

# Some results on 2-absorbing $R_{\Gamma}$ -semimodules over $\Gamma$ -semirings

Hitesh Kumar Ranote<sup>†\*</sup>

<sup>†</sup>Department of Mathematics, Maharaja Agarsen University, (Baddi) Solan, India Emails: hk05905@gmail.com

**Abstract.** The purpose of this paper is to introduce the notion of 2-absorbing  $R_{\Gamma}$ —semimodules over  $\Gamma$ —semirings, as a generalization of 2-absorbing semimodules over semirings and study various results related to them.

Keywords: k-ideal,  $R_{\Gamma}$ -semimodule, Strong  $R_{\Gamma}$ -semimodule, 2-absorbing  $R_{\Gamma}$ -semimodule, Γ- semiring. AMS Subject Classification 2010: 16Y60, 46J20.

#### 1 Introduction

The notion of 2-absorbing ideals of commutative rings with non-zero identity, as a generalization of prime ideals was introduced by Badawi [1] in 2007. Darani [2] investigated these concepts in commutative semirings and characterized several results in terms of 2-absorbing and weakly 2-absorbing ideals in commutative semirings in 2012. The notion of 2-absorbing semimodules over a commutative semirings with non-zero identity was introduced by Dubey and Sarohe [3] in 2013, which is a generalization of prime semimodules and gave some characterizations related to them.

In 1995, Rao [10] introduced the concept of  $\Gamma$ - semirings, as a generalization of semirings,  $\Gamma$ - rings and ternary semirings. Dutta and Sardar [4] and Rao [10], studied the concept of ideals, k-ideals and prime ideals in  $\Gamma$ - semirings. The notion of 2-absorbing ideals and 2-absorbing primary ideals of commutative  $\Gamma$ - semirings were defined by Sangjaer and Pianskool [11] in 2019 and examine the various results of 2-absorbing primary ideals in commutative  $\Gamma$ - semirings. The concept of  $\Gamma$ - semimodules over  $\Gamma$ - semirings was introduced by Sardar and Dasgupta [12] in 2004. Furthermore, Dutta and Dasgupta [5], Galindo and Petalcorin [7,8] studied the properties of  $\Gamma$ - semimodules over  $\Gamma$ - semirings and prove some results related to them. In this paper, the

Received: 30 January 2024/ Revised: 05 November 2024/ Accepted: 16 November 2024

DOI: 10.22124/JART.2024.26633.1627

<sup>\*</sup>Corresponding author

concept of 2-absorbing  $R_{\Gamma}$  – semimodules over  $\Gamma$  – semirings are introduced and study various results related to them.

#### 2 Preliminaries

In this section, we recall some basic definitions of  $\Gamma$ - semirings and  $R_{\Gamma}$ - semimodules. R represents a  $\Gamma$ - semiring throughout this paper.

**Definition 1** ([10]). Let R and  $\Gamma$  be two additive commutative semi-groups. Then R is called a  $\Gamma$ - semiring if there exists a mapping  $R \times \Gamma \times R \to R$  denoted by  $x\alpha y$  for all  $x, y \in R$  and  $\alpha \in \Gamma$  satisfying the following conditions:

- 1.  $(x+y)\alpha z = x\alpha z + y\alpha z$ .
- 2.  $x(\alpha + \beta)z = x\alpha z + x\beta z$ .
- 3.  $x\alpha(y+z) = x\alpha y + x\alpha z$ .
- 4.  $(x\alpha y)\beta z = x\alpha(y\beta z)$  for all  $x, y, z \in R$  and  $\alpha, \beta \in \Gamma$ .

R is a  $\Gamma$ - semiring with zero if for all  $x \in R$  and  $\gamma \in \Gamma$  we have  $0\gamma x = 0 = x\gamma 0$  and x + 0 = x = 0 + x. A  $\Gamma$ - semiring R is said to have an identity element if for all  $x \in R$  there exists  $\alpha \in \Gamma$  such that  $1\alpha x = x = x\alpha 1$  [13]. Let  $Z_0^+$  be a commutative semigroup under addition, which represents the set of non-negative integers. The set  $nZ_0^+ = \{nx | x \in Z_0^+\}$  is a commutative semigroup under the usual addition of integers for all  $n \in \mathbb{N}$  [11].

**Example 1.** Let  $R = Z_0^+$  be an additive commutative semigroup of positive integers and  $\Gamma = 5Z_0^+$  be a commutative semigroup under the usual addition of integers. Then R is a  $\Gamma$ -semiring with  $(a, \gamma, b) \to (a\gamma b)$ , where  $a, b \in Z_0^+$  and  $\gamma \in 5Z_0^+$ .

**Example 2.** Let  $R = (Z_6, +_6)$  be a commutative semigroup of addition modulo 6 and  $\Gamma = (Z_3, +_3)$  be a commutative semigroup of addition modulo 3. Then R is a  $\Gamma$ - semiring with  $(r, \beta, s) \to (r\beta s)$ , where  $r, s \in R$  and  $\beta \in \Gamma$ .

**Definition 2** ([10]). A  $\Gamma$ - semiring R is said to be commutative if  $x\gamma y = y\gamma x$  for all  $x, y \in R$  and for all  $\gamma \in \Gamma$ .

**Definition 3** ([6]). A non empty subset I of R is said to be a left (right) ideal of R if I is a subsemi-group of (R, +) and  $x\alpha y \in I(y\alpha x \in I)$  for all  $y \in I, x \in R$  and  $\alpha \in \Gamma$ . If I is both a left and right ideal of R, then I is known to be an ideal of R.

**Definition 4** ([6]). An ideal I of a  $\Gamma$ - semiring R is said to be k-ideal if for  $x, y \in R, x + y \in I$  and  $y \in I$  implies that  $x \in I$ .

**Definition 5** ([11]). Let R be a commutative  $\Gamma$ - semiring. A proper ideal J of R is said to be 2-absorbing ideal if whenever  $x, y, z \in R$  and  $\alpha, \beta \in \Gamma$  such that  $x\alpha y\beta z \in J$  implies that either  $x\alpha y \in J$  or  $x\beta z \in J$  or  $y\beta z \in J$ .

**Example 3.** By Example 1, R is a  $\Gamma$ - semiring, where  $R = Z_0^+$  and  $\Gamma = 5Z_0^+$ . Let  $J = 6Z_0^+$  be an ideal of R. Since  $1, 2, 3 \in R$  and  $5 \in \Gamma$  such that  $(1)(5)(2)(5)(3) \in J$ , then  $(2)(5)(3) \in J$ . Hence, J is 2-absorbing ideal.

**Definition 6** ([11]). Let R be a  $\Gamma$ - semiring and J be an ideal in R. Then  $\sqrt{J} = \{x \in R | \text{ there exists } n \in N \text{ such that } (x\alpha)^{n-1}x \in J \text{ for all } \alpha \in \Gamma \}$  is an ideal in R containing J. The ideal  $\sqrt{J}$  is called the radical ideal of J and is denoted by Rad(J).

