
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,170 |
تعداد دریافت فایل اصل مقاله | 7,149,721 |
Modular representation of symmetric $2$-designs | ||
Journal of Algebra and Related Topics | ||
دوره 12، شماره 1، مهر 2024، صفحه 79-87 اصل مقاله (317.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2024.22372.1407 | ||
نویسنده | ||
O. Shimabukuro* | ||
Department of Mathematics, Faculty of Education, Nagasaki University, Nagasaki, Japan | ||
چکیده | ||
Complementary pairs of symmetric $2$-designs are equivalent to coherent configurations of type $(2, 2; 2)$. D. G. Higman studied these coherent configurations and adjacency algebras of coherent configurations over a field of characteristic zero. These are always semisimple. We investigate these algebras over fields of any characteristic prime and the structures. | ||
کلیدواژهها | ||
coherent configuration؛ symmetric design؛ p-rank؛ modular adjacency algebra؛ modular standard module | ||
مراجع | ||
1. E. F. Assmus Jr and J.D. Key, Designs and their codes, Press Syndicate of the University of Cambridge, New York, 1992. 2. E. Bannai and T. Ito, Algebraic Combinatorics I Association Schemes, The Benjamin/Cummings Publishing Company, Inc., Menlo Park, California, 1984. 3. N. Hamada, On the p-rank of the incidence matix of a balanced or partially balanced incomplete block design and its applications to error correcting codes, Hiroshima Math. J. 3 (1973), 153-226. 4. A. Hanaki, Y. Miyazaki, and O. Shimabukuro, Modular representation theory of BIB designs, Linear Algebra Appl. 514 (2017), 174-197. 5. D. G. Higman, Coherent con gurations Part I : Ordinary Representation The- ory, Geom. Dedicata, 4 (1975), 1-32. 6. , Coherent algebras, Linear Algebra Appl. 93 (1987), no. C, 209{239. 7. N. Hiroshi and T. Yukio, Representation of Finite Groups, Academic Press, INC., San Diego, CA, 1987. 8. M. Klemm, Uber den p- Rang von lnzidenzmatrizen, J. Combin. Theory Ser. A, 43 (1986), 138-139. 9. R. Sharafdini, Semisimplicity of adjacency algebras of coherent con gurations, Electron. Notes Discrete Math. 45 (2014), 159-165. 10. P. H. Zieschang , An algebraic approach to association schemes, Lecture Notes in Mathematics 1628, Springer Berlin, Germany, 1996. | ||
آمار تعداد مشاهده مقاله: 87 تعداد دریافت فایل اصل مقاله: 154 |