- Ghorbani Dasht Bayaz N, Donyaie A, Vosadi E. Comparing Endurance and Resistance training on the Expression of Senescence-Related Genes in the Visceral Adipose Tissue of obese rats. Journal of Sport Biosciences. 2023;15(3):37-49.
- 2. Azimian E, Akbarnejad Gharehloo A, Pournemati P. The effect of 8 weeks of resistance training on muscle function and some proteins related to sarcopenia in soleus muscle of obese aged male rats. Journal of Applied Health Studies in Sport Physiology. 2023;10(2):13-26.
- 3. Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, et al. Sarcopenia: aging-related loss of muscle mass and function. Physiological reviews. 2019;99(1):427-511.
- 4. Mahdiadeh M, Pourhaji F, Delshad MH, Dadashi Tonkaboni N, Ppourhaji F. Investigating the effect of physical activity on improving sarcopenia in the elderly: a systematic review. medical journal of mashhad university of medical sciences. 2023;66(1):48-64.
- 5. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and cellular biology. 2009.
- 6. Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, et al. Mammalian autophagy: how does it work? Annual review of biochemistry. 2016;85(1):685-713.
- 7. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, et al. Autophagy is required to maintain muscle mass. Cell metabolism. 2009;10(6):507-15.
- 8. Sandri M. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. American Journal of Physiology-Cell Physiology. 2010;298(6):C1291-C7.
- 9. Phu S, Boersma D, Duque G. Exercise and sarcopenia. Journal of Clinical Densitometry. 2015;18(4):488-92.
- 10. Bialek P, Morris C, Parkington J, St. Andre M, Owens J, Yaworsky P, et al. Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy. Physiological genomics. 2011;43(19):1075-86.
- 11. Kang S-H, Lee H-A, Kim M, Lee E, Sohn UD, Kim I. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome. American Journal of Physiology-Endocrinology and Metabolism. 2017;312(6):E495-E507.
- 12. Seidi AN, Aghaei Bahmanbeglou N, Asgharpour H, Ahmadi M. The Effect of Endurance Training on the Intracellular Content of Proteins Related to the Ubiquitin-Proteasome Pathway in the Left Ventricle of Type-2 Diabetic Rats. Journal of Sport Biosciences. 2023;15(1):21-35.
- 13. Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N. Exercise-induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-mediated mitochondrial quality control. Frontiers in physiology. 2020;11:583478.
- 14. Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, et al. Akt signalling through GSK‐3β, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. The Journal of physiology. 2006;576(3):923-33.
- 15. Khaleghi I, Alijani E, Rahimi A, MOHSENZADEH M. Simultaneous Effect of Resistance Training and Endothelial Ancestral Cell Injection on Expression of MURF1 Muscle Degeneration Factor and Its Relationship with Insulin Resistance In STZ-Induced Diabetic Male Rats. 2021.
- 16. Azali Alamdari K, Khalafi M. The effects of high intensity interval training on serum levels of fgf21 and insulin resistance in obese men. Iranian Journal of Diabetes and Metabolism. 2019;18(1):41-8.
- 17. Matinhomaee H, Ziaolhagh SJ, Azarbayjani MA, Piri M. Effects of Boldenone consumption and resistance exercise on hepatocyte morphologic damages in male wistar rats. Eur J Exp Biol. 2014;4(2):211-4.
- 18. Pukajło K, Kolackov K, Łaczmański Ł, Daroszewski J. Iryzyna–nowy mediator homeostazy energetycznej. Postępy Higieny i Medycyny Doświadczalnej. 2015;69:233-42.
- 19. Bodine SC, Latres E, Baumhueter S, Lai VK-M, Nunez L, Clarke BA, et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 2001;294(5547):1704-8.
- 20. Chen G-Q, Mou C-Y, Yang Y-Q, Wang S, Zhao Z-W. Exercise training has beneficial anti-atrophy effects by inhibiting oxidative stress-induced MuRF1 upregulation in rats with diabetes. Life sciences. 2011;89(1-2):44-9.
- 21. Kang J, Kim S, Lee Y, Oh J, Yoon Y. Effects on goat meat extracts on α-glucosidase inhibitory activity, expression of Bcl-2-Associated X (BAX), p53, and p21 in cell line and expression of atrogin-1, Muscle Atrophy F-Box (MAFbx), Muscle RING-Finger Protein-1 (MuRF-1), and Myosin Heavy Chain-7 (MYH-7) in C2C12 myoblsts. Food Science of Animal Resources. 2023;43(2):359.
- 22. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes care. 2002;25(12):2335-41.
- 23. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, et al. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell metabolism. 2007;6(5):376-85.
- 24. Nedergaard A, Vissing K, Overgaard K, Kjaer M, Schjerling P. Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. Journal of Applied Physiology. 2007;103(5):1513-22.
- 25. Bogdanis GC. Effects of physical activity and inactivity on muscle fatigue. Frontiers in physiology. 2012;3:142.
|