
تعداد نشریات | 31 |
تعداد شمارهها | 792 |
تعداد مقالات | 7,554 |
تعداد مشاهده مقاله | 24,670,511 |
تعداد دریافت فایل اصل مقاله | 7,582,892 |
مقایسه ژنومی نژادهای گوسفند شیری کایاس و فریزارته از نظر شمار سلولهای بدنی شیر با استفاده از روشهای برآوردگر نااریب FST و hapFLK | ||
تحقیقات تولیدات دامی | ||
دوره 13، شماره 4، دی 1403، صفحه 35-49 اصل مقاله (1.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22124/ar.2024.28618.1853 | ||
نویسندگان | ||
حسین محمدی1؛ امیر حسین خلت آبادی فراهانی* 2 | ||
1استادیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک | ||
2دانشیار، گروه علوم دامی، دانشکده کشاورزی و محیط زیست، دانشگاه اراک | ||
چکیده | ||
از شمار سلولهای بدنی بهعنوان روشی غیرمستقیم برای کنترل ورم پستان استفاده میشود. هدف این پژوهش، مقایسه ژنومی دو نژاد گوسفند شیری کایاس و فریزارته از نظر شمار سلولهای بدنی شیر بود. برای این منظور از اطلاعات ژنوتیپی 587 رأس دام با کمترین خویشاوندی و تعیین ژنوتیپ شده با آرایههای50K گوسفندی استفاده شد. برای شناسایی مناطق ژنومی از دو آزمون آماری برآوردگر نااریب FST و hapFLK استفاده شد. ژنهای کاندیدا با استفاده از SNPهایی که در بازه 01/0 درصد ارزش بالای این دو آزمون واقع شده بودند شناسایی شدند. نتایج حاصل از آماره تتا به شناسایی نه ناحیه ژنومی روی کروموزومهای 2، 5، 7، 10، 11، 13 (دو ناحیه)، 17 و 22 منجر شد. ژنهای کاندیدای شناسایی شده شامل ژنهای IL11RA،CDC16 ،CARD14، BTRC،OTUD4 ، COL23A1، LACTB و PRELID3B بودند و عملکردهای متفاوتی با سیستم ایمنی، پاسخ ایمنی ذاتی، پاسخ التهابی، سرطان و تولید شیر داشتند. نتایج حاصل از آماره hapFLK به شناسایی شش ناحیه ژنومی روی کروموزومهای 3، 4، 5، 7، 10 و 13 منجر شد. ژنهای کاندیدای شناسایی شده شامل FAM49A، CDK6 و DLGAP5 بودند و عملکردهای متفاوتی در ایمنی ذاتی و انواع سرطان داشتند. با توجه به اینکه تحقیقات اندکی در رابطه با شمار سلولهای بدنی شیر در گوسفندان نژاد شیری انجام شده است، نتایج این تحقیق میتواند اطلاعات ارزشمندی در رابطه با شمار سلولهای بدنی شیر ارایه دهد. به هر حال، بهمنظور درک بهتر ژنهای مؤثر بر این صفت مهم ضروری است پژوهشهای گستردهتر با تعداد نمونههای بیشتری انجام شود. | ||
کلیدواژهها | ||
آزمون hapFLK؛ آماره FST؛ ژن کاندیدا؛ گوسفند شیری؛ ورم پستان | ||
مراجع | ||
Abdel-Salam, S. A. M., Mekkawy, W., Hafez, Y. M., Zaki, A. A., & Abou-Bakr, S. (2011). Fitting lactation curve of Egyptian Buffalo using three different models. Egyptian Journal of Animal Production, 48, 119-133. doi: 10.21608/ejap.2011.94054 Akey, J. M., Zhang, G., Zhang, K., Jin, L., & Shriver, M. D. (2002). Interrogating a high-density SNP map for signatures of natural selection. Genome Research, 12(12), 1805-1814. doi: 10.1101/gr.631202 Argyriadou, A., Gelasakis, A. I., Banos, G., & Arsenos, G. (2020). Genetic improvement of indigenous Greek sheep and goat breeds. Journal of the Hellenic Veterinary Medical Society, 71(1), 2063. Argyriadou, A., Michailidou, S., Vouraki, S., Tsartsianidou, V., Triantafyllidis, A., Gelasakis, A., Banos, G., & Arsenos, G. (2023). A genome-wide association study reveals novel SNP markers associated with resilience traits in tow Mediterranean dairy sheep breeds. Frontiers in Genetics, 14, 1294573. doi: 10.3389/fgene.2023.1294573 Basdagianni, Z., Sinapis, E., & Banos, G. (2019). Evaluation of reference lactation length in Chios dairy sheep. Animal, 13(1), 1-7. doi: 10.1017/S1751731118000769 Ben Jemaa, S., Tolone, M., Sardina, M. T., Di Gerlando, R., Chessari, G., Criscione, A., Persichilli, C., Portolano, B., & Mastrangelo, S. (2023). A genome-wide comparison between selected and unselected Valle del Belice sheep reveals differences in population structure and footprints of recent selection. Journal of Animal Breeding and Genetics, 140(5), 558-567. doi: 10.1111/jbg.12779 Cai, Z., Guldbrandtsen, B., Lund, M. S., & Sahana, G. (2018). Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genomics, 19(1), 656. doi: 10.1186/s12864-018-5050-x. Casu, S., Sechi, S., Salaris, S. L., & Carta, A. (2010). Phenotypic and genetic relationships between udder morphology and udder health in dairy ewes. Small Ruminant Research, 88, 77-83. doi: 10.1016/j.smallrumres.2009.12.013 Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience, 4, 7. doi:10.1186/s13742-015-0047-8 Deng, Y., Li, H., Song, Y., Cen, J., Zhang, Y., Sui, Y., Cui, D., Li, T. C., Xu, Y., Wang, C. C., Chung, P. W. J., & Tang, T. (2022). Whole genome transcriptomic analysis of ovary granulosa cells revealed an anti-apoptosis regulatory gene DLGAP5 in polycystic ovary syndrome. Frontiers in Endocrinology, 13, 781149. doi: 10.3389/fendo.2022.781149 Fariello, M. I., Boitard, S., Naya, H., SanCristobal, M., & Servin B. (2013). Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics, 193(3), 929-941. doi: 10.1534/genetics.112.147231 Gonzalez, M., Villa, R., Villa, C., Gonzalez, V., Montano, M., & Medina, G., (2020). Inspection of real and imputed genotypes reveled 76 SNPs associated to rear udder height in Holstein cattle. Journal of Advanced Veterinary and Animal Research, 7, 234-241. doi: 10.5455/javar.2020.g415 Habimana, R., Ngeno, K., Okeno, T. O., Hirwa, C. D., Keambou Tiambo, C., & Yao, N. K. (2021). Genome-wide association study of growth performance and immune response to Newcastle disease virus of indigenous chicken in Rwanda. Frontiers in Genetics, 12, 723980. doi: 10.3389/fgene.2021.723980 Hu, M., Jiang, H., Lai, W., Shi, L., Yi, W., Sun, H., Chen, C., Yuan, B., Yan, S., & Zhang, J. (2023). Assessing genomic diversity and signatures of selection in Chinese red steppe cattle using high-density SNP array. Animals, 13, 1717. doi: 10.3390/ ani13101717 Israel, L., & Mellett, M. (2018). Clinical and genetic heterogeneity of CARD14 mutations in psoriatic skin disease. Frontiers in Immunology, 9, 2239. doi: 10.3389/fimmu.2018.02239. Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., San Cristobal, M., Servin, B., McCulloch, R., Whan, V., McEwan, J., & Dalrymple, B. (2012). Genome wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10(2), e1001258. doi: 10.1371/journal.pbio.1001258 Kim, H., Song, K. D., Kim, H. J., Park, W., Kim, J., & Lee, T. (2015). Exploring the genetic signature of body size in Yucatan miniature pig. PLoS ONE, 10, 4e0121732. doi: 10.1371/journal.pone.0121732. Kominakis, A., Hager-Theodorides, A.L., Saridaki, A., Antonakos, G., & Tsiamis, G. (2017). Genome-wide population structure and evolutionary history of the Frizarta dairy sheep. Animal, 11(10), 1680-1688. doi: 10.1017/S1751731117000428 Lázaro, S. F., Tonhati, H., Oliveira, H. R., Silva, A. A., Scalez, D. C. B., Nascimento, A. V., Santos, D. J. A., Stefani, G., Carvalho, I. S., Sandoval, A. F., & Brito, L. F. (2024). Genetic parameters and genome-wide association studies for mozzarella and milk production traits, lactation length, and lactation persistency in Murrah buffaloes. Journal of Dairy Science, 107(2), 992-1021. doi: 10.3168/jds.2023-23284 Leitner, G., Silanikove, N., & Merin, U. (2008). Estimate of milk and curd yield loss of sheep and goats with intramammary infection and its relation to somatic cell count. Small Ruminant Research, 74, 221-225. doi: 10.1016/j.smallrumres.2007.02.009 Li, R., Zhao, Y., Liang, B., Pu, Y., Jiang, L., & Ma, Y. (2023a). Genome-wide signal selection analysis revealing genes potentially related to sheep-milk-production traits. Animals, 13, 1654. doi: 10.3390/ani13101654 Li, Y., Wei, J., Sun, Y., Zhou, W., Ma, X., Guo, J., Zhang, H., & Jin, T. (2023b). DLGAP5 regulates the proliferation, migration, invasion, and cell cycle of breast cancer cells via the JAK2/STAT3 signaling axis. International Journal of Molecular Science, 24(21), 15819. doi: 10.3390/ijms242115819 Li, M., Pu, L., MacHugh, D. E., Tian, J., Wang, X., Zhao, Q., Shi, L., Gao, H., Yu, Y., Wang, L., & Zhao, F. (2024). Genome-wide association studies of novel resilience traits identify important immune QTL regions and candidate genes in Duroc pigs. Journal of Integrative Agriculture, 1, 2095-3119. doi: 