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Abstract. In this paper, we introduce the notion of primal topological group, which is a
generalization of topological group by a primal. We discuss the characterizations of primal
topological groups with illustrative examples.
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1 Introduction
The theory of topological algebra clenches a part of the literature on topology. Generalization
of algebraic structures, especially groups and vector spaces through numerous generalized topo-
logical spaces emanates in the field of research over recent decades. The topological structures
enriches with a finer topology by endowing filter, ideal, partially ordered set and grill. Recently
primal was introduced as dual of grill. In this paper, we define primal topological group.

2 Terminology
In this paper, M connotes a group and � a topology on M with no separation axioms assumed.
In a group M, we write mn instead of m · n for m,n ∈ M and m−1 indicates the inverse of m
for m ∈ M. Let ST = {st : s ∈ S, t ∈ T} and S−1 = {s−1 : s ∈ S} where S,T ⊆ M. We denote
Left translation, right translation and inversion by λm(a) = ma, ρm(a) = am, i(m) = m−1 and
S symmetric if S = S−1. The power set of R is denoted by P(R) for a set R. A subset P of P(M)
is a primal on M if (i) M /∈ P, (ii) If S ∈ P and T ⊆ S, then T ∈ P, (iii) If S ∩ T ∈ P, then
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S ∈ P or T ∈ P.The notions int(S), cl(S) connotes the interior, closure of S in M and O(M)
denotes the collection of open sets in M respectively. In a primal topological space M, the local
function [1] of T ⊆ M, ∧ : P(M) 7→ P(M) concerning a primal P and a topology � is given by
∧(T,P,�) = {g ∈ M : Ec ∪ Tc ∈ P for E ∈ O(M) of g}. We use ∧(T) instead of ∧(T,P,�)
and T is primal-open [1] if T ⊆ int(∧(T)). The primal-open sets are closed under union and
intersection of primal-open set with an open set is primal open. On using the Kuratowski closure
operator [5] cl(.) defined by cl(T) = T ∪ ∧(T), we obtain a topology �∗ which is finer than �.
The collection of closed (respectively, primal-open, primal-closed) sets in a primal topological
space M is denoted by C(M) (respectively, Oprim(M),Cprim(M)). For primal interior and primal
closure we use Intprim and Clprim. A group M binded with a topology � and a primal P is denoted
by the 3 - tuple (M,�,P). In addition, we set forth some definitions and results required for
the sequel.

Definition 1. A map f : M 7→ N is

(i) primal-continuous if inverse image of an open set is primal-open.

(ii) primal open if image of an open set is primal-open

(iii) primal-irresolute if inverse image of a primal open set is primal-open.

Definition 2. A topological space M is

(i) primal-irresolute if primal open set of M is open.

(ii) primal-regular if for a closed set C of M and k ∈ M \C, there is disjoint E,F ∈ Oprim(M)
such that C ⊆ E and k ∈ F.

Lemma 1. In a topological space M the following are equivalent:

(i) M is primal-regular.

(ii) For E ∈ O(M) and x ∈ E, there exists F ∈ Oprim(M) of x such that Clprim(F) ⊆ E.

(iii) For a closed set C of M, ∩{Clprim(F) : C ⊆ F,F ∈ Oprim(M)} = C.

(iv) For a subset K of M and E ∈ O(M) such that K ∩ E 6= ∅, there exists F ∈ Oprim(M) such
that K ∩ F 6= ∅ and Clprim(F) ⊆ E.

(v) For a non-empty set K of M and closed set C with K ∩ C = ∅, there exists E,F ∈ Oprim(M)
such that K ∩ E 6= ∅, C ⊆ F and E ∩ F = ∅.

Proof. (i) ⇒ (ii) Let E ∈ O(M) with x ∈ E, then D = M \ E is closed and x /∈ D. By (i),
there exists F,H ∈ Oprim(M) such that x ∈ F,D ⊆ H and F∩H = ∅ and so Clprim(F)∩H = ∅.
Thus, x ∈ F ⊆ Clprim(F) ⊆ E.

