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Abstract. This paper is concerned with stochastic stability and stochastic bifurcation of the Fitzhug-
Nagumo model with multiplicative white noise. We employ largest Lyapunov exponent and singular
boundary theory to investigate local and global stochastic stability at the equilibrium point. In the rest,
the solution of averaging the Ito diffusion equation and extreme point of steady-state probability density
function provide sufficient conditions that the stochastic system undergoes pitchfork and phenomenolog-
ical bifurcations. These theoretical results of the stochastic neuroscience model are confirmed by some
numerical simulations and stochastic trajectories. Finally, we compare this approach with Rulkov ap-
proach and explain how pitchfork and phenomenological bifurcations describe spiking limit cycles and
stability of neuron’s resting state.
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1 Introduction

Growing application of neuroscience in various sciences has encouraged scientists to use mathematical
methods for research in this field. Mathematical modeling and dynamical systems are the most important
tools for understanding neural systems. Several dynamical models arised from laboratory and clinical
experiences and applications of neuroscience [7–9, 11]. The stochastic approach is an interesting and
reasonable way to overcome issues caused by the existence of many unknown effective parameters in
a scientific process. Recent developments in mathematical neuroscience and experimental observations
indicate that reformulating neural field dynamical models as a stochastic process leads to more accurate
and richer information on neural dynamics that is more consistent with the real world [2, 6, 10]. Bifur-
cation analysis is a performed tool to study the dynamical behavior of nonlinear mathematical models in
different scientific fields, without a direct recourse to solving the equations. The main types of stochastic
bifurcation are the D-bifurcation and the P-bifurcation problems, which focus on the stochastic bifur-
cation point in the probability and the mode of the stationary probability density function [4, 19, 21].
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Experimental evidence showed that noise is ubiquitous in neural systems and it may arise from many
different sources. One source may come from synaptic noise, that is, the quasi-random release of neuro-
transmitters by synapses or random synaptic input from other neurons. Another major source of noise is
channel noise which is the flickering of ion currents passing through the neuron membranes and cannot
be suppressed experimentally [20, 22]. The HodgkinHuxley model and its simplified equations have a
central role in mathematical neuroscience. FitzHugh-Nagumo model is one of these simplified equa-
tions which is a good tool to investigate the dynamical behavior of excitable systems, such as neural
systems [5,7,11]. Berglund and Landon studied the stochastic FitzHughNagumo equations in parameter
regimes characterized by mixed-mode oscillations and proved that this number has an asymptotically
geometric distribution [3]. In [20] the authors considered a stochastic FitzHughNagumo neuron model
in the excitable regime to estimate the firing time and proved that there exists a global random attractor
for the unique stable fixed point is stable. In [10] a stochastic Izhikevich-FitzHugh dynamical model
with multiplicative excitations is introduced and its stochastic stability and stochastic bifurcation are
investigated.

From a dynamical systems point of view, transition from resting to sustained spiking activity is an
important characteristics of neuron’s dynamics. Stability and bifurcations are effective tools to study
spiking and resting states of neurons [11]. On the other hand, we mentioned that many researches
and experimental evidences confirm that neuron dynamics can be considered as a stochastic process.
Therefore, studying stability and bifurcation neuroscience stochastic dynamical models could lead us to
interesting and important results.

The main aim of this manuscript is to study the dynamical behavior of the stochastic Izhikevich-
FitzHugh dynamical model, when its deterministic equation is a bistable system. The considered stochas-
tic model has been obtained by directly adding the environmental disturbance factor to the deterministic
dynamic model. In Section 2, some necessary notations and preliminary results in neuroscience and
stochastic processes, that are needed in later sections, are provided. One dimensional Ito formula is the
most effective tool introduced in this section to study the stability of stochastic processes. Section 3 is
dedicated to introducing the stochastic Izhikevich-Fitzhugh model with multiplicative excitations. We
focused on parameters that the system is bistable and rewritten so that all stability conditions are based on
eigenvalues of the Jacobian matrix of the deterministic system at equilibrium points. In Section 4, largest
Lyapunov exponent and singular boundary method are employed to analyze local and global stochastic
stability. Moreover, we calculate conditions on steady-state probability density function that the system
undergoes phenomenological and pitchfork bifurcation. Some numerical simulations including phase
portrait and stochastic trajectories are given to confirm our theoretical results. Finally a comparison be-
tween our approach and Rulkov stochastic models provided and the paper ends with a summary of the
research findings on spiking limit cycles and stability of neuron’s resting state.

