

A note on dimension of local cohomology modules

Mahnaz Amanalahzadeh[†], Jafar A[,]zami ^{‡*}, Mohammad Shafiei[§], Iraj Bagheriyeh

† †Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

§ Department of Mathematics, Payame Noor University(P N U), Tehran, Iran Department of Mathematics, Islamic Azad University-Hashtroud, Hashtroud, Iran Emails: m.amanollahzade@yahoo.com, azami@uma.ac.ir, Shafiei-m@pnu.ac.ir, Ir-ba2004@yahoo.com

Abstract. Let (R, \mathfrak{m}) be a commutative Noetherian local ring and I be an ideal of R. In this paper first we find new results about the dimension of the local cohomology module $H_I^i(R)$. Then we will obtain new relations between the invariants such as arithmetic rank, cohomological dimension, krull dimension, and the height of an ideal of R.

Keywords: Associated primes, Krull dimension, Local cohomology. AMS Subject Classification 2010: 13D45, 14B15, 13E05.

1 Introduction

Throughout this paper, R denotes a commutative Noetherian local ring with identity. For an R-module M, the i^{th} local cohomology module of M with respect to an ideal I is defined as

$$H_I^i(M) = \varinjlim_{n \ge 1} \operatorname{Ext}_R^i(R/I^n, M).$$

For each R module L, we denote by $\operatorname{Assh}_R(L)$ the set $\{\mathfrak{p} \in \operatorname{Ass}_R(L) : \dim R/\mathfrak{p} = \dim L\}$. For any ideal \mathfrak{b} of R, we denote $\{\mathfrak{p} \in \operatorname{Spec}(R) : \mathfrak{p} \supseteq \mathfrak{b}\}$ by $V(\mathfrak{b})$. For any ideal \mathfrak{b} of R, the radical of \mathfrak{b} , denoted by $\sqrt{\mathfrak{b}}$, is defined to be the set $\{x \in R : x^n \in \mathfrak{b} \text{ for some } n \in \mathbb{N}\}$. Recall that, for an R- module M, the set $\dim \operatorname{Ass}_R(M)$ is defined as

$$\{\mathfrak{p} \in \mathrm{Ass}_R(M) : \nexists \mathfrak{q} \in \mathrm{Ass}_R(M), \mathfrak{q} \subsetneq \mathfrak{p}\}.$$

The reader is referred to [1] for more details on local cohomology. Recall that, for an R-module M, the cohomological dimension of M with respect to I is defined as

$$\operatorname{Cd}(I, M) := \operatorname{Sup} \left\{ i \in \mathbb{Z} : H_I^i(M) \neq 0 \right\}.$$

Received: 1 December 2023/ Revised: 22 May 2024/ Accepted: 28 May 2024

DOI: 10.22124/JART.2024.26183.1609

^{*}Corresponding author

The cohomological dimension and arithmetic rank have been studied by several authors; see, for example, Dibaei and Yassemi [2], Grothendieck [5], Faltings [4], Hartshorne [6], Divaani-Aazar, Naghipour and Tousi [3], and Hellus–Stuckrad [7]. Also, for any proper ideal I of R, the arithmetic rank of I, denoted by $\operatorname{ara}(I)$, is the least number of elements of R required to generate an ideal which has the same radical as I.

In section two of this paper we present a new relation between, the dimension of ring, cohomological dimension, arithmetic rank and the height of an ideal of R. One of the main results of this paper is the following,

Theorem 1. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d and I be a proper ideal of R. Then there exist an integer i with height $I \leq i \leq d$ and $\mathfrak{p} \in \operatorname{Supp} H^i_I(R)$, such that height $\mathfrak{p} = i$ and $\dim R/\mathfrak{p} = d - i$. In particular, $\dim H^i_I(R) = d - i$.

For any unexplained notation and terminology we refer the readers to [1] and [8].

2 Main results

The following lemmas will be quite useful in the proof of the main results.