(ii) ⇒ (iii) Let C be a closed set in M. Since, closed set is primal closed, ∩{Clprim(F) :
C ⊆ F,F ∈ Oprim(M)} ⊆ C. Conversely, let x /∈ C then K = M \ C ∈ O(M) and x ∈ K. By
(ii), there exists R ∈ Oprim(M) such that x ∈ R ⊆ Clprim(R) ⊆ K. Put F = M \ Clprim(R).
Then, C ⊆ F ∈ Oprim(M) and x /∈ Clprim(F) which implies that ∩{Clprim(F) : C ⊆ F,F ∈
Oprim(M)} = C.
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(iii) ⇒ (iv) Let K ⊆ M and E ∈ O(M) with K ∩ E 6= ∅. Let x ∈ K ∩ E then C = M \ E
is a closed set and x /∈ C. By (iii), there exists H ∈ Oprim(M) such that C ⊆ H and
x ∈ Clprim(H). Put F = M \ Clprim(H) then F ∈ Oprim(M), x ∈ F ∩ K and Clprim(F) ⊆
Clprim(M \ H) = M \ H ⊆ E.

(iv) ⇒ (v) Let K be a non-empty subset and C be a closed set in M with K∩C = ∅. Since
M \ C is open in M and K 6= ∅, by (iv) there exists E ∈ Oprim(M) such that K ∩ E 6= ∅ and
Clprim(E) ⊆ M \ C. Put F = M \ Clprim(E) then C ⊆ F ∈ Oprim(M) and E ∩ F = ∅.

(v) ⇒ (i) By definition of primal-regular.

Lemma 2. Let (M,�,P) be a primal topological space.

(i) For K ∈ O(M) of xy there exist E,F ∈ Oprim(M) of x , y such that EF ⊆ K if and only if the
map f : M×M 7→ M by f(x, y) = xy is primal-continuous.

(ii) For ϑ ∈ O(M) of x−1 there exists Q ∈ Oprim(M) of x such that Q−1 ⊆ ϑ if and only if the
map i : M 7→ M by i(x ) = x−1 is primal-continuous.

Proof. (i) Suppose, for K ∈ O(M) of xy there exist E,F ∈ Oprim(M) of x , y such that
EF ⊆ K. Let D = E× F ⊆ M×M then

D = E× F ⊆ int(∧(E))× int(∧(F)) since E,F ∈ Oprim(M)

⊆ int(∧(E)× ∧(F)) since int(A× B) = int(A)× int(B)

⊆ int(∧(E× F)) since ∧(A× B) = ∧(A)× ∧(B)
⊆ int(∧(D)) since D = E× F.

Thus, (x , y) is an element of D ∈ Oprim(M×M) and f (D) ⊆ K. Hence, for K ∈ O(M) of
xy , the inverse image D ∈ Oprim(M×M) and thus f is primal-continuous. The converse
implication can be proved by reversing the above argument.

(ii) Suppose, for an open neighbourhood ϑ of x−1 there exists Q ∈ Oprim(M) of x such that
Q−1 ⊆ ϑ then i(Q) = Q−1 ⊆ ϑ. Thus, inverse image of an open set ϑ of x−1 is Q which
is primal-open and so i is primal-continuous. The converse implication can be proved by
reversing the above argument.

3 Primal topological group
In this section, we introduce the concept of primal topological group and investigate its

basic properties with illustrated examples.

Definition 3. A 3 - tuple (M,�,P) is primal topological group if:

for K ∈ O(M) of xy there exist S,T ∈ Oprim(M) of x , y such that ST ⊆ K.

for S ∈ O(M) of x−1 there exists T ∈ Oprim(M) of x such that T−1 ⊆ S.
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By Lemma 2.4, It is equivalently saying that, in a primal topological group, multiplication and
inversion are primal-continuous.

Example 1. Let M be group of order greater than 2, x ∈ M binded with a topology � =
{∅,M \ {x},M} and a primal P = P(M) \ {M \ {x},M}. Then ∧({x}) = ∅. For T ⊆ M other
than {x}, we have ∧(T) = M. Thus, Oprim(M) = P(M) \ {x}. By Definition 3.1, (M,�,P) is a
primal topological group.