By [9, Theorem 3.9],  $K = \sqrt{J}$  is a 2-absorbing ideal of R with  $K\Gamma K \subseteq J \subseteq K$ .

**Definition 7** ([12]). Let R be a  $\Gamma$ - semiring. An additive commutative monoid M is said to be a left  $R_{\Gamma}$ - semimodule if there exists a mapping  $R \times \Gamma \times M \to M$  (images to be denoted by  $r \in R, \alpha \in \Gamma, m \in M$ ) satisfying the following conditions:

- 1.  $r\alpha(m+n) = r\alpha m + r\alpha n$
- 2.  $(r+s)\alpha m = r\alpha m + s\alpha m$
- 3.  $r(\alpha + \beta)m = r\alpha m + r\beta m$
- 4.  $r\alpha(s\beta m) = (r\alpha s)\beta m$
- 5.  $0_R \alpha m = 0_M = r \alpha 0_M$  for all  $r, s \in R, \alpha, \beta \in \Gamma$  and  $m, n \in M$ .

A right  $R_{\Gamma}$  – semimodule is defined analogously.

**Example 4.** Every  $\Gamma$ - semiring is an  $R_{\Gamma}$ - semimodule. Let R be a  $\Gamma$ - semiring and M=R. Define a mapping  $R \times \Gamma \times R \to R$  with  $(x, \alpha, y) \to x\alpha y$ . Then R is an  $R_{\Gamma}$ - semimodule.

**Example 5.** By Example 1, R is a  $\Gamma$ - semiring, where  $R = Z_0^+$  and  $\Gamma = 5Z_0^+$ . Let  $M = 3Z_0^+$  be an additive commutative monoid. Then M is an  $R_{\Gamma}$ - semimodule with  $(r, \alpha, m) \to r\alpha m$ , where  $r \in R, \alpha \in \Gamma$  and  $m \in M$ .

**Example 6.** Let  $R=Z_0^+$  and  $\Gamma=3Z_0^+$  be an additive commutative semi-group of positive integers. Then R is a  $\Gamma-$  semiring. Let  $M=Z_0^+\oplus 2Z_0^+=\{(r,z)|r\in Z_0^+,z\in 2Z_0^+\}$  be an additive commutative monoid. Define a mapping  $R\times\Gamma\times M\to M$  with  $(r,z)\oplus (r_1,z_1)=(r+_{Z_0^+}r_1,z+_{Z_0^+}z_1)$  and  $(r_2,\alpha,(r,z))\to (r_2\alpha r,z)$ , where  $r_2\in R,\alpha\in\Gamma$  and  $(r,z),(r_1,z_1)\in M$ . Then M is an  $R_\Gamma-$  semimodule.

**Definition 8** ([12]). A left  $R_{\Gamma}$  – semimodule M is called unity or unitary if there exists  $1 \in R$  such that  $1 \alpha m = m$  for all  $m \in M$  and  $\alpha \in \Gamma$ .

**Definition 9** ([12]). A non empty subset N of a left  $R_{\Gamma}$  – semimodule M is a left  $R_{\Gamma}$  – subsemimodule M if and only if

- 1.  $x + y \in N$ .
- 2.  $r\alpha x \in N$  for all  $x, y \in N, r \in R$  and  $\alpha \in \Gamma$ .

It is obvious that  $0_M \in N$ .

**Definition 10** ([5]). A proper  $R_{\Gamma}$  – subsemimodule N of an  $R_{\Gamma}$  – semimodule M is called k – $R_{\Gamma}$  – subsemimodule if  $x, x + y \in N$  and  $y \in M$  implies that  $y \in N$ .

**Definition 11** ([5]). A proper  $R_{\Gamma}$  – subsemimodule N of an  $R_{\Gamma}$  – semimodule M is called strong  $R_{\Gamma}$  – subsemimodule if for some  $x, y \in M$  such that  $x + y \in N$  implies that  $x \in N$  and  $y \in N$ .

**Example 7.** By Example 1, R is a  $\Gamma$ - semiring, where  $R = Z_0^+$  and  $\Gamma = 5Z_0^+$ . Let  $M = Z_0^+ \times Z_0^+$  be an additive commutative monoid. Then M is an  $R_{\Gamma}$ - semimodule. Consider  $N = 2Z_0^+ \times 2Z_0^+$  be an  $R_{\Gamma}$ - subsemimodule of an  $R_{\Gamma}$ - semimodule M. Then N is a k- $R_{\Gamma}$ - subsemimodule of M, while N is not a strong  $R_{\Gamma}$ - subsemimodule, since  $(3,5)+(5,7) \in N$  but neither  $(3,5) \in N$  nor  $(5,7) \in N$ .

All through here, R will signify with 0 and 1 as zero element and identity element except if in any case expressed.

## 3 2-absorbing $R_{\Gamma}$ - semimodules

In this section, we introduce and study the notion of 2-absorbing  $R_{\Gamma}$  – semimodules and investigate the properties in commutative  $\Gamma$  – semirings.

**Definition 12** ([7]). Let R be a  $\Gamma$ - semiring and M be an  $R_{\Gamma}$ - semimodule and N be a proper  $R_{\Gamma}$ - subsemimodule of M. Then  $(N:M) = \{r \in R : r\Gamma M \subseteq N\}$  is called associated ideal of N.

**Theorem 1.** Let M be an  $R_{\Gamma}$ - semimodule and N be a proper k- $R_{\Gamma}$ - subsemimodule of M. Then (N:M) is a k- ideal of R.

*Proof.* Since the intersection of an arbitrary family of k- ideals of R is again k-ideals. Now, we show that (N:M) is a k-ideal of R. Let  $r \in R, m_1 \in (N:M)$  and  $\alpha \in \Gamma$  with  $r+m_1 \in (N:M)$ . Then for some  $m \in M$ , we have  $r\alpha m + m_1 \alpha m \in N$  and  $m_1 \alpha m \in N$ . Therefore,  $r\alpha m \in N$ , as N is k- $R_{\Gamma}$ - subsemimodule of M. So  $r \in (N:M)$ . Hence, (N:M) is a k- ideal of R.

**Definition 13.** Let M be an  $R_{\Gamma}$ - semimodule. A proper  $R_{\Gamma}$ - subsemimodule N of M is called prime if  $r \in R$ ,  $x \in M$  and  $\alpha \in \Gamma$  such that  $r\alpha x \in N$ , then either  $r \in (N : M)$  or  $x \in N$ .

**Definition 14.** Let M be an  $R_{\Gamma}$ - semimodule and N be a proper  $R_{\Gamma}$ - subsemimodule of M. Then N is said to be 2-absorbing  $R_{\Gamma}$ - subsemimodule of M, if whenever  $r, s \in R$ ,  $m \in M$  and  $\alpha, \beta \in \Gamma$  such that  $r\alpha s \beta m \in N$  implies that  $r\alpha s \in (N : M)$  or  $r\beta m \in N$  or  $s\beta m \in N$ .