2 Preliminaries

In this section, we present some preliminary concepts and definitions of stochastic processes that will be
used in the sequel.

Consider the n-dimensional stochastic differential system

dx(t) = f (x(t), t)dt +g(x(t), t)dW (t), (1)
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where f ∈C3(R×R,R), g∈C1(R×R,R) and dW (t) is mutually independent standard real-valued Wiener
processes on the complete probability space (Ω,F,P). For each arbitrary initial value x(t0) = 0 there
exists an unique global solution for Eq. (1) that is denoted by x(t; t0,x0).
The next theorem is an efficient tool to study stochastic stability assertions.

Theorem 1. (The one-dimensional Ito formula [15]) Let x(t) be an Ito process on t ≥ 0 with the stochas-
tic differential

dx(t) = f (x(t), t)dt +g(x(t), t)dW (t), (2)

where f ∈ L1(R+;R), g ∈ L2(R+;R) and V ∈C2,1(R×R+;R). Then V (x(t), t) is also an Ito process with
the stochastic differential given by

dV (x(t), t) = [Vt(x(t), t)+Vx(x(t), t) f (t)+
1
2

Vxx(x(t), t)g2(t)]dt +Vx(x(t), t)g(t)dW (t). (3)

Definition 1. [15] i− The equilibrium position of Eq. (1) is said to be stochastically stable if for every
pair of ε ∈ (0,1) and r > 0, there exists δ = δ (ε,r, t0)> 0 such that

P{|x(t; t0,x0)|< r for all t ≥ t0} ≥ 1− ε,

whenever ‖x0‖< δ0. Otherwise, it is said to be stochastically unstable.
ii− The stochastically stable equilibrium position is said to be stochastically asymptotically stable if for
every ε ∈ (0,1), there exists δ0 = δ0(ε, t0)> 0 such that

P{lim
t→∞

x(t; t0,x0) = 0} ≥ 1− ε,

whenever ‖x0‖< δ0. The equilibrium position is said to be global stochastically asymptotically stable if
it is stochastically stable, moreover, for all x0 ∈ Rd

P{lim
t→∞

x(t; t0,x0) = 0}= 1.

In simple words, bifurcation theory is the study of dynamical behavior, equilibrium point and trajec-
tories, of a nonlinear system in response to small changes in effective parameters. When a system is on
the verge of changing from one equilibrium state to another, even small changes in parameters can have
important effects. Dynamical bifurcation is concerned with a family of random dynamical systems which
is differential and has invariant measure µα . If there exists a constant αD satisfying the condition in any
neighborhood of αD, there exist another constant α and the corresponding invariant measure να 6= µα

satisfying να → µα as α → αD. Then the constant αD is a point of dynamical bifurcation [23].
Phenomenological bifurcation is concerned with the change in the shape of the stationary probability

density of a family of random dynamical systems with the change of the parameter. If there exists a
constant α0 satisfying the condition in any neighborhood of αD, there exist two other constants α1,α2
and their corresponding invariant measures pα1 , pα1 where pα1 and pα1 are not equivalent. Then the
constant α0 is a point of phenomenological bifurcation [23]. From the phenomenological point of view,
the multiplicative and additive noises have quite different features. In the first case, the thresholds depend
on the strength of the excitation term and eventually new instabilities appear, which are completely noise-
induced, while in the second case, the stability thresholds are not modified by the noise term.
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3 Deterministic and stochastic Izhikevich-FitzHugh model

Here, we provide a brief description of the following deterministic Izhikevich-FitzHugh model [11]:{
v̇ = u(α−u)(u−1)−w+ I,
v̇ = βu− γv,

(4)

where u mimics the membrane voltage and recovery variable v mimics the activation of an outward
current. Parameter I mimics the injected current, and for the sake of simplicity we set I = 0 in our
analysis below. Parameter α describes the shape of the cubic parabola u(α−u)(u−1), and parameters
β > 0 and γ ≥ 0 describe the kinetics of the recovery variable v.
The nullclines of this model have the simple form

Figure 1: Nullclines in system (4) for parameters I = 0,β = 0.01,γ = 0.1, α = 0.1 (Red curve is v-nullcline,
green line is w−nullcline).