10.1016/j.jia.2024.04.017 Liu, S. Q., Xu, Y. J., Chen, Z. T., Li, H., Zhang, Z., Wang, Q. S., & Pan, Y. C. (2024). Genome-wide detection of runs of homozygosity and heterozygosity in Tunchang pigs. Animal, 18(8), 101236. doi: 10.1016/j.animal.2024.101236 May, K., Sames, L., Scheper, C., & König, S. (2022). Genomic loci and genetic parameters for uterine diseases in first-parity Holstein cows and associations with milk production and fertility. Journal of Dairy Science, 105(1), 509-524. doi: 10.3168/jds.2021-20685 Mohammadi, H. (2024). Identification of genomic regions under positive selection that control the type traits in different goat breeds. Animal Production Research, 13(2), 43-57. doi: 10.22124/ar.2024.27378.1827 [In Persian] Öner, Y., Serrano, M., Sarto, P., Iguácel, L. P., Piquer-Sabanza, M., Estrada, O., Juan, T., & Calvo, J. H. (2021). Genome-wide association studies of somatic cell count in the Assaf breed. Animals, 11, 1531. doi: 10.3390/ani11061531 Patiabadi, Z., Razmkabir, M., EsmailizadehKoshkoiyeh, A., Moradi, M., Rashidi, A., & Mahmoudi, P. (2024). Whole-genome scan for selection signature associated with temperature adaptation in Iranian sheep breeds. PLoS ONE, 19(8), e0309023. doi: 10.1371/journal.pone.0309023 Rezvannejad, E., Asadollahpour Nanaei, H., & Esmailizadeh, A. (2022). Detection of candidate genes affecting milk production traits in sheep using whole-genome sequencing analysis. Veterinary Medicine and Science, 8(3), 1197-1204. doi: 10.1002/vms3.731 Saravanan, K. A., Panigrahi, M., Kumar, H., Parida, S., Bhushan, B., Gaur, G. K., Dutt, T., Mishra, B. P., & Singh, R. K. (2021). Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics, 113(3), 955-963. doi: 10.1016/j.ygeno.2021.02.009 Selionova, M., Trukhachev, V., Aibazov, M., Sermyagin, A., Belous, A., Gladkikh, M., & Zinovieva, N. (2024). Genome-wide association study of milk composition in Karachai Goats. Animals, 14, 327. doi: 10.3390/ani14020327 Shi, M. T., Zhang, Y., & Zhou, G. Q. (2018). The critical roles of TBC proteins in human diseases. Yi Chuan, 40, 12-21. doi: 10.16288/j.yczz.17-343 Song, X., Yao, Z., Zhang, Z., Lyu, S., Chen, N., Qi, X., Liu, X., Ma, W., Wang, W., Lei, C., Jiang, Y., Wang, E., & Huang, Y. (2024). Whole-genome sequencing reveals genomic diversity and selection signatures in Xia'nan cattle. BMC Genomics, 25(1), 559. doi: 10.1186/s12864-024-10463-3 Sutera, A. M., Portolano, B., Di Gerlando, R., Sardina, M. T., Mastrangelo, S., and Tolone, M. (2018). Determination of milk production losses and variations of fat and protein percentages according to different levels of somatic cell count in Valle del Belice dairy sheep. Small Ruminant Research, 162, 39-42. doi: 10.1016/j.smallrumres.2018.03.002 Wang, M., Zhang, S., Zheng, G., Huang, J., Songyang, Z., Zhao, X., & Lin, X. (2018). Gain-of-function mutation of CARD14 leads to Spontaneous Psoriasis-like Skin inflammation through enhanced Keratinocyte response to IL-17A. Immunity, 49, 66-79.e5. doi: 10.1016/j.immuni.2018.05.012 Waineina, R. W., Okeno, T. O., Ilatsia, E. D., & Ngeno, K. (2022). Selection signature analyses revealed genes associated with adaptation, production, and reproduction in selected goat breeds in Kenya. Frontiers in Genetics, 13, 858923. doi: 10.3389/fgene.2022.858923 Weir, B. S. & Cockerham, C. C. (1984). Estimating F‐statistics for the analysis of population structure. Evolution, 38(6), 1358-1370. doi: 10.1111/j.1558-5646.1984.tb05657.x Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 1, 395-420. doi: 10.1111/j.1558-5646.1965.tb01731.x Zhao, J., Mu, Y., Gong, P., Liu, B., Zhang, F., Zhu, L., Shi, C., Lv, X., & Luo, J. (2024). Whole-genome resequencing of native and imported dairy goat identifies genes associated with productivity and immunity. Frontiers in Veterinary Science, 11, 1409282. doi: 10.3389/fvets.2024.1409282 | ||
آمار تعداد مشاهده مقاله: 265 تعداد دریافت فایل اصل مقاله: 43 |