It is obvious that each prime  $R_{\Gamma}$  – subsemimodule is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M. The following example shows that the converse need not be true.

**Example 8.** (i). Let  $R = Z_0^+$  and  $\Gamma = 2Z_0^+$  be an additive commutative semi-group of positive integers and  $M = R \times R$  be an additive commutative monoid. Then M is an  $R_{\Gamma}-$  semimodule. Let  $N = \{0\} \times 4Z_0^+$  be an  $R_{\Gamma}-$  subsemimodule of M, then  $(N:M) = \{0\}$ . Since  $1, 2 \in R$ ,  $(0,1) \in M$  and  $2 \in \Gamma$  such that  $1.2.2.2.(0,1) \in N$  which gives  $2.2.(0,1) \in N$ . Hence, N is a 2-absorbing  $R_{\Gamma}-$  subsemimodule of M. While, N is not a prime  $R_{\Gamma}-$  subsemimodule of M, since  $2.2.(0,1) \in N$  but neither  $2 \in (N:M)$  nor  $(0,1) \in N$ .

(ii). By Example (i), M is an  $R_{\Gamma}$ - semimodule. Let  $N = \{0\} \times 6Z_0^+$  be an  $R_{\Gamma}$ - subsemimodule of M, then the associated ideal of N is  $\{0\}$ . Consider  $1, 3 \in R$ ,  $(0, 1) \in M$  and  $2 \in \Gamma$  such that  $1.2.3.2.(0, 1) \in N$  which gives  $3.2.(0, 1) \in N$ . Hence, N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M. But, N is not a prime  $R_{\Gamma}$ - subsemimodule of M, since  $3.2.(0, 1) \in N$  but neither  $3 \in (N : M)$  nor  $(0, 1) \in N$ .

**Theorem 2.** Let M be an  $R_{\Gamma}$ - semimodule and N be a 2-absorbing k- $R_{\Gamma}$ - subsemimodule of M. Then (N:M) is a 2-absorbing ideal of R.

Proof. By Theorem 1, (N:M) is a k-ideal of R. We now show that (N:M) is a 2-absorbing ideal of R. Let  $r\alpha s\beta t\in (N:M)$  for some  $r,s,t\in R$  and  $\alpha,\beta\in \Gamma$ . Assume that  $r\beta t\notin (N:M)$  or  $s\beta t\notin (N:M)$ , then  $r\beta t\gamma m\notin N$  or  $s\beta t\gamma n\notin N$  for some  $m,n\in M\setminus N$  and  $\beta,\gamma\in \Gamma$ . Since  $r\alpha s\beta t\in (N:M)$  then  $r\alpha s\beta t\Gamma M\subseteq N$  implies that  $r\alpha s\beta (t\gamma (m+n))\in N$ , which gives  $r\alpha s\in (N:M)$  or  $r\beta t\gamma (m+n)\in N$  or  $s\beta t\gamma (m+n)\in N$ . If  $r\beta t\gamma (m+n)\in N$  and  $r\beta t\gamma m\notin N$  then we have  $r\beta t\gamma n\notin N$ , as N is a k- $R_{\Gamma}$ - subsemimodule of M. Now as  $r\alpha s\beta (t\gamma n)\in N$  and N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M, so either  $r\alpha s\in (N:M)$  or  $s\beta t\gamma n\in N$  or  $r\beta t\gamma n\in N$ . Consequently,  $r\alpha s\in (N:M)$ . If  $s\beta t\gamma (m+n)\in N$  and  $s\beta t\gamma n\notin N$  then we have  $s\beta t\gamma m\notin N$ . Since N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M and  $r\alpha s\beta (t\gamma m)\in N$ , either  $r\alpha s\in (N:M)$  or  $s\beta t\gamma m\in N$  or  $r\beta t\gamma m\in N$ . Thus,  $r\alpha s\in (N:M)$ . Hence, (N:M) is a 2-absorbing ideal of R.

Corollary 1. Let R be a  $\Gamma$ - semiring, M be an  $R_{\Gamma}$ - semimodule and N be a 2-absorbing k- $R_{\Gamma}$ subsemimodule of M. Then  $K = \sqrt{N : M} = \{r \in R : r\alpha r \in (N : M), \alpha \in \Gamma\}$  is a 2-absorbing ideal of R with  $K\Gamma K \subseteq (N : M) \subseteq K$ .

*Proof.* Let N be a 2-absorbing  $R_{\Gamma}$  – subsemimodule of an  $R_{\Gamma}$  – semimodule M. Then by Theorem 2, (N:M) is a 2-absorbing ideal of R. By [9, Theorem 3.9],  $\sqrt{(N:M)}$  is a 2-absorbing ideal of R.

In general, the converse of Theorem 2 is not true.

**Example 9.** By Example 8 (i), M is an  $R_{\Gamma}$ - semimodule, where  $R = Z_0^+$ ,  $\Gamma = 2Z_0^+$  and  $M = R \times R$ . Let  $N = \{0\} \times 8Z_0^+$  be an  $R_{\Gamma}$ - subsemimodule of M, then  $(N:M) = \{0\}$ , which is a 2-absorbing ideal of R. While N is not a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M, since  $1, 2 \in R, (0,1) \in M$  and  $2 \in \Gamma$  such that  $(2)(2)(1)(2)(0,1) \in N$ , neither  $(2)(2)(1) \in (N:M)$  nor  $(2)(2)(0,1) \in N$  nor  $(1)(2)(0,1) \in N$ .

The converse of the Theorem 2 is true in the case of cyclic  $R_{\Gamma}$  – semimodules.

**Definition 15** ([7]). An  $R_{\Gamma}$ - semimodule M is called cyclic  $R_{\Gamma}$ - semimodule if M can be generated by a single element, that is,  $M=(m)=R\Gamma m=\{r\alpha m|\ r\in R, \alpha\in\Gamma\}$  for some  $m\in M$ .

**Theorem 3.** Let N be a 2-absorbing  $R_{\Gamma}$  – subsemimodule of a cyclic  $R_{\Gamma}$  – semimodule M. Then (N:M) is a 2-absorbing ideal of R if and only if N is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M.

Proof. Let (N:M) be a 2-absorbing ideal of R and  $M=R\Gamma m$ , for some  $m\in M$ . Suppose that  $r\alpha s\beta m_1\in N$  for  $r,s\in R,m_1\in M$  and  $\alpha,\beta\in\Gamma$ . Then there exists  $t\in R$  and  $\gamma\in\Gamma$  such that  $m_1=t\gamma m$ , and we have  $r\alpha s\beta t\gamma m\in N$ . Thus,  $r\alpha s\beta t\in (N:m)=(N:M)$ , gives either  $r\alpha s\in (N:M)$  or  $r\beta t\in (N:M)$  or  $s\beta t\in (N:M)$ , as (N:M) be a 2-absorbing ideal of R. Therefore,  $r\alpha s\in (N:M)$  or  $r\beta x\in N$  or  $s\beta x\in N$ . Hence, N is a 2-absorbing  $R_{\Gamma}$ —subsemimodule of M. The converse is true by Theorem 2.

