
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,157 |
تعداد دریافت فایل اصل مقاله | 7,149,711 |
A $k$-ideal-based graph of commutative semiring | ||
Journal of Algebra and Related Topics | ||
دوره 12، شماره 1، مهر 2024، صفحه 41-52 اصل مقاله (310.94 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2023.22002.1395 | ||
نویسندگان | ||
F. Esmaeili Khalil Saraei* 1؛ S. Raminfar2 | ||
1Fouman Faculty of Engineering, College of Engineering, University of Tehran, Fouman, Iran. | ||
2Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran | ||
چکیده | ||
Let $R$ be a commutative semiring and $I$ be a $k$-ideal of $R$. In this paper, we introduce the $k$-ideal-based graph of $R$, denoted by $\Gamma_{I^{*}}(R)$. The basic properties and possible structures of the graph are studied. | ||
کلیدواژهها | ||
graph؛ semiring؛ $k$-ideal؛ $Q_{R}$-ideal | ||
مراجع | ||
1. A. Abbasi and L. H. Jahromi, A generalization of total graph of modules, Int. Electron. J. Algebra, 22 (2017), 28-38. 2. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc, 21 (1969), 412-416. 3. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719. 4. J. N. Chaudhari and D. R. Bonde, On partitioning and subtractive subsemimodule of semimodules over semirings, Kyungpook Math. J., 50 (2010), 329-336. 5. A. Delfan, H. Rasouli and K. Moradipour, Co-intersection graph of subacts of an act, J. Algebra Relat. Topics, (10) 2 (2022), 1-12. 6. R. Ebrahimi Atani and S. Ebrahimi Atani, Ideal theory in commutative semirings, Bul. Acad. Stiinte Repub. Mold. Mat, 2 (2008), 14-23. 7. S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glas.Math., 42 (2007), 301-308. 8. S. Ebrahimi Atani and R. Ebrahimi Atani, Some remarks on partitioning semirings, An. St. Univ. Ovidius Constanta., (18) 1 (2010), 49-62. 9. S. Ebrahimi Atani and Z. Ebrahimi Sarvandi, The total graph of a commutative semiring with respect to proper ideals, J. Algebra Relat. Topics, (3) 2 (2015), 27-41. 10. S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, The total graph of a commutative semiring, An. St. Univ. Ovidius Constanta., (21) 2 (2013), 21-33. 11. B Elavarasan and K Porselvi, Poset properties with respect to semi-ideal based zero-divisor graph, J. Algebra Relat. Topics, (9) 2 (2021), 111-120. 12. F. Esmaeili Khalil Saraei, The Annihilator graph of modules over commutative rings, J. Algebra Relat. Topics, (9) 1 (2021), 93-108. 13. F. Esmaeili Khalil Saraei, The total torsion element graph without the zero element of modules over commutative rings, J. Korean Math. Soc. (51) 4 (2014), 721-734. 14. F. Esmaeili Khalil Saraei and E. Navidinia, On the extended total graph of modules over commutative rings, Int. Electron. J. Algebra, 25 (2019), 77-86. 15. J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Scienti c and Technical, Harlow UK, 1992. 16. J. S. Golan, Semirings and their Applications, Kluwer Academic Publishers, Dordrecht, 1999. 17. V. Gupta and J. N. Chaudhari, Right -regular semirings, Sarajevo J. of Math, (2) 14 (2006), 3-9. 18. D. Patwari, H. K. Saikia, and J. Goswami, Some results on domination in the generalized total graph of a commutative ring, J. Algebra Relat. Topics, (10) 1(2022), 119-128. 19. M. K. Sen and M. R. Adhikari, On k-ideals of semirings, Internet. J. Math. and Math. Sci. (15) 2 (1992), 347-350. | ||
آمار تعداد مشاهده مقاله: 118 تعداد دریافت فایل اصل مقاله: 248 |