{
u = u(α−u)(u−1)+ I,
v = β

γ
u.

(5)

It is clear that to find the equilibrium points, we need to find the roots of the equation

β

γ
u = u(α−u)(u−1)+ I.

We suppose that I = 0 and consequently the origin (0,0) is an equilibrium point. Then u = 0 or
u2 − (α + 1)u + α + β

γ
= 0. When (α+1

2 )2 − (α + β

γ
) > 0, the roots of the second equations, are

q1 = α+1
2 +

√
(α+1

2 )2− (α + β

γ
) and q2 = α+1

2 −
√
(α+1

2 )2− (α + β

γ
). So, this system has one, two

or three equilibria. In this paper, we consider a state in the system tha has three equilibria E0 = (0,0),
E1 = (q1,

β

γ
q1) and E2 = (q2,

β

γ
q2). Indeed, the nullclines of the model, depicted in Figure 1, always in-

tersect at (0,0) in this case. The stability of the equilibrium (0,0) depends on the parameters α,β , and γ .
In [10] the authors consider a stochastic scheme of this dynamical model with multiplicative excitations
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and proceed to study its stability and bifurcation at (0,0). Now, we are going to study the stability and
bifurcation of the system at equilibrium point Ei, i = 1,2 as a stochastic dynamical model.

The Jacobian matrix associated with (4) at equilibrium point Ei is given by

J =

(
−3p2 +2(α +1)p−α −1

β −γ

)
, (6)

where p = qi, i = 1,2. The characteristic polynomial of matrix (6) is

F(λ ) = (λ + γ)(λ +3p2−2(α +1)p+α)+β . (7)

The eigenvalues of this Jacobian matrix are

λ1,2 =
−∆±

√
∆2−4(αγ +β )

2
,

where ∆ = 3p2− 2(α + 1)p+α + γ . To shift the origin to the equilibrium Ei, we substitute x = u− p
and y = v− β

γ
p into system (8) and obtain its equivalent system as follows:{

dx
dt = (x+ p)(α− x− p)(x+ p−1)− y− β

γ
p,

dy
dt = β (x+ p)− γ(y+ β

γ
p).

(8)

Assuming that the variables x(t) and y(t) are subject to different kinds of stochastic noise, we rewrite
system (4) as follows:{

dx
dt = (x+ p)(α− x− p)(x+ p−1)− y− β

γ
p+σ1x dW (t),

dy
dt = β (x+ p)− γ(y+ β

γ
p)+σ2y dW (t),

(9)

where σ1 and σ2 measure the noise intensity and when σ = 0 Eqs. (9) degenerates into Eqs. (4) and
W (t) denote the independent standard Wiener process.

In the sequel, we suppose that I = 0. Applying Taylor’s expansion, we have the following equivalent
system:

dx = [−x3 +(α−3p+1)x2 +(2pα +2p−3p2−α)x+ p(α− p)(p−1)− β

γ
p− y]dt

+σ1x dW (t),
dy = [βx− γy]dt +σ2y dW (t).

(10)

Also note that

p(α− p)(p−1)− β

γ
p = 0.

We rewrite system (10) as { dx
dt = (2pα +2p−3p2−α)x− y+ f1,
dy
dt = βx− γy+ f2,

(11)

where
f1 =−x3 +(α−3p+1)x2 +σ1x

dW
dt

, and f2 = σ1y
dW
dt

.
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Let U =

[
x
y

]
and f (U,η(t)) =

[
f1
f2

]
where η(t)) = dW

dt . Then we can rewrite system (11) as

U̇ = JU + f (U,η(t)). (12)

Where, J is the Jacobian matrix associated with Eqs. (4) at equilibrium point E2.