**Theorem 4.** Let M be an  $R_{\Gamma}$ - semimodule and N be a 2-absorbing k- $R_{\Gamma}$ - subsemimodule of M such that  $\sqrt{(N:M)} = J$ . If  $(N:M) \neq J$ , then for all  $r \in J \setminus (N:M)$  by  $N_r = \{m \in M : r\alpha m \in N, \alpha \in \Gamma\}$  is a prime  $R_{\Gamma}$ - subsemimodule of M containing N with  $K \subseteq (N_r:M)$ .

Proof. Let  $s \in R \setminus (N_r : M)$ ,  $m \in M$  and  $\beta \in \Gamma$  such that  $s\beta m \in N_r$ . Then  $r\alpha s\beta m \in N$ , so either  $r\alpha s \in (N : M)$  or  $r\beta m \in N$  or  $s\beta m \in N$ , as N is a 2-absorbing  $R_{\Gamma}$  - subsemimodule of M. If  $r\alpha s \in (N : M)$ , then  $s \in (N_r : M)$ , which is a contradiction. By definition of  $N_r$ , if  $r\beta m \in N$  then  $m \in N_r$ , then there is nothing to prove. If  $s\beta m \in N$  and  $r\gamma r \in K\Gamma K \subseteq (N : M), \gamma \in \Gamma$ , then for some  $m \in M$  and  $\beta \in \Gamma$  such that  $r\beta m \in N_r$ . Now,  $(r + s)\beta m \in N_r$  implies that  $r\gamma (r+s)\beta m \in N$ , thus we have either  $r\beta m \in N$  or  $(r+s)\beta m \in N$  or  $r\gamma (r+s) \in (N : M)$ , as N is a 2-absorbing  $R_{\Gamma}$  - subsemimodule of M. Moreover, if  $(r+s)\beta m \in N$  and  $s\beta m \in N$ , then  $r\beta m \in N$  implies that  $m \in N_r$ , as N is a k-ideal. If  $r\gamma (r+s) \in (N : M)$  and  $r\gamma r \in K\Gamma K \subseteq (N : M)$ , which gives  $r\gamma s \in (N : M)$  implies that  $s \in (N_r : M)$ , a contradiction. Hence,  $N_r$  is a prime  $R_{\Gamma}$  - subsemimodule of M.

**Theorem 5.** Let M be an  $R_{\Gamma}-$  semimodule and N be a k- $R_{\Gamma}-$  subsemimodule of M, then the following statements hold:

- 1.  $N_r$  is a k- $R_{\Gamma}$  subsemimodule of M.
- 2.  $(N_r:M)$  is a k-ideal of R.
- Proof. 1. Let  $m, (m+n) \in N_r$  and  $n \in M$ . Then  $r\alpha m, (r\alpha m + r\alpha n) \in N$ ,  $\alpha \in \Gamma$ . So  $r\alpha n \in N$  implies that  $n \in N_r$ , as N is a k- $R_{\Gamma}$  subsemimodule of M. Thus,  $N_r$  is a k- $R_{\Gamma}$  subsemimodule of M.
  - 2. By (1),  $N_r$  is a k- $R_\Gamma$  subsemimodule of M, then by Theorem 1,  $(N_r:M)$  is a k-ideal of R.

**Theorem 6.** Let M be an  $R_{\Gamma}$ - semimodule and N be a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M. If  $N_1$  is an  $R_{\Gamma}$ - subsemimodule of M, then  $N_1 \cap N$  is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of  $N_1$ .

Proof. Since N is a proper  $R_{\Gamma}$  – subsemimodule of M, then  $N_1 \cap N$  is a proper  $R_{\Gamma}$  – subsemimodule of  $N_1$ . Assume that  $r\alpha s\beta n_1 \in N_1 \cap N$  for some  $r,s \in R, n_1 \in N_1$  and  $\alpha,\beta \in \Gamma$ . Since N is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M and  $r\alpha s\beta n_1 \in N$ , either  $r\alpha s \in (N:M)$  or  $r\beta n_1 \in N$  or  $s\beta n_1 \in N$ . If  $r\beta n_1 \in N$  or  $s\beta n_1 \in N$ , then  $r\beta n_1 \in N_1 \cap N$  or  $s\beta n_1 \in N_1 \cap N$ . In case  $r\alpha s \in (N:M)$ , then  $r\alpha s\Gamma M \subseteq N$ . Especially,  $r\alpha s\Gamma N_1 \subseteq N$  implies that  $r\alpha s\Gamma N_1 \subseteq N_1 \cap N$ . Therefore,  $r\alpha s \in (N_1 \cap N:N_1)$ . Hence,  $N_1 \cap N$  is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of  $N_1$ .  $\square$ 

**Theorem 7.** Let M be an  $R_{\Gamma}$ - semimodule and N be intersection of two prime  $R_{\Gamma}$ - subsemimodules of M. Then N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule.

Proof. Assume that  $N_1$  and  $N_2$  be two prime  $R_{\Gamma}$  – subsemimodules of M. Now we have to show that  $N_1 \cap N_2$  is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M. Let  $r, s \in R$ ,  $m \in M$  and  $\alpha, \beta \in \Gamma$  such that  $r\alpha s\beta m \in N_1 \cap N_2$ . Then  $r\alpha s\beta m \in N_1$  and  $r\alpha s\beta m \in N_2$ . Since  $N_1$  is a prime  $R_{\Gamma}$  – subsemimodules of M and  $r\alpha s\beta m \in N_1$  implies  $r \in (N_1 : M)$  or  $s \in (N_1 : M)$  or  $m \in N_1$ . Also,  $r\alpha s\beta m \in N_2$  implies  $r \in (N_2 : M)$  or  $s \in (N_2 : M)$  or  $m \in N_2$ . If  $r \in (N_1 : M)$  then  $r\Gamma M \subseteq N_1$ . In a similar way, if  $r \in (N_2 : M)$ , then  $r\Gamma M \subseteq N_2$ . Thus  $r\Gamma M \subseteq N_1 \cap N_2$  which infers that  $r \in (N_1 \cap N_2 : M)$ . Similarly,  $s \in (N_1 \cap N_2 : M)$ . Hence  $r\alpha s \in (N_1 \cap N_2 : M)$ . Further, if  $r \in (N_1 : M)$  and  $m \in N_2$ , then  $r\beta m \in N_1 \cap N_2$ . In a similar way, we can prove other cases. Hence,  $N_1 \cap N_2$  is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M.