Example 2. Consider the addition modulo group Z2 with discrete topology and a primal
P = P(M) \ {M \ {0},M}. Then ∧({0}) = ∅,∧({1}) = ∧({0, 1}) = {0, 1} and so Oprim(M) =
P(M) \ {0}. By Definition 3.1, (Z2,�,P) is not a primal topological group.

Proposition 1. If (M,�,P) is a primal topological group, then

(i) K ∈ Oprim(M) if and only if K−1 ∈ Oprim(M).

(ii) If K ∈ O(M) and N ⊆ M, then KN and NK are both in Oprim(M).

Proof. (i) Let K ∈ Oprim(M). Then there exists S ∈ O(M) such that K ⊆ S. Now,
K−1 ⊆ S−1 and ∧(S−1) ⊆ ∧(K−1). Since inversion is primal-continuous, then S−1 is primal-
open and so K−1 is primal-open in M. Hence, for K ∈ Oprim(M), we have K−1 ∈ Oprim(M).

(ii) Let n ∈ N, a ∈ nK, then a = nk for some k ∈ K. Now, k = n−1a and by Definition
3, there exist E,F ∈ Oprim(M) of n−1 and a such that EF ⊆ K which implies a ∈ F ⊆ nK.
Hence nK is primal-open. Since primal-open sets are closed under union, NK ∈ Oprim(M).
By the same token, we can prove that KN ∈ Oprim(M).

Proposition 2. Let C be closed subset of a primal topological group M. Then aC and Ca are
primal-closed, for a ∈ M.

Proof. Let x ∈ Clprim(aC), b = a−1x and D be an open neighbourhood of b. Then by Definition
3, there exist E,F ∈ Oprim(M) of a−1 and x in M such that EF ⊆ D. Since x ∈ Clprim(aC),
F ∩ aC 6= ∅. Let c ∈ F ∩ aC, then a−1c ∈ C ∩ EF ⊆ C ∩ D which implies C ∩ D 6= ∅. Thus
b is a limit point of C. Since C is closed, b ∈ C. Now x = ab and so x ∈ aC. By the above
argument, Clprim(aC) ⊆ aC and since aC ⊆ Clprim(aC) is trivial then aC = Clprim(aC). Hence
aC is Primal-closed. Proof of Ca is similar.

Theorem 1. Let K and N be subsets of primal topological group M. Then Clprim(K).Clprim(N) ⊆
Cl(KN).

Proof. Let a ∈ Clprim(K).Clprim(N) and D be an open neighbourhood of a in M where a = kn
for some k ∈ Clprim(K) and n ∈ Clprim(N). By definition of Primal topological group, there
exists E,F ∈ Oprim(M) containing k and n, respectively such that EF ⊆ D. Since k ∈ Clprim(K)
and n ∈ Clprim(N) there exist c ∈ K∩ E and d ∈ N∩ F. Now cd ∈ (MN)∩ (EF) ⊆ KN∩D which
implies that KN ∩ D 6= ∅. Hence a is a limit point of KN and therefore a ∈ Cl(KN).

Definition 4. A mapping f : S 7→ T is primal-homeomorphism if f is bijective, primal-
continuous and primal-open.
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Theorem 2. Let (M,�,P) be a primal topological group. Then left (right) translations and
inversion are primal-homeomorphisms.

Proof. (i) Let a, b ∈ M and D1 ∈ O(M) with ab ∈ D1. By Definition 3, for D1 ∈ O(M) of
ab there exist E1,F1 ∈ Oprim(M) of a and b such that E1F1 ⊆ D1 which implies aF1 ⊆ D1

and so left translation is primal-continuous. Let g ∈ M and D2 ∈ O(M) of g . The element
g can be written as g = a−1ag . Since left translation is primal-continuous, there exist
E2,F2 ∈ Oprim(M) of a−1 and ag such that E2F2 ⊆ D2. Hence, left translation is primal-
homeomorphism. The proof of right translations is similar.

(ii) Let S1 be an open neighbourhood of a−1. Since M is primal topological group, for
S1 ∈ O(M) of a−1 there exists T1 ∈ Oprim(M) of a such that T−1

1 ⊆ S1. Thus, the inversion
mapping is primal-continuous. Let S2 be an open neighbourhood of a. Since inversion
is primal-continuous there exists T2 ∈ Oprim(M) of a−1 such that T−1

2 ⊆ S2. Hence the
inversion is primal-homeomorphism.

