol. 85, pp. 157-164, 2015.
[29] E. K. Nambiar, and K. Ramamurthy, “Air‐void characterisation of foam concrete,” Cement and concrete research, vol. 37, no. 2, pp. 221-230, 2007.
[30] T. Chandni, and K. Anand, “Utilization of recycled waste as filler in foam concrete,” Journal of Building Engineering, vol. 19, pp. 154-160, 2018.
[31] L. Tang, “Guidelines for practical use of methods for testing the resistance of concrete to chloride ingress,” Report Number: GRD1-2002-71808, 2005.
[32] E. Kunhanandan Nambiar, and K. Ramamurthy, “Fresh state characteristics of foam concrete,” Journal of materials in civil engineering, vol. 20, no. 2, pp. 111-117, 2008.
[33] K. Brady, G. Watts, and M. R. Jones, “Specification for foamed concrete,” Specification for foamed concrete, vol. 1, no. 1, pp. 1-65, 2001.
[34] ASTM C869 “Standard Specification for Foaming Agents Used in Making Preformed Foam for Cellular Concrete,” Annual book of ASTM standards, 2016. | ||
آمار تعداد مشاهده مقاله: 57 تعداد دریافت فایل اصل مقاله: 13 |