Assume that
[

E
1

]
and

[
F
1

]
are the eigenvectors of the Jacobian matrix J corresponding to the

eigenvalues λ1 and λ2, respectively. Then J
[

E
1

]
= λ1

[
E
1

]
and J

[
F
1

]
= λ2

[
F
1

]
imply that

E = λ1+γ

β
and F = λ2+γ

β
. If we put U = T X , X =

[
x1
y1

]
and T =

[
E F
1 1

]
then

Ẋ =T−1JT X +T−1 f (T X ,η)

=

[
λ1 0
0 λ2

][
x1
x2

]
+

1
E−F

[
1 −F
−1 E

][
f1(T X ,dW )
f2(T X ,dW )

]
.

Since U = T X =

[
Ex1 +Fy1

x1 + y1

]
, we have that

Ẋ =T−1JT X +T−1 f (T X ,η)

=

[
λ1 0
0 λ2

][
x1
x2

]
+

1
E−F

[
1 −F
−1 E

][
−(Ex1 +Fy1)

3 +(α−3p+1)(Ex1 +Fy1)
2 +σ1(Ex1 +Fy1)

dW
dt

σ2(x1 + y1)
dW
dt

]
.

Therefore we reach the following stochastic dynamical model:


dx1

dt
= λ1x1 +a120x2

1 +a111x1y1 +a102y2
1 +a130x3

1 +a121x2
1y1 +a112x1y2

1 +a103x3
1 + f3,

dy1

dt
= λ2y1 +a220x2

1 +a211x1y1 +a202y2
1 +a230x3

1 +a221x2
1y1 +a212x1y2

1 +a203x3
1 + f4,

(13)

where

f3 =
1

E−F
[(σ1E−σ2F)x1 +(σ1−σ2)Fy1]

dW
dt

,

f4 =
1

E−F
[−(σ1−σ2)Ex1 +(−σ1E +σ2F)y1]

dW
dt

.
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And the coefficient are as the following:

a120 =
1

E−F
(α−3p+1)E2, a220 =−

1
E−F

(α−3p+1)E2,

a111 =
1

E−F
(α−3p+1)2EF, a211 =−

1
E−F

(α−3p+1)2EF,

a102 =
1

E−F
(α−3p+1)F2, a202 =−

1
E−F

(α−3p+1)F2,

a130 =−
1

E−F
E3, a230 =

1
E−F

E3,

a121 =−
3

E−F
E2F, a221 =

3
E−F

E2F,

a112 =−
3

E−F
EF2, a212 =

3
E−F

EF2,

a103 =−
1

E−F
F3, a203 =

1
E−F

F3.

By the polar coordinate transformation x1 = ρ cosθ , y1 = ρ sinθ and following transformation:{
dρ

dt = cosθ
dx1
dt + sinθ

dy1
dt ,

dθ

dt = 1
ρ
(−sinθ

dx1
dt + cosθ

dy1
dt )

(14)

we have

dρ

dt = λ1ρ cos2 θ +a120ρ2 cos3 θ +a111ρ2 cos2 θ sinθ +a102ρ2 cosθ sin2
θ +a130ρ3 cos4 θ

+a121ρ3 cos3 θ sinθ +a112ρ3 cos2 θ sin2
θ +a103ρ3 cosθ sin3

θ

+λ2ρ sin2
θ +a220ρ2 sinθ cos2 θ +a211ρ2 cosθ sin2

θ +a202ρ2 sin3
θ +a230ρ3 cos3 θ sinθ

+a221ρ3 cos2 θ sin2
θ +a212ρ3 cosθ sin3

θ +a203ρ3 sin4
θ

+ f3 cosθ + f4 sinθ
dθ

dt =−λ1 cosθ sinθ −a120ρ cos2 θ sinθ −a111ρ cosθ sin2
θ −a102ρ sin3

θ −a130ρ2 cos3 θ sinθ

−a121ρ2 cos2 θ sin2
θ −a112ρ2 cosθ sin3

θ −a103ρ2 sin4
θ

+λ2 cosθ sinθ +a220ρ cos3 θ +a211ρ cos2 θ sinθ +a202ρ cosθ sin2
θ +a230ρ2 cos4 θ

+a221ρ2 cos3 θ sinθ +a212ρ2 cos2 θ sin2
θ +a203ρ2 cosθ sin3

θ

+ 1
ρ
(− f3 sinθ + f4 cosθ).