Lemma 1. Let (R, \mathfrak{m}) be a Noetherian local ring and M be a non-zero R-module of dimension n. Let $x \in \mathfrak{m}$ be such that $H^1_{Rx}(M) \neq 0$. Then $\dim H^1_{Rx}(M) \leq \dim M - 1 = n - 1$.

Proof. As Supp $H^1_{Rx}(M) \subseteq \operatorname{Supp} M$, so it is enough to show that $\operatorname{Assh} M \cap \operatorname{Supp} H^1_{Rx}(M) = \emptyset$. Suppose on the contrary that, there exists $\mathfrak{p} \in \operatorname{Spec}(R)$, such that $\mathfrak{p} \in \operatorname{Assh} M \cap \operatorname{Supp} H^1_{Rx}(M)$. In this case, as $\operatorname{Assh} M \subseteq m \operatorname{Ass} M$, then $\dim_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = 0$. Now, by [1, Theorem 4.3.2], $(H^1_{Rx}(M))_{\mathfrak{p}} = H^1_{R_{\mathfrak{p}}x}(M_{\mathfrak{p}}) = 0$ which is a contradiction. Therefore, from $\operatorname{Supp} H^1_{Rx}(M) \subseteq \operatorname{Supp} M$, we conclude that $\dim H^1_{Rx}(M) < \dim M$ and consequently $\dim H^1_{Rx}(M) \leq \dim M - 1 = n - 1$.

Lemma 2. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d and I be a proper ideal of R. Then for each $0 \le i \le d$, dim $H_I^i(R) \le d - i$.

Proof. Let $\mathfrak{p} \in \operatorname{Supp} H_I^i(R)$. Then $(H_I^i(R))_{\mathfrak{p}} \cong H_{IR_{\mathfrak{p}}}^i(R_{\mathfrak{p}}) \neq 0$. By [1, Theorem 6.1.2], dim $R_{\mathfrak{p}} = \operatorname{height} \mathfrak{p} \geq i$ and so

$$\dim R/\mathfrak{p} \le \dim R - \operatorname{height} \mathfrak{p} \le d - i.$$

Therefore,

$$\dim H_I^i(R) = \sup \{\dim R/\mathfrak{p} \mid \mathfrak{p} \in \operatorname{Supp} H_I^i(R)\} \le d - i.$$

We are now in a position to put all our previous Lemmas toghether to produce a proof of the main theorem of this paper.

Theorem 2. Let (R, \mathfrak{m}) be a Noetherian local ring of dimension d and I be a proper ideal of R. Then there exist an integer i with height $I \leq i \leq d$ and $\mathfrak{p} \in \operatorname{Supp} H^i_I(R)$, such that height $\mathfrak{p} = i$ and $\dim R/\mathfrak{p} = d - i$. In particular, $\dim H^i_I(R) = d - i$.

Proof. We begin the proof by induction on $n = \dim R/I$. If n = 0, then I is a \mathfrak{m} -primary ideal and so we have $H^d_I(R) = H^d_{\mathfrak{m}}(R) \neq 0$ and $\operatorname{Supp} H^d_{\mathfrak{m}}(R) = \{\mathfrak{m}\}$. Therefore $\mathfrak{m} \in \operatorname{Supp} H^d_{\mathfrak{m}}(R)$ and height $\mathfrak{m} = d$. In addition, $\dim R/\mathfrak{m} = d - d = 0$. Consequently, with i = d and $\mathfrak{p} = \mathfrak{m}$ the result has been proved in this case. Now suppose, inductively, that $\dim R/I = n > 0$, and the result has been proved for n - 1. By the prime avoidance theorem, $\mathfrak{m} \nsubseteq \cup_{\mathfrak{p} \in \operatorname{Min} \operatorname{Ass}_R R/I}\mathfrak{p}$. Hence there exists an element $x \in \mathfrak{m}$ such that $x \notin \cup_{\mathfrak{p} \in \operatorname{Min} \operatorname{Ass}_R R/I}\mathfrak{p}$. Therefore $\dim R/I + Rx = n - 1$ and by induction hypothesis there exists an integer height $(I + Rx) \leq j \leq d$, such that $\dim R/q = d - j$ and height q = j for some $q \in \operatorname{Supp} H^j_{I+Rx}(R)$. By [10, Corollary 3.5], there exists an exact sequence as follows,