While the intersection of two distinct nonzero 2-absorbing  $R_{\Gamma}$  – subsemimodules need not be a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M.

**Example 10.** By Example 8,  $N_1 = \{0\} \times 4Z_0^+$  and  $N_2 = \{0\} \times 6Z_0^+$  are 2-absorbing  $R_{\Gamma}$  - subsemimodules of M. Then  $N = N_1 \cap N_2 = (\{0\} \times 4Z_0^+) \cap (\{0\} \times 6Z_0^+) = \{0\} \times 12Z_0^+$ . Then  $(N:M) = \{0\}$ . Let  $1, 3 \in R$ ,  $(0,1) \in M$  and  $2 \in \Gamma$  such that  $1.2.3.2.(0,1) \in N$  which gives neither  $1.2.3 \in (N:M)$  nor  $3.2.(0,1) \in N$  nor  $1.2.(0,1) \in N$ . Hence, N is not a 2-absorbing  $R_{\Gamma}$  - subsemimodule of M.

**Definition 16.** An  $R_{\Gamma}$ - semimodule M is said to be a multiplication  $R_{\Gamma}$ - semimodule if for each  $R_{\Gamma}$ - subsemimodules N of M is of the form  $N = J\Gamma M$ , where J an ideal of R.

**Definition 17** ([13]). An element x of a  $\Gamma$ - semiring R is said to be a multiplicative  $\Gamma$ idempotent if there exists  $\gamma \in \Gamma$  such that  $x = x\gamma x$ . If every element of R is a multiplicative  $\Gamma$ idempotent, then R is called a multiplicative  $\Gamma$ - idempotent  $\Gamma$ - semiring.

**Example 11.** Let R be a multiplicatively  $\Gamma$ - idempotent  $\Gamma$ - semiring. Then every ideal of R is a multiplication  $R_{\Gamma}$ - semimodule. Assume that K is an ideal of R and  $J \subseteq K$ . If  $a \in J$  and  $\alpha \in \Gamma$ , then we have  $a = a\alpha a \in J\Gamma K$ . Thus,  $J = J\Gamma K$ . Hence, K is a multiplication  $R_{\Gamma}$ - semimodule.

**Theorem 8.** Every cyclic  $R_{\Gamma}$  – semimodule is a multiplication  $R_{\Gamma}$  – semimodule.

Proof. Let  $M(=R\Gamma m)$  be a cyclic  $R_{\Gamma}$  – semimodule and N be an  $R_{\Gamma}$  – subsemimodule of M, then  $N=R\Gamma n$  where  $n=r\alpha m$  for some  $r\in R$  and  $\alpha\in\Gamma$ . Since  $N=R\Gamma n=R\Gamma(r\alpha m)=(R\Gamma r)\alpha m=(R\Gamma r)\Gamma(R\Gamma m)=J\Gamma M$  for  $J=R\Gamma r$ . Hence, M is a multiplication  $R_{\Gamma}$  – semimodule.

**Theorem 9.** Let N be an  $R_{\Gamma}$ - subsemimodule of a cyclic  $R_{\Gamma}$ - semimodule M. Then N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M if and only if  $X\Gamma Y\Gamma Z\subseteq N$  implies  $X\Gamma Y\subseteq N$  or  $Y\Gamma Z\subseteq N$  or  $X\Gamma Z\subseteq N$  for some  $R_{\Gamma}$ - subsemimodules X, Y and Z of M.

*Proof.* Let N be a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M. Assume that for some  $R_{\Gamma}$  – subsemimodules X, Y and Z of M such that  $X\Gamma Y\Gamma Z\subseteq N$ . Since M is cyclic, then by Theorem 8, M is a multiplication  $R_{\Gamma}$  – semimodule. Thus,  $X=J\Gamma M, Y=K\Gamma M$  and  $Z=L\Gamma M$  for some

ideals J, K and L of R. Then,  $X\Gamma Y\Gamma Z = (J\Gamma K\Gamma L)\Gamma M \subseteq N$  implies that  $J\Gamma K\Gamma L \subseteq (N:M)$ . As N is a 2-absorbing  $R_{\Gamma}$ — subsemimodule of M, then by Theorem 3, (N:M) is a 2-absorbing ideal of R. So either  $J\Gamma K \subseteq (N:M)$  or  $K\Gamma L \subseteq (N:M)$  or  $J\Gamma L \subseteq (N:M)$ . Thus,  $J\Gamma K\Gamma M \subseteq N$  or  $K\Gamma L\Gamma M \subseteq N$  or  $J\Gamma L\Gamma M \subseteq N$  which implies that  $(J\Gamma M)\Gamma (K\Gamma M) \subseteq N$  or  $(K\Gamma M)\Gamma (L\Gamma M) \subseteq N$  or  $(J\Gamma M)\Gamma (L\Gamma M) \subseteq N$ , Hence, either  $X\Gamma Y \subseteq N$  or  $Y\Gamma Z \subseteq N$  or  $X\Gamma Z \subseteq N$ . Conversely, assume that for some ideals J, K and L of R such that  $J\Gamma K\Gamma L \subseteq (N:M)$ . Then  $J\Gamma K\Gamma L\Gamma M \subseteq N$ . As M is a cyclic, then by Theorem 8, M is a multiplication  $R_{\Gamma}$ — semimodule. So  $(J\Gamma K\Gamma L)\Gamma M \subseteq N$  implies  $(J\Gamma M)\Gamma (K\Gamma M)\Gamma (L\Gamma M) \subseteq N$ . Thus, either  $(J\Gamma M)\Gamma (K\Gamma M) \subseteq N$  or  $(K\Gamma M)\Gamma (L\Gamma M) \subseteq N$  or  $(J\Gamma M)\Gamma (L\Gamma M) \subseteq N$ . Consequently,  $J\Gamma K \subseteq (N:M)$  or  $K\Gamma L \subseteq (N:M)$  or  $J\Gamma L \subseteq (N:M)$ . Thus, (N:M) is a 2-absorbing ideal of R. Therefore, by Theorem 3, R is a 2-absorbing  $R_{\Gamma}$ — subsemimodule of R.