Theorem 3. Let (M,�,P) be a primal topological group and let Be be the base at identity
element e of M. Then

(i) for S ∈ Be, there exists T ∈ Oprim(M)e such that T2 ⊆ S.

(ii) for S ∈ Be, there exists T ∈ Oprim(M)e such that T−1 ⊆ S.

(iii) for S ∈ Be, g ∈ S, there exists T ∈ Oprim(M)e such that g .T ⊆ S (T.g ⊂ S).

Proof. (i) Let S ∈ Be . Then S is an open neighbourhood of e. We know that e = e.e and
by definition of primal topological group, there exist O,P ∈ Oprim(M) of e such that OP is
contained in S. Let K be the smallest among O and P and so there exists K ∈ Oprim(M)e
such that K2 ⊆ S.

(ii) Let S ∈ Be . Then S is an open neighbourhood of e. We know that the inverse of
e is itself. Since the inversion mapping a 7→ a−1 is primal-continuous on M, there exists
T ∈ Oprim(M) of e such that T−1 ⊆ S.

(iii) Let S ∈ Be and g ∈ S. We know that g = g .e (g = e.g). Since M is a primal
topological group, by Definition 3, there exist P ∈ Oprim(M) of g and T ∈ Oprim(M) of e
such that PT(TP) is contained in S. So for g ∈ S, there is a T ∈ Oprim(M)e such that
gT ⊆ S (Tg ⊆ S).

Theorem 4. Let (M,�,P) be a primal topological group and K a subgroup of M.

(i) If K contains a non - empty set S ∈ O(M) then K ∈ Oprim(M).

(ii) An open subgroup of M is primal-closed.

(iii) An open subgroup K is also a primal topological group.
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Proof. (i) Suppose K contains a non - empty set S ∈ O(M). By Theorem 3.9, translation
is primal-homeomorphism, so Sm is primal-open in M for m ∈ K. Since primal-open sets
are closed under union, then K = ∪m∈KSm is primal-open in M.

(ii) Let K be an open subgroup of M. Then γ = {Kai : ai ∈ M} is the family of right
cosets of K which is disjoint primal-open covering of M. Thus, M = ∪ai∈MKai and so
Kai =

(
∪aj ̸=ai∈MKaj

)c. Therefore, an element of γ is both primal-open and primal-closed.
In particular, K = Ke is primal-closed in M.

(iii) We have to show that for a, b ∈ K and D ∈ O(K) of ab−1 in K, there exist S ∈ Oprim(K)
of a and T ∈ Oprim(K) of b such that ST−1 ⊆ D. Since M is a primal topological group,
there exist E ∈ Oprim(M) of a and F ∈ Oprim(M) of b such that EF−1 ⊆ D. Since K is open,
the sets S = K ∩ E and T = K ∩ F are primal-open. Thus, ST−1 ⊆ EF−1 ⊆ D.

Theorem 5. Let M and S be primal topological groups, S primal irresolute and f be a homo-
morphism which is primal-irresolute at identity eM. Then f is primal-irresolute.

Proof. Let a ∈ M and E be a primal-open set in S containing f (a) = b. Since primal-open
sets is open in S, E is open. By Proposition 3.4, left translation of an open set is primal-open
and thus b−1E ∈ Oprim(S) containing eS. Since f is primal-irresolute at identity eM, there exists
F ∈ Oprim(M) containing eM such that f (F) ⊆ b−1E. Given that f is homomorphism, it follows
that f (aF) = f (a)f (F) ⊆ E. This means that f is primal-irresolute.

Theorem 6. Let M be a primal topological group with base Be at the identity element e such
that for S ∈ Be there is a symmetric open neighbourhood ϑ of e such that ϑ2 ⊆ S. Then M
satisfies primal-regularity at e.