(15)

4 Stochastic model in polar coordinate

Let us have a stochastic system in polar coordinates as follows:{
dρ = f11(ρ,θ)dt +g11(ρ,θ)dW (t),
dθ = f12(ρ,θ)dt +g21(ρ,θ)dW (t).

(16)

According to the Khasminskii limiting theorem, the stochastic response process ρ(t), θ(t) of system
(11) weakly converges to a two-dimensional Markov diffusion process. Thus, by using the stochastic
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averaging method obtained in [12], we have the averaged Ito stochastic differential equation for system
(11): {

dρ = m1(ρ)dt +µ1(ρ)dWρ(t),
dθ = m2(ρ)dt +µ2(ρ)dWθ (t),

(17)

where Wρ(t) and Wθ (t) are independent and standard Wiener processes, the drift coefficients m1(ρ),m1(ρ)
and the square of diffusion coefficients µ1(ρ),µ2(ρ) are

m1(ρ) =
1

2π

∫ 2π

0
{ f11 +

1
2
[
∂g11

dρ
g11 +

∂g11

dθ
g21]}dθ ,

m2(ρ) =
1

2π

∫ 2π

0
{ f21 +

1
2
[
∂g21

dρ
g11 +

∂g21

dθ
g21]}dθ ,

(µ1(ρ))
2 =

1
2π

∫ 2π

0
(g11(ρ,θ))

2dθ ,

(µ2(ρ))
2 =

1
2π

∫ 2π

0
(g21(ρ,θ))

2dθ .

Based on this assumptions for system (12) we have
dρ = [1

2 ρ(λ1 +λ2)+
1
8(3a130 +a112 +a221 +3a203)ρ

3 + ρ

2(E−F)2 ((σ1E−σ2F)2

+ 1
8(E−F)2(σ1−σ2)

2)]dt +µ1(ρ)dWρ(t),
dθ = [ρ2

8 (−a121−3a103 +3a230 +a212)+
1

(E−F)2 (
1
4(σ1−σ2)(E−F)(−σ1E +σ2F)]dt

+µ2(ρ)dWθ (t),

(18)

where

(µ1(ρ))
2 =

ρ2

2(E−F)2 [(σ1E−σ2F)2 +
1
4
(σ1−σ2)

2(E−F)2,

(µ2(ρ))
2 =

1
2(E−F)2 [

1
2
(−σ1E +σ2F)2 +

1
4
(σ1−σ2)

2(E +F)2.

Let σ1 = σ2 = σ , then we have the following system{
dρ = [1

2 ρ(λ1 +λ2)+
1
2 σ2ρ + 1

8(3a130 +a112 +a221 +3a203)ρ
3]dt + 1√

2
σρdWρ(t),

dθ = ρ2

8 (−a121−3a103 +3a230 +a212)dt + 1
2 σdWθ (t).

(19)

These equations show that the averaging amplitude ρ(t) is a one-dimensional Markov diffusing process,
then the following amplitude equation.

dρ = [1
2 ρ(λ1 +λ2 +σ2)+ 1

8(3a130 +a112 +a221 +3a203)ρ
3]dt + 1√

2
σρdWρ(t), (20)

could be used to study the dynamical behavior of Eqs. (9).

Then we have the following theorem.
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Theorem 2. Suppose that λ1,λ2 are eigenvalues of the Jacobian matrix associated with system (4) at
equilibrium point Ei, i= 1,2. When λ1+λ2+

σ2

2 < 0, the stochastic system (9) is stable at the equilibrium
point Ei and λ1 +λ2 +

σ2

2 > 0 implies that the stochastic system (9) is unstable at the equilibrium point
Ei.

Proof. The one-dimensional Ito formula implies that the solution of Eq. (20) is

ρ(t) = ρ(0)exp(
∫ t

0
[
1
2
(λ1 +λ2 +σ

2)− 1
4

σ
2]ds+

∫ t

0

σ√
2

dWρ(t).

