
تعداد نشریات | 31 |
تعداد شمارهها | 796 |
تعداد مقالات | 7,614 |
تعداد مشاهده مقاله | 29,035,523 |
تعداد دریافت فایل اصل مقاله | 7,670,292 |
Solving Weakly Singular Fractional Differential Integration Equations Using Multiple Knot B-Splines and Operational Matrices | ||
Computational Sciences and Engineering | ||
مقاله 5، دوره 4، شماره 1، تیر 2024، صفحه 53-65 اصل مقاله (635.93 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22124/cse.2024.28813.1089 | ||
نویسندگان | ||
Ali Jalal Ali؛ Mostafa Eslami* ؛ Ali Tavakoli | ||
University of Mazandaran | ||
چکیده | ||
In this article, we propose a new strategy for solving problems associated with weakly singular partial integro-differential equations. Our approach uses Multiple knot B-splines to develop a powerful arithmetical solution. We analyze the functional matrices used in this technique and provide a detailed overview of its functionality. additionally, we demonstrate the convergence of the proposed advance and verify its effectiveness via several numerical simulation. | ||
کلیدواژهها | ||
Error؛ Polynomial interpolation؛ Chebyshev nodes؛ Probability | ||
مراجع | ||
[1] Mohammad, M., & Trounev, A. (2020). Fractional nonlinear Volterra–Fredholm integral equations involving Atangana–Baleanu fractional derivative: framelet applications. Advances in Difference Equations, 2020(1), 618. [2] Iserles, A. (2004). On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms. IMA Journal of Numerical Analysis, 24(3), 365-391. [3] Iserles, A. (2005). On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators. IMA journal of numerical analysis, 25(1), 25-44. [4] Hieneman, M., Dunlap, G., & Kincaid, D. (2005). Positive support strategies for students with behavioral disorders in general education settings. Psychology in the Schools, 42(8), 779-794. [5] De Boor, C., & De Boor, C. (1978). A practical guide to splines (Vol. 27, p. 325). New York: springer. [6] Dehestani, H., Ordokhani, Y., & Razzaghi, M. (2020). Numerical solution of variable-order time fractional weakly singular partial integro-differential equations with error estimation. Mathematical Modelling and Analysis, 25(4), 680-701. [7] Ghosh, B., & Mohapatra, J. (2023). Analysis of a second-order numerical scheme for time-fractional partial integro-differential equations with a weakly singular kernel. Journal of Computational Science, 74, 102157. [8] Keshavarz, E., & Ordokhani, Y. (2019). A fast numerical algorithm based on the Taylor wavelets for solving the fractional integro‐differential equations with weakly singular kernels. Mathematical Methods in the Applied Sciences, 42(13), 4427-4443. [9] Lyche, T., Manni, C., & Speleers, H. (2017). B-splines and spline approximation. Lecture notes. [10] Kunoth, A., Lyche, T., Sangalli, G., Serra-Capizzano, S., Lyche, T., Manni, C., & Speleers, H. (2018). Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement. Splines and PDEs: From Approximation Theory to Numerical Linear Algebra: Cetraro, Italy 2017, 1-76. [11] Mouley, J., & Mandal, B. N. (2021). Wavelet‐based collocation technique for fractional integro‐differential equation with weakly singular kernel. Computational and Mathematical Methods, 3(4), e1158. [12] Sadri, K., Hosseini, K., Baleanu, D., Ahmadian, A., & Salahshour, S. (2021). Bivariate Chebyshev polynomials of the fifth kind for variable-order time-fractional partial integro-differential equations with weakly singular kernel. Advances in Difference Equations, 2021, 1-26. [13] Schumaker, L. (2007). Spline functions: basic theory. Cambridge university press. [14] Taghipour, M., & Aminikhah, H. (2022). A difference scheme based on cubic B-spline quasi-interpolation for the solution of a fourth-order time-fractional partial integro-differential equation with a weakly singular kernel. Sādhanā, 47(4), 253. [15] Zhuang, P., Liu, F., Anh, V., & Turner, I. (2009). Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Journal on Numerical Analysis, 47(3), 1760-1781. | ||
آمار تعداد مشاهده مقاله: 224 تعداد دریافت فایل اصل مقاله: 43 |