
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,163 |
تعداد دریافت فایل اصل مقاله | 7,149,716 |
Generalized local cohomology and Serre cohomological dimension | ||
Journal of Algebra and Related Topics | ||
دوره 12، شماره 1، مهر 2024، صفحه 23-40 اصل مقاله (339.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2023.23587.1489 | ||
نویسنده | ||
M. Lotfi Parsa* | ||
Sayyed Jamaleddin Asadabadi University, Asadabad, Iran | ||
چکیده | ||
Let $R$ be a commutative Noetherian ring, $I,~J$ be two ideals of $R$, and $M,~N$ be two $R$-modules. Let $S$ be a Serre subcategory of the category of $R$-modules. We introduce Serre cohomological dimension of $N, M$ with respect to $(I,J)$, as ${\rm cd}_S(I, J, N, M)=\sup\{i\in \Bbb N_0: H_{I,J}^{i}(N, M)\not\in S\}.$ We study some properties of ${\rm cd}_S(I, J, N, M)$, and we get some formulas and upper bounds for it. | ||
کلیدواژهها | ||
Cohomological dimension؛ Local cohomology؛ Serre Subcategory | ||
مراجع | ||
1. M. Aghapournahr, Upper bounds for niteness of generalized local cohomology modules, J. Algebr. Syst. 1 (2013), 1-9. 2. M. Aghapournahr, Kh. Ahmadi-amoli and M. Y. Sadeghi, Co niteness and Artinianness of certain local cohomology modules, Ricerche mat. 65 (2016),21-36. 3. M. Aghapournahr and L. Melkersson, Local cohomology and Serre subcategories, J. Algebra, 320 (2008), 1275-1287. 4. J. Amjadi and R. Naghipour, Cohomological dimension of generalized local cohomology modules, Algebra Colloq. 15 (2008), 303-308. 5. J. Asadollahi, K. Khashyarmanesh and Sh. Salarian, A generalization of the co niteness problem in local cohomology modules, J. Aust. Math. Soc. 75 (2003), 313-324. 6. M. Asgharzadeh and M. Tousi, A uni ed approach to local cohomology modules using Serre classes, Canad. Math. Bull. 53 (2010), 577-586. 7. M. H. Bijan-Zadeh, Torsion theories and local cohomology over commutative Noetherian rings, J. London Math. Soc. (2). 19 (1979), 402-410. 8. M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J. 21 (1980), 173-181. 9. N. Bourbaki, Algebre commutative, Hermann, Paris, 1961-1983. 10. M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998. 11. W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993. 12. C. Bui, Annihilators and attached primes of local cohomology modules with respect to a system of ideals, Algebr. Struct. their Appl. 7 (2020), 179-193. 13. L. Chu and Q. Wang, Some results on local cohomology modules de ned by a pair of ideals, J. Math. Kyoto Univ. 49 (2009), 193-200. 14. F. Dehghani-Zadeh, On the niteness properties of generalized local cohomology modules, Int. Electron. J. Algebra 10 (2011), 113-122. 15. M. T. Dibaei and A. Vahidi, Artinian and non-Artinian local cohomology modules, Canad. Math. Bull. 54 (2011), 619-629. 16. P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France, 90 (1962), 323- 448. 17. J. Herzog, Komplexe, Au oungen und Dualitat in der lokalen Algebra, Habilitationsschrift, Universitat Regensburg, 1974. 18. M. Lot Parsa, Bass numbers of generalized local cohomology modules with respect to a pair of ideals, Asian-Eur. J. Math. 11 (2018), 1850019-1-1850019-9. 19. M. Lot Parsa, Sdepth on ZD-modules and local cohomology, Czech. Math. J. 71 (2021), 755-764. 20. H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1989. 21. T. T. Nam, N. M. Tri and N. V. Dong, Some properties of generalized local cohomology modules with respect to a pair of ideals, Internat. J. Algebra Comput. 24 (2014), 1043-1054. 22. J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009. 23. R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support de ned by a pair of ideals, J. Pure Appl. Algebra, 213 (2009), 582-600. 24. N. M. Tri, Some results on top generalized local cohomology modules with respect to a system of ideals, Turk. J. Math. 44 (2020), 1673-1686. 25. A. Vahidi, Cohomological dimensions with respect to sum and intersection of ideals, Publ. Inst. Math. (Beograd) (N.S.) 102(116) (2019), 115-120. 26. S. Yassemi, Generalized section functors, J. Pure Appl. Algebra 95 (1994),103-119. 27. N. Zamani, Generalized local cohomology relative to (I; J), Southeast Asian Bull. Math. 35 (2011), 1045-1050. | ||
آمار تعداد مشاهده مقاله: 141 تعداد دریافت فایل اصل مقاله: 228 |