Thus the associated largest Lyapunov exponent is

λ = lim
t→+∞

ln‖ρ(t)‖
t

=
1
2
(λ1 +λ2 +σ

2)− 1
4

σ
2 =

1
2
(λ1 +λ2 +

σ2

2
).

According to Oseledet’s multiplicative ergodic theorem [1], negativity of the largest Lyapunov exponent
is a necessary and sufficient condition for asymptotic stability with probability one of the trivial solution
of system (9). This implies that the stochastic system (9) at the equilibrium point Ei, i = 1,2 is locally
asymptotically stable if and only if λ < 0. Consequently local asymptotic stability stochastic system (9)
at the equilibrium point Ei, i = 1,2 is equivalent to λ1 +λ2 +

σ2

2 < 0.

In the following, we consider notations on singular boundary value problems to investigate the global
stability of system (4) at equilibrium points. Consider the one-dimensional Ito stochastic differential
equation

dρ = m(ρ)dt +µ(ρ)dWρ(t). (21)

Let xs is the boundaries of this system, where the subscript s = l or r, denoting the left or right boundary.
When the diffusion term µ(xs) = 0, the singular boundary xs is said to be the first type and in this case,
we have the following definitions:
(i) if µ2(x) = limx→xs O | x− xs |αs , then αs ≥ 0 is said to be diffusion exponent of xs.
(ii) if µ(x) = limx→xs O | x− xs |βs , then αs ≥ 0 is said to be drift exponent of xs.
(iii) Characteristic value Cs is given by

Cl = lim
x→x+l

2m(x)(x− xl)
αl−βr

µ2(x)
, Cr = lim

x→x+r

2m(x)(x− xr)
αr−βr

µ2(x)
.

When the drift term m(x) is unbounded and |xs| < ∞, then the singular boundary xs is said to be the
second type. For second type, parameters αs, βs and Cs are defined similarly to the first type which
powers are multiplied by minus one.

Theorem 3. Suppose that λ1 and λ2 are eigenvalues of the Jacobian matrix associated with system (4) at
equilibrium point Ei, i = 1,2. When λ1 +λ2 +

σ2

2 < 0 and 3a130 +a112 +a221 +3a203 < 0, the stochastic
system (9) is globally asymptotic stable at the equilibrium point Ei.

Proof. Consider Eq. (20). Since ρ → 0+, the asymptotic expressions for the drift term m(ρ) and the
square of the diffusion term µ2(ρ) are of the forms

m(ρ) =
1
2

ρ(λ1 +λ2 +σ
2)+O(ρ), µ

2(ρ) =
1
2

σ
2
ρ

2.
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So, the diffusion exponent αl = 2, drift exponent βl = 1 and Cl =
2(λ1+λ2+σ2)

σ2 , which, the left boundary
ρ = 0 of the averaged Ito belongs to the singular boundary of the first type.
Similarly, for the right boundary ρ → +∞ the asymptotic expressions for the drift term m(ρ) and the
square of the diffusion term µ2(ρ) are of the forms

m(ρ) =
1
8
(3a130 +a112 +a221 +3a203)ρ

3, µ
2(ρ) =

1
2

σ
2
ρ

2,

which is a second type singular boundary such that the diffusion exponent αr = 2, drift exponent βr = 3
and Cr = −3a130+a112+a221+3a203

2σ2 . Therefore λ1 +λ2 +
σ2

2 < 0 and 3a130 + a112 + a221 + 3a203 < 0 imply
that Cl < 1 and Cr >−1, respectively. Then similar argument to proof of Theorem 3.2 of [12] shows that
the stochastic system (9) is globally asymptotic stable at the equilibrium point Ei.

5 Stochastic bifurcation

In this section, we consider conditions in the stochastic system that undergo pitchfork and phenomeno-
logical bifurcations.

Theorem 4. Suppose that λ1,λ2 are eigenvalues of the Jacobian matrix associated with system (4) at
equilibrium point Ei, i = 1,2. When λ1 + λ2 +

σ2

2 < 0, the solution of stochastic system (9) possesses
exactly one invariant measure that is stable. If λ1 +λ2 +

σ2

2 > 0, the solution of stochastic system (9)
possesses two unstable and one stable random Dirac measures. Then the stochastic system undergoes a
stochastic pitchfork bifurcation at λ1 +λ2 =−σ2

2 .