$$0 \to H^1_{Rx}(H^{j-1}_I(R)) \to H^j_{I+Rx}(R) \to H^0_{Rx}(H^j_I(R)) \to 0.$$

Now consider two cases:

1) If $q \in \operatorname{Supp} H^0_{Rx}(H^j_I(R))$, it follows from $H^0_{Rx}(H^j_I(R)) \cong \Gamma_{Rx}(H^j_I(R)) \subseteq H^j_I(R)$, that $q \in \operatorname{Supp} H^j_I(R)$. On the other hand, height q = j, dim R/q = d - j and height $I \leq \operatorname{height}(I + Rx) \leq j$, which shows that the proof is completed.

2) If $q \in \operatorname{Supp} H^1_{Rx}(H^{j-\hat{1}}_I(R))$, then

$$0 \neq (H_{Rx}^1(H_I^{j-1}(R)))_q \cong H_{R_qx}^1(H_{IR_q}^{j-1}(R_q))$$

and so by Lemma 1, $\dim H^{j-1}_{IR_q}(R_q) \geq 1 + \dim H^1_{xR_q}(H^{j-1}_{IR_q}(R_q)) \geq 1$. Let $\mathfrak{p}R_q \in \operatorname{Assh} H^{j-1}_{IR_q}(R_q)$, then $\dim R_q/\mathfrak{p}R_q \geq 1$ and so height $q/\mathfrak{p} \geq 1$. Hence $\dim R/\mathfrak{p} = \operatorname{height} \mathfrak{m}/\mathfrak{p} \geq \operatorname{height} \mathfrak{m}/q + \operatorname{height} q/\mathfrak{p} \geq \dim R/q + 1 = d - j + 1 = d - (j - 1)$. Consequently, height $\mathfrak{p} \leq \dim R - \dim R/\mathfrak{p} \leq d - (d - (j - 1)) = j - 1$. Since $\mathfrak{p}R_q \in \operatorname{Assh} H^{j-1}_{IR_q}(R_q)$, it follows that $\mathfrak{p}R_q \in \operatorname{Supp} H^{j-1}_{IR_q}(R_q)$ and so $\mathfrak{p} \in \operatorname{Supp} H^{j-1}_I(R)$. Hence, $0 \neq (H^{j-1}_I(R))_{\mathfrak{p}} \cong H^{j-1}_{IR_{\mathfrak{p}}}(R_{\mathfrak{p}})$, and by Grothendieck's Vanishing Theorem, height $\mathfrak{p} = \dim R_{\mathfrak{p}} \geq j - 1$. Also height $\mathfrak{p} + \dim R/\mathfrak{p} \leq \dim R$, shows taht $\dim R/\mathfrak{p} \leq d - (j - 1)$. Now we conclude that height $\mathfrak{p} = j - 1$, $\dim R/\mathfrak{p} = d - (j - 1)$ and $\mathfrak{p} \in \operatorname{Supp} H^{j-1}_I(R)$. The inductive step is complete.

Lemma 3. Let R be a Noetherian ring and I be a proper ideal of R. Then $Cd(I, R) \leq ara(I) \leq dim R$.

Proof. See
$$[9, Theorem 2.11]$$
.

Lemma 4. Let (R, \mathfrak{m}) be a Noetherian local ring and I be a proper ideal of R such that $\operatorname{Cd}(I, R) = \dim R$. Then $\operatorname{ara}(I) = \dim R$.