Proof. Let S ∈ O(M) containing the identity e. By assumption, there is a symmetric ϑ ∈ O(M)
of e such that ϑ2 ⊆ S. We have to prove that primal-closure of ϑ is contained in S. Let
a ∈ Clprim(ϑ). The set aϑ is a primal-open neighbourhood of a, which implies aϑ ∩ ϑ 6= ∅.
Therefore, there exists points b, c ∈ ϑ such that c = ab and so, a = cb−1 ∈ ϑϑ−1 = ϑϑ ⊆ S.
Thus Clprim(ϑ) ⊆ S.

Definition 5. A primal topological group M is primal-connected if M cannot be written as union
of two disjoint non - empty primal-open sets in M.

Theorem 7. Let M be a primal topological group which is primal irresolute and K be a subgroup
of M. If K, M/K are primal-connected, then M is primal-connected.

Proof. Suppose M is not primal-connected. Assume that M = E ∪ F where E and F are disjoint
non - empty primal-open sets. Since K is primal-connected, coset of K is either a subset of E or
a subset of F. Thus,

M/K = {aK : aK ⊆ E} ∪ {aK : aK ⊆ F}
= {aK : a ∈ E} ∪ {aK : a ∈ F}.

So, M/K is expressed as union of disjoint non - empty primal-open sets which is a contradiction
to primal-connectedness of M/K. Thus, M is primal-connected.
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Theorem 8. Let M be a primal topological group which is primal-connected and primal irresolute
with identity e. If S is primal-open neighbourhood of e, then M is generated by S.

Proof. Let S be a primal-open neighbourhood of e. For n ∈ N, we denote Sn by the set of
elements of the form s1.s2 . . . sn where si ∈ S. Let T = ∪∞

n=1S
n . Since M is primal-connected,

suppose if we prove T ∈ Oprim(M) and T ∈ Cprim(M), then M = T and so M is generated by S.
Since Sn is primal-open and union of primal-open sets is primal-open, T is primal-open. Let us
prove that T is primal-closed. Let a ∈ Clprim(T). Since aS−1 is a primal-open neighbourhood
of a, it must intersect T. Thus, let b ∈ T ∩ aS−1. Since b ∈ aS−1 then b = a.s−1 for some
s ∈ S. Since b ∈ T then b ∈ Sn for some n ∈ N which implies b = s1s2 . . . sn with si ∈ S. Now,
a = s1s2 . . . sn.s and so a ∈ Sn+1 ⊆ T. Hence T is primal-closed. Since M is primal-connected
with T ∈ Oprim(M) and T ∈ Cprim(M) then T = M. Thus, M is generated by S.

Theorem 9. If M is a primal topological group which is primal-connected and primal irresolute
with H, a discrete invariant subgroup of M, then H ⊆ Z(M), where Z(M) denotes the center of
M.

Proof. Suppose H = {e}, then the result is trivial. Suppose H is non - trivial. Let h 6= e ∈ H.
Since H is discrete, we can find D ∈ Oprim(M) of h in M such that D∩H = {h}. Now, by definition
of primal topological group, there exists a primal-open neighbourhood E of e and a primal-open
neighbourhood E.h of h in M such that (E.h).E−1 ⊆ D. Let b ∈ E be arbitrary. Since H is an
invariant subgroup of M, b.H = H.b which implies that b.h ∈ H.b and so b.h.b−1 ∈ H. Also,
b.h.b−1 ∈ EhE−1 ⊆ D. Therefore, b.h.b−1 ∈ D ∩ H = {h} which implies b.h.b−1 = h. Thus,
b.h = h.b for b ∈ E. Since M is primal-connected, En with n ∈ N covers M. Thus, a ∈ M can be
written in the form a = b1.b2 . . . bn where b1, b2, . . . , bn ∈ E and n ∈ N. Since h commutes with
every element of E,

a.h = b1.b2 . . . bn.h

= b1.b2 . . . h.bn
...
= b1.h.b2 . . . bn

= h.b1.b2 . . . bn

= h.a

Hence h ∈ H is in the center of M. Since h is arbitrary, we proved that center of M contains
H.

4 Conclusion
In this article, the notion of generalized topological group by endowing a primal and also proved
some characterizations. We observe that, endowment of structures together with a topology will
bestow generalized topological groups with ambivalent properties. Similar generalized version
of topological groups were discussed in [2–4,6].
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