Proof. Suppose that µ3 = 3a130 +a112 +a221 +3a203 and zt = (− µ3
8 )

1
2 ρ. Then we can rewrite stochastic

system (20) as

dzt = [
1
2
(λ1 +λ2 +σ

2)zt − z3
t ]dt +(

σ2

2
)

1
2 ztdWρ(t)

The Stratonovich form of this stochastic system is as follows:

dzt = (ϕzt − z3
t )dt +ηztodWρ(t), (22)

where ϕ = 1
2(λ1+λ2+σ2) and η = (σ2

2 )
1
2 . This is well known that system (22) generates a local random

dynamical system of the form:

ψϕ(t,ω,z) =
zexp(ϕt +ηWt(ω))

(1+2z2
∫ t

0 exp[2(ϕs+ηWs(ω))]ds)
1
2
.

Therefore condition of Section 4.1 in [13] established for system (20). Consequently system (20) under-
goes pitchfork bifurcation at ηD = 0, i.e. λ1 +λ2 =−σ2

2 and the proof is completed.

Now, we would like to use a phenomenological approach to study the stochastic bifurcation of system
(20). The stochastic P-bifurcation is a type of stochastic bifurcation that occurs in a stochastic system.
This bifurcation describes the mode of the stationary probability density function or the invariant measure
of the stochastic process. Let steady-state probability density function be denoted by Pst(ρ). The extreme
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value of Pst(ρ) illustrates the stationary behavior of the Fokker-Planck equation arising from nonlinear
stochastic systems. Stability at a point ρ∗ in probability viewpoint means that the sample trajectory will
stay for a longer time in the neighborhood of ρ∗. A sufficient condition for stability in the meaning of
probability is that Pst(ρ) has a maximum value at ρ∗. Minimum value of Pst(ρ) at ρ∗ gives an opposite
property [12, 21]. Stochastic systems undergo stochastic P-bifurcation when the mode of the stationary
probability density function changes in nature. It indicates the jump in the distribution of the random
variable in the probability sense. To investigate the P-bifurcation of a stochastic system (9) and its polar
coordinate transformation (20), we use probability density functions.
We obtain the corresponding FPK equation of amplitude Eq. (20) as follows:

∂P(ρ)
∂ t

=− ∂

∂ρ
{[1

2
(ρ(λ1 +λ2 +σ

2)+
µ3

8
ρ

3]P(ρ)}+ 1
2

∂ 2

∂ρ2 (
σ2ρ2

2
)P(ρ)],

where µ3 = 3a130 + a112 + a221 + 3a203. By calculating the solution of the degenerate system when
∂P(ρ)

∂ t = 0, the steady-state probability density function Pst(ρ) can be obtained as follows:

Pst(ρ) =


δ (ρ), λ1 +λ2 +

σ2

2 ≤ 0,

ρ

2(λ1+λ2)
σ2 exp( µ3

4σ2 r2)

Γ(
2(λ1+λ2)+σ2

2σ2 )(
µ3

4σ2 )
2(λ1+λ2)+σ2

2σ2

, λ1 +λ2 +
σ2

2 > 0,
(23)

To obtain the extreme value point of the probability density Pst(ρ), we need to solve dPst(ρ)
dρ

= 0, that is

(
2(λ1 +λ2)

σ2 +2
µ3

4σ2 ρ
2)

ρ
2(λ1+λ2)−σ2

σ2 exp( µ3
4σ2 r2)

Γ(2(λ1+λ2)+σ2

2σ2 )( µ3
4σ2 )

2(λ1+λ2)+σ2

2σ2

= 0.

It is clear that ρ = 0 or ρ∗ =
√
−4(λ1+λ2)

µ3
. Therefore Pst(ρ) has extreme point if 4(λ1+λ2)

µ3
< 0 and

∂ 2Pst(ρ)
∂ρ2 < 0 holds at ρ∗ for µ3 < 0. These conditions imply that Pst(ρ) possesses a maximum value at the

point ρ = ρ∗. Consequently, we have the following theorem to obtain phenomenological bifurcation.