Proof. Follows from Lemma 3.
$$\Box$$

Theorem 3. Let (R, \mathfrak{m}) be a Noetherian local ring and I be a proper ideal of R. Then there exists $\mathfrak{p} \in V(I)$ such that

$$\operatorname{Cd}(IR_{\mathfrak{p}}, R_{\mathfrak{p}}) = \operatorname{ara}(IR_{\mathfrak{p}}) = \dim R_{\mathfrak{p}} = \operatorname{height} \mathfrak{p} = \dim R - \dim R/\mathfrak{p}.$$

Proof. By Theorem 2, there exists $i \geq \operatorname{height} I$ and $\mathfrak{p} \in \operatorname{Supp} H_I^i(R)$ such that $\dim R/\mathfrak{p} = \dim R - i$, $\operatorname{height} \mathfrak{p} = i$ and $i = \dim R_{\mathfrak{p}} = \operatorname{height} \mathfrak{p} = \dim R - \dim R/\mathfrak{p}$, Consequently $0 \neq i$

 $(H_I^i(R))_{\mathfrak{p}} \cong H_{IR_{\mathfrak{p}}}^i(R_{\mathfrak{p}})$. In this case $i = \dim R_{\mathfrak{p}} \leq \operatorname{Cd}(IR_{\mathfrak{p}}, R_{\mathfrak{p}}) \leq \dim R_{\mathfrak{p}} = i$ and we conclude that $\operatorname{Cd}(IR_{\mathfrak{p}}, R_{\mathfrak{p}}) = \dim R_{\mathfrak{p}} = i$. Hence, by Lemma 4, $\operatorname{ara}(IR_{\mathfrak{p}}) = \dim R_{\mathfrak{p}}$. Therefore, we have the relations as follows,

$$\operatorname{Cd}(IR_{\mathfrak{p}}, R_{\mathfrak{p}}) = \operatorname{ara}(IR_{\mathfrak{p}}) = \dim R_{\mathfrak{p}} = \operatorname{height} \mathfrak{p} = \dim R - \dim R/\mathfrak{p} = i.$$

This completes the proof.

Corollary 1. Let (R, \mathfrak{m}) be a Noetherian local ring and $\mathfrak{p} \in \operatorname{Spec}(R)$, such that

$${q \in V(\mathfrak{p}) \mid \operatorname{height} q + \dim R/q = \dim R} = {\mathfrak{m}}.$$

Then $Cd(\mathfrak{p}, R) = ara(\mathfrak{p}) = dim(R)$.

Proof. Follows from Theorem 3.

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- [1] M. P. Brodmann and R.Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- [2] M. Dibaei and S. Yassemi, Attached primes of the topolocal cohomology modules with respect to an ideal, Archiv der Mathematik, 84 (2005), 292-297.
- [3] K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc., 130 (2002), 3537–3544.
- [4] G. Faltings, *Uber lokale Kohomologiegruppen hoher Ordnung*, J. Reine Angew. Math.,**313** (1980), 43–51.
- [5] A. Grothendieck, Local Cohomology, Notes by R. Hartshorne, Lecture Notes in Math., 862 Springer, New York, 1966.
- [6] R. Hartshorne, Affine duality and cofiniteness, Invent. Math., 9 (1970), 145–164.
- [7] M. Hellus and J. Stuckrad, *Matlis duals of top local cohomology modules*, Proc. Amer. Math. Soc., **136** (2008), 489–498.
- [8] H. Matsumura, Commutative ring theory, Cambridge Univ. Press, Cambridge, UK, 1986.
- [9] A. A. Mehrvarz, K. Bahmanpour and R. Naghipour, Arithmetic rank, cohomological dimension and filter regular sequences, J. Alg. Appl., 8(2009), 855-862.
- [10] P. Schenzel, Proregular sequences, local cohomology, and completion, Math. Scand., 92 (2003), 161-180.