**Theorem 10.** Let N be an  $R_{\Gamma}$ - subsemimodule of a cyclic  $R_{\Gamma}$ - semimodule M. Then the following statements are equivalent:

- 1. N is a 2-absorbing  $R_{\Gamma}$  subsemimodule.
- 2. (N:M) is a 2-absorbing ideal of R.
- 3.  $N = P\Gamma M$ , where P is a 2-absorbing ideal of R. If  $J\Gamma M \subseteq N$  with  $J \subseteq P$ , then P is maximal.
- *Proof.* (1)  $\Rightarrow$  (2). By Theorem 3, (N:M) is a 2-absorbing ideal of R.
- (2)  $\Rightarrow$  (3). By Theorem 8, M is a multiplicative  $R_{\Gamma}$  semimodule. Then  $N = P\Gamma M$  for some ideal P of R. Thus P = (N : M), which is a 2-absorbing ideal of R, by (ii). Assume that  $J\Gamma M \subseteq N$  for some ideal J of R such that  $J\subseteq (N : M) = P$ . Thus, P is maximal, if  $J\Gamma M \subseteq N$ , then  $J\subseteq P$ .
- (3)  $\Rightarrow$  (1). Assume that for some ideals J, K and L of R such that  $J\Gamma K\Gamma L \subseteq (N:M)$ . Then  $J\Gamma K\Gamma L\Gamma M \subseteq N$ . As M is a cyclic, then by Theorem 8, M is a multiplicative  $R_{\Gamma}$  semimodule. Since P is a 2-absorbing ideal of R, so  $(J\Gamma K\Gamma L)\Gamma M \subseteq N = P\Gamma M$ . Then  $J\Gamma K\Gamma L \subseteq P$ , as P is maximal ideal. Hence,  $J \subseteq P$ . As P is a 2-absorbing ideal of R so,  $J\Gamma K \subseteq P$  or  $K\Gamma L \subseteq P$  or  $J\Gamma L \subseteq P$  implies that  $J\Gamma K\Gamma M \subseteq P\Gamma M = N$  or  $K\Gamma L\Gamma M \subseteq P\Gamma M = N$  or  $J\Gamma L\Gamma M \subseteq P\Gamma M = N$ . Hence,  $J\Gamma K \subseteq (N:M)$  or  $K\Gamma L \subseteq (N:M)$  or  $J\Gamma L \subseteq (N:M)$ . Thus, (N:M) is a 2-absorbing ideal of R. By Theorem 3, R is a 2-absorbing R— semimodule of R.

**Definition 18.** An  $R_{\Gamma}$ - subsemimodule N of an  $R_{\Gamma}$ - semimodule M is called pure if  $r\Gamma N = N \cap r\Gamma M$  for all  $r \in R$ .

**Definition 19.** An  $R_{\Gamma}$ - semimodule M is called  $M_{\Gamma}$ - cancellative  $R_{\Gamma}$ - semimodule if  $m, n \in M$ ,  $r \in R$  and  $\alpha \in \Gamma$  such that  $r\alpha m = r\alpha n$ , then m = n.

**Theorem 11.** Let N be a proper  $R_{\Gamma}$  – subsemimodule of  $M_{\Gamma}$  – cancellative  $R_{\Gamma}$  – semimodule M. Then N is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M with  $(N:M) = \{0\}$  if and only if N is a pure  $R_{\Gamma}$  – subsemimodule of M.

Proof. Let N be a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M. Assume that for some  $r, s \in R, m_1 \in M$  and  $\alpha, \beta \in \Gamma$  such that  $r\alpha s\beta m_1 \in r\alpha s\Gamma M \cap N$  and  $r\alpha s \neq 0$ . As N is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M so either  $r\beta m_1 \in N$  or  $s\beta m_1 \in N$ . If  $s\beta m_1 \in N$ , then  $r\alpha s\beta m_1 \in r\alpha s\Gamma N$  for some  $r \in R$ . Thus  $r\alpha s\Gamma M \cap N \subseteq r\alpha s\Gamma N$ . In a similar way, we may prove the other cases  $r\beta m_1 \in N$ . The converse is clear. So  $r\alpha s\Gamma M \cap N = r\alpha s\Gamma N$ . Hence, N is a pure  $R_{\Gamma}$  – subsemimodule of M.

Conversely, let N be a pure  $R_{\Gamma}$  – subsemimodule of M. Assume that for some  $r, s \in R, m \in M$  and  $\alpha, \beta \in \Gamma$  with  $r\alpha s\beta m \in N$  such that  $r\alpha s \notin (N:M)$ . Then  $r\alpha s\beta m \in r\alpha s\Gamma M \cap N = r\alpha s\Gamma N$ . Therefore,  $r\alpha s\beta m = r\alpha s\beta n$  for some  $n \in N$ . Since M is a  $M_{\Gamma}$  – cancellative  $R_{\Gamma}$  – semimodule, then  $s\beta m = s\beta n \in N$ . Consequently, N is a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M. Moreover, assume that  $r \in (N:M)$  with  $r \neq 0$ . Since  $N \neq M$ , then  $r\alpha u \in r\Gamma M \cap M = r\Gamma N$  for some  $u \in M \setminus N$ , so  $r\alpha u = r\alpha v$  for some  $v \in N$ . Therefore u = v, a contradiction. Hence,  $(N:M) = \{0\}$ .

**Definition 20.** Let M and  $M_1$  be two  $R_{\Gamma}$ - semimodules. A mapping  $f: M \to M_1$  is an  $R_{\Gamma}$ -homomorphism if  $m, n \in M, r \in R$  and  $\alpha \in \Gamma$  then

- 1. f(m+n) = f(m) + f(n)
- 2.  $f(r\alpha m) = r\alpha f(m)$ .

An  $R_{\Gamma}$  – homomorphism f is an  $R_{\Gamma}$  – epimorphism if f is surjective.

**Theorem 12.** Let  $f: M \to M_1$  be an  $R_{\Gamma}$ - epimorphism of  $R_{\Gamma}$ - semimodules M and  $M_1$ . If N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of  $M_1$ , then  $f^{-1}(N)$  is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M.

Proof. Let  $r\alpha s\beta m \in f^{-1}(N)$  for some  $r, s \in R, m \in M$  and  $\alpha, \beta \in \Gamma$ . Then  $f(r\alpha s\beta m) = r\alpha s\beta f(m) \in N$ . So  $r\alpha s \in (N:M_1)$  or  $r\beta f(m) \in N$  or  $s\beta f(m) \in N$ , as N is a 2-absorbing  $R_{\Gamma}$ — subsemimodule of  $M_1$ . If  $r\alpha s \in (N:M_1)$  then  $r\alpha s\Gamma M_1 \subseteq N$  implies that  $r\alpha s\Gamma M = r\alpha s\Gamma f^{-1}(M_1) = f^{-1}(r\alpha s\Gamma M_1) \subseteq f^{-1}(N)$ . Thus,  $r\alpha s \in (f^{-1}(N):M)$ . If  $r\beta f(m) \in N$  then  $f(r\beta m) \in N$  implies that  $r\beta m \in f^{-1}(N)$ . Likewise, if  $s\beta f(m) \in N$  then  $f(s\beta m) \in N$  implies that  $s\beta m \in f^{-1}(N)$ . Consequently,  $r\alpha s \in (f^{-1}(N):M)$  or  $r\beta m \in f^{-1}(N)$  or  $s\beta m \in f^{-1}(N)$ . Hence,  $f^{-1}(N)$  is a 2-absorbing  $R_{\Gamma}$ — subsemimodule of M.