Theorem 5. Suppose that λ1,λ2 are eigenvalues of the Jacobian matrix associated with system (4) at
equilibrium point Ei, i = 1,2. and µ3 = 3a130 +a112 +a221 +3a203. If µ3 < 0 and (λ1+λ2)

µ3
< 0, then Eq.

(20) undergoes phenomenological bifurcation at ρ∗ =
√
−4(λ1+λ2)

µ3
.

6 Numerical simulation

In this section, we present some numerical examples including phase portrait and trajectories evolution
in time to illustrate theoretical results on stochastic stability and stochastic bifurcation. We choose the
value of parameters as γ = 0.01, β = 0.01 and α = 0.1. The eigenvalues of system (4) are λ1 =−0.0386
and λ2 = −0.518, then Theorem 2 implies that, for every σ > 0 that λ1 + λ2 +

σ2

2 < 0, the stochastic
system (9) is stable at the equilibrium point q1. Then for every σ <

√
1.13, the equilibrium point q1 is
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Figure 2: Phase portrait for system (10) for γ = 0.1, β = 0.01, α = 0.1, initial conditions (u0,v0) = (0.65,0.08)
and σ = 0.045 (a), σ = 1.2(b) for equilibrium point p = q1.

asymptotically stable in probability one and for σ >
√

1.13 it is unstable. Figure 2 represents the phase
portrait of the stochastic system for two different values of the noise σ . In case (a) σ = 0.045 <

√
1.13

and trajectory of p = (0.65,0.08) convergence to equilibrium point q1. In case (b) σ = 1.12 >
√

1.13
and trajectory of p = (0.65,0.08) convergence to equilibrium point (0,0).
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Figure 3: Time series of system (10) for γ = 0.1, β = 0.01, α = 0.1, initial conditions (u0,v0) = (0.65,0.08) and
σ = 0.015 (a), σ = 0.045 (b), σ = 0.13(c), σ = 1.1(d) for equilibrium point p = q1.

In Figure 3, we investigate the effect of the noise in system (10) with the fixed parameters
γ = 0.01, β = 0.01 and α = 0.1 and initial condition (u0,v0) = (0.65,0.08). This figure shows that
if the intensity of the noise is increased, then the equilibrium point q1 tend to be unstable. In case
(d) λ1 + λ2 +

σ2

2 > 0 and time series after a fluctuation moves away from equilibrium point q1 and
convergence to origin which confirm that q1 is unstable and the origin is stochastic asymptotically stable,
as claimed in [10]. In Figure 4, we plot the time series evaluation of system (10) for 10 different initial
condition (u0,v0). This figure confirms stochastic asymptotical stability conditions provided in Theorem
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Figure 4: Time series of system (10) for γ = 0.1, β = 0.01, α = 0.1, 10 different initial conditions (u0,v0) and
σ = 0.015 (a), σ = 1.12 (b) for equilibrium point p = q1.

(2) and the above simulations. Consider the parameters as γ = 0.02, β = 0.002, α = 0.3, in this case
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Figure 5: Time series of system (10) for γ = 0.02, β = 0.002, α = 0.3, 12 different initial conditions (u0,v0) and
σ = 0.06 (a), σ = 0.45 (b) for equilibrium point p = q2 = (0.5,0.05).

q2 = (0.5,0.05) is an unstable equilibrium point with eigenvalues λ1 = 0.1873 and λ1 = 0.0427. Then
the stochastic system is unstable for every σ > 0. Consider the time series evaluation of system (10) for
12 different initial condition (u0,v0) in Figure 5. This figure confirms stochastic asymptotical stability
conditions provided in Theorem 2. In case (a) σ = 0.06 and some trajectories converge to equilibrium
point q1 and the other convergence to origin as a stable equilibrium point. In case (b) σ = 0.45 and all
trajectories converge to the origin as a stable equilibrium point. In any case, all trajectories move away
from equilibrium point q2.
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7 Discussion and conclusion

There exist two main approaches to develop a stochastic model corresponding to a deterministic model
to investigate the effect of environmental disturbance on its dynamic behavior. The first one is to