
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,103 |
تعداد دریافت فایل اصل مقاله | 7,149,690 |
Some Cayley graphs with propagation time of at most two | ||
Journal of Algebra and Related Topics | ||
دوره 12، شماره 1، مهر 2024، صفحه 137-145 اصل مقاله (304.78 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2024.21625.1370 | ||
نویسنده | ||
E. Vatandoost* | ||
Department of Mathematics, Imam Khomeini International University, Qazvin, Iran | ||
چکیده | ||
In this paper the zero forcing number as well as propagation time of $Cay(G,\Omega),$ where $G$ is a finite group and $\Omega \subset G \setminus \lbrace 1 \rbrace$ is an inverse closed generator set of $G$ is studied. In particular, it is shown that the propagation time of $Cay(G,\Omega)$ is at most two for some special generators. | ||
کلیدواژهها | ||
Zero forcing number؛ Propagation time؛ Cayley graph | ||
مراجع | ||
1. AIM Minimum Rank - Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S.M. Cioaba, D. Cvetkoviacutec, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkel son, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanoviacutec, H. van der Holst, K. Vander Meulen, A.W. Wehe), Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 7 428 (2008),1628-1648. 2. A. Berman, S. Friedland, L. Hogben, U.G. Rothblum, and B. Shader, An upper bound for the minimum rank of a graph, Linear Algebra Appl. (7) 429 (2008), 1629-1638. 3. D. Burgarth, and V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett. (10) 99 (2007),100501. 4. S. Chokani, F. Movahedi and S. M. Taheri, Some results of the minimum edge dominating energy of the Cayley graphs for the nite group Sn;, J. Algebra Relat. Topics, (2) 11 (2023), 135-145. 5. C.J. Edholm, L. Hogben, M. Huynh, J. LaGrange and D.D. Row, Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph, Linear Algebra Appl. (12) 436 (2012), 4352-4372. 6. L. Eroh, C.X. Kang and E. Yi, A comparison between the metric dimension and zero forcing number of trees and unicyclic graphs, Acta Math. Sin. (Engl. Ser.), (6) 33 (2017), 731-747. 7. L. Hogben, M. Huynh, N. Kingsley, S. Meyer, S. Walker and M. Young, Prop- agation time for zero forcing on a graph, Discrete Appl. Math. (13-14) 160 (2012), 1994-2005. 8. Z. Rameh and E. Vatandoost, Some Cayley graphs with Propagation time 1, Journal of the Iranian Mathematical Society, (2) 2 (2021), 111-122. 9. F. Ramezani and E. Vatandoost, Domination and Signed Domination Number of Cayley Graphs,Iran. J. Math. Sci. Inform. (1) 14 (2019), 35-42. 10. S. Severini, Nondiscriminatory propagation on trees, J. Phys. A, (48) 41 (2008), P.482002. 11. E. Vatandoost and Y. Golkhandy Pour, On the zero forcing number of some Cayley graphs, Algebraic Structures and Their Applications, (2) 4 (2017), 15-25. 12. E. Vatandoost, F. Ramezani and S. Alikhani, On the zero forcing number of generalized Sierpinski graphs, Trans. Comb. (1) 8 (2019), 41-50. | ||
آمار تعداد مشاهده مقاله: 81 تعداد دریافت فایل اصل مقاله: 176 |