If f is not an  $R_{\Gamma}$  – epimorphism, then  $f^{-1}(N)$  is not a proper  $R_{\Gamma}$  – subsemimodule of M.

**Example 12.** By Example 2, R is a  $\Gamma$ - semiring, where  $R=(Z_6,+_6)$  and  $\Gamma=(Z_3,+_3)$ . Let  $M=(Z_6,+_6)$  be additive commutative monoid of addition modulo 6. Then M is an  $R_{\Gamma}$ -semimodule over R. Now,  $f:(Z_6,+_6)\to (Z_6,+_6)$  with f(m)=2m for all  $m\in M$  is an  $R_{\Gamma}$ -homomorphism, while it is not an  $R_{\Gamma}$ - epimorphism. Let  $N=\{0,2,4\}$  then  $f^{-1}(N)=M$ .

**Theorem 13.** Let  $f: M \to M_1$  be an  $R_{\Gamma}$ - epimorphism of  $R_{\Gamma}$ - semimodules M and  $M_1$  with f(0) = 0 and N be a strong k- $R_{\Gamma}$ - subsemimodule of M. If N is a 2-absorbing  $R_{\Gamma}$ -subsemimodule of M with  $ker(f) \subseteq N$ , then f(N) is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of  $M_1$ .

Proof. Let  $r, s \in R, m_1 \in M_1$  and  $\alpha, \beta \in \Gamma$  such that  $r\alpha s\beta m_1 \in f(N)$ , then  $r\alpha s\beta m_1 = f(n)$  for some  $n \in N$ . As f is an  $R_{\Gamma}$ - epimorphism and  $m_1 \in M_1$ , then  $f(m) = m_1$  for some  $m \in M$ . Also, N is a strong  $R_{\Gamma}$ - subsemimodule of M and  $n \in N$ , then  $n + n_1 = 0$  for some  $n_1 \in N$ . Thus  $f(n + n_1) = 0$ . Therefore,  $r\alpha s\beta m_1 + f(n_1) = f(r\alpha s\beta m) + f(n_1) = f(r\alpha s\beta m + n_1) = 0$  which gives  $r\alpha s\beta m + n_1 \in ker(f) \subseteq N$ . So  $r\alpha s\beta m \in N$ , as N is a k-  $R_{\Gamma}$ - subsemimodule of M. Since N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule, we have  $r\alpha s \in (N : M)$  or  $r\beta m \in N$  or  $s\beta m \in N$ . If  $r\alpha s \in (N : M)$ , then  $r\alpha s\Gamma M \subseteq N$  implies that  $f(r\alpha s\Gamma M) = r\alpha s\Gamma f(m) = r\alpha s\Gamma M_1 \subseteq f(N)$ . Therefore  $r\alpha s \in (f(N) : M_1)$ . If  $r\beta m \in N$ , then  $f(r\beta m) = r\beta f(m) = r\beta m_1 \in f(N)$ . If  $s\beta m \in N$ , then  $s\beta m_1 \in f(N)$ . Thus  $r\alpha s \in (f(N) : M_1)$  or  $r\beta m_1 \in f(N)$  or  $s\beta m_1 \in f(N)$ . Hence, f(N) is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of  $M_1$ .

**Theorem 14.** Let M be an  $R_{\Gamma}$ - semimodule, N and  $N_1$  be  $R_{\Gamma}$ - subsemimodules of M. If N is a 2-absorbing k- $R_{\Gamma}$ - subsemimodule of an  $R_{\Gamma}$ - semimodule M and  $r\alpha s\Gamma N_1 \subseteq N$  for some  $r, s \in R$  and  $\alpha, \beta \in \Gamma$  then  $r\alpha s \in (N:M)$  or  $r\Gamma N_1 \subseteq N$  or  $s\Gamma N_1 \subseteq N$ .

Proof. Assume that  $r\alpha s \notin (N:M)$  or  $r\Gamma N_1 \nsubseteq N$  or  $s\Gamma N_1 \nsubseteq N$  for some  $\alpha \in \Gamma$ . Then  $r\beta n' \notin N$  and  $s\beta n'' \notin N$  for some  $n', n'' \in N_1$  and  $\beta \in \Gamma$ . Since N is a 2-absorbing  $R_{\Gamma}$ — subsemimodule of M and  $r\alpha s\beta n' \in N$ ,  $r\alpha s\beta n'' \in N$ . We have  $s\beta n' \in N$  and  $r\beta n'' \in N$ . Now as  $r\alpha s\beta (n'+n'') \in N$  and  $r\alpha s \notin (N:M)$ , then either  $r\beta (n'+n'') \in N$  or  $s\beta (n'+n'') \in N$ , since N is a 2-absorbing  $R_{\Gamma}$ — subsemimodule of M. If  $r\beta (n'+n'') \in N$  and  $r\beta n'' \in N$ . Then  $r\beta n' \in N$ , as N is a k-ideal, which is a contradiction. Similarly, if  $s\beta (n'+n'') \in N$ , as N is a k- ideal and  $s\beta n' \in N$ , we get  $s\beta n'' \in N$ , which is a contradiction. Hence,  $r\alpha s \in (N:M)$  or  $r\Gamma N_1 \subseteq N$  or  $s\Gamma N_1 \subseteq N$ .

**Theorem 15.** Let M be an  $R_{\Gamma}$ - semimodule, N be a k- $R_{\Gamma}$ - subsemimodule of M and (N:M) be a k-ideal of R. If N is a 2-absorbing  $R_{\Gamma}$ - subsemimodule of M, then  $J\Gamma K\Gamma L\subseteq N$  for some ideals J,K of R and an  $R_{\Gamma}$ - subsemimodule L of M, such that  $J\Gamma K\subseteq (N:M)$  or  $J\Gamma L\subseteq N$  or  $K\Gamma L\subseteq N$ .

Proof. Let N be a 2-absorbing  $R_{\Gamma}$  – subsemimodule of M. Assume that for some ideals J, K of R and an  $R_{\Gamma}$  – subsemimodule L of M such that  $J\Gamma K\Gamma L \subseteq N$  and  $J\Gamma K \nsubseteq (N:M)$ . Suppose that  $J\Gamma L \nsubseteq N$  or  $K\Gamma L \nsubseteq N$ . Then  $j\Gamma L \nsubseteq N$  and  $k\Gamma L \nsubseteq N$  for some  $j \in J, k \in K$  and  $\alpha \in \Gamma$ . Since  $j\alpha k\Gamma L \subseteq N$  and  $j\Gamma L \nsubseteq N$  or  $k\Gamma L \nsubseteq N$ , then by Theorem 14, we have  $j\alpha k \in (N:M)$ . While  $J\Gamma K \nsubseteq (N:M)$ , then  $j_1\alpha k_1 \notin (N:M)$  for some  $j_1 \in J, k_1 \in K$  and  $\alpha \in \Gamma$ . Also,  $j_1\alpha k_1\Gamma L \subseteq N$  and  $j_1\alpha k_1 \notin (N:M)$ , then by Theorem 14, we have  $j_1\Gamma L \subseteq N$  or  $k_1\Gamma L \subseteq N$ . Here three cases arises:

Case 1: Suppose that  $j_1\Gamma L \subseteq N$  and  $k_1\Gamma L \not\subseteq N$ . Since  $j\alpha k_1\Gamma L \subseteq N$ , while  $k_1\Gamma L \not\subseteq N$  and  $j\Gamma L \not\subseteq N$ , then by Theorem 14, we have  $j\alpha k_1 \in (N:M)$ . Since N is k-ideal,  $j_1\Gamma L \subseteq N$  and  $j\Gamma L \not\subseteq N$  then  $(j+j_1)\Gamma L \not\subseteq N$ . However,  $(j+j_1)\alpha k_1\Gamma L \subseteq N$  and  $(j+j_1)\Gamma L \not\subseteq N$ , then by Theorem 14, we get  $(j+j_1)\alpha k_1 \in (N:M)$ . Since  $(j+j_1)\alpha k_1 \in (N:M)$  and  $j\alpha k_1 \in (N:M)$ , then  $j_1\alpha k_1 \in (N:M)$ , which is a contradiction.

Case 2: Assume that  $j_1\Gamma L \nsubseteq N$  and  $k_1\Gamma L \subseteq N$ . Since  $j_1\alpha k\Gamma L \subseteq N$ , while  $j_1\Gamma L \nsubseteq N$  and  $k\Gamma L \nsubseteq N$ , then by Theorem 14, we have  $j_1\alpha k \in (N:M)$ . Since N is a k- ideal,  $k_1\Gamma L \subseteq N$  and  $k\Gamma L \nsubseteq N$  then  $(k+k_1)\Gamma L \nsubseteq N$ . Now as,  $j_1\alpha(k+k_1)\Gamma L \subseteq N$  and  $j_1\Gamma L \nsubseteq N$  and  $(k+k_1)\Gamma L \nsubseteq N$ , then by Theorem 14, we have  $j_1\alpha(k+k_1) \in (N:M)$ . Since  $j_1\alpha(k+k_1) \in (N:M)$  and  $j_1\alpha k \in (N:M)$ , we have  $j_1\alpha k_1 \in (N:M)$ , as (N:M) is k-ideal. Which is a contradiction.

Case 3: Suppose that  $j_1\Gamma L\subseteq N$  and  $k_1\Gamma L\subseteq N$ . Since  $k_1\Gamma L\subseteq N$  and  $k\Gamma L\nsubseteq N$ , and N is  $k\text{-}R_{\Gamma}-$  subsemimodule of M, then we have  $(k+k_1)\Gamma L\nsubseteq N$ . Since  $j\alpha(k+k_1)\Gamma L\subseteq N$  while  $j\Gamma L\nsubseteq N$  and  $(k+k_1)\Gamma L\nsubseteq N$ , we have  $j\alpha(k+k_1)\in (N:M)$ . As  $j\alpha k\in (N:M)$  and  $j\alpha(k+k_1)\in (N:M)$ , we have  $j\alpha k_1\in (N:M)$ , as (N:M) is k-ideal. Moreover,  $j_1\Gamma L\subseteq N$  and  $j\Gamma L\nsubseteq N$ , so  $(j+j_1)\Gamma L\nsubseteq N$ . Also,  $(j+j_1)\alpha k\Gamma L\subseteq N$  and neither  $(j+j_1)\Gamma L\subseteq N$  nor  $k\Gamma L\subseteq N$ , then we can deduce that  $(j+j_1)\alpha k\in (N:M)$  and  $j\alpha k\in (N:M)$  implies that  $j_1\alpha k\in (N:M)$ . Since  $(j+j_1)\alpha(k+k_1)\Gamma L\subseteq N$  while neither  $(j+j_1)\Gamma L\subseteq N$  nor  $(k+k_1)\Gamma L\subseteq N$ , then by Theorem 14, we have  $(j+j_1)\alpha(k+k_1)\in (N:M)$ . Since  $j_1\alpha k, j\alpha k_1, j\alpha k\in (N:M)$ , then we have  $j_1\alpha k_1\in (N:M)$ , as (N:M) is k-ideal. Which is a contradiction. Hence,  $J\Gamma L\subseteq N$  or  $K\Gamma L\subseteq N$ . Therefore,  $J\Gamma K\subseteq (N:M)$  or  $J\Gamma L\subseteq N$  or  $K\Gamma L\subseteq N$ .

## Acknowledgments

The authors would like to thank the referee for careful reading.

### References

- [1] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., **75** (2007), 417-429.
- [2] A. Y. Darani, On 2-absorbing and weakly 2-absorbing ideals of commutative semirings, Kyungpook Math. J., **52** (2012), 91-97.
- [3] M. K. Dubey and P. Sarohe, On 2-absorbing semimodules, Quasigroups and Related Systems, **21** (2013), 175-184.
- [4] T. K. Dutta and S. K. Sardar, On prime ideals and prime radicals of  $\Gamma$  semirings, An. Stiint. Univ. Al. I. Cuza Iasi Mat., **46** (2001), 319-329.
- [5] T. K. Dutta and U. Dasgupta, Properties of  $\Gamma$  S-semimodules via its associated semimodules, Southeast Asian Bulletin of Mathematics, **28** (2004), 243-250
- [6] W. M. Fakieh and F. A. Alhawiti, *Ideal theory in commutative*  $\Gamma$  semirings, International Journal of Algebra, (2) **15** (2021), 77-101.
- [7] S. M. A. Galindo and G. C. Petalcorin, Some properties of  $\Gamma$  semimodules over  $\Gamma$  semirings, Journal of Algebra and Applied Mathematics, (2) **13** (2015), 97-113.
- [8] S. M. A. Galindo and G. C. Petalcorin, *Partitioning and substractive S* $\Gamma$  semimodules, Journal of Algebra and Applied Mathematics, (1) **14** (2016), 59-78.
- [9] H. K. Ranote, On some properties of 2-absorbing ideals in commutative  $\Gamma$  semirings, Bulletin of the Institute of Mathematics., (communicated)
- [10] M. M. K. Rao,  $\Gamma$  semirings-I, South East Asian Bull. of Math., 19 (1995), 49-54.

[11] N. Sangjaer and S. Pianskool, On 2-absorbing primary ideals in commutative  $\Gamma$ - semirings, Thai Journal of Mathematics, (2019), 49-60.

- [12] S. K. Sardar and U. Dasgupta, On primitive  $\Gamma-$  semiring, Novi Sad J. Math., (1) **34** (2004), 1-12.
- [13] T. R. Sharma and S. Gupta, Some conditions on  $\Gamma$  semirings, Journal of Combinatorics Information and System Sciences, **41** (2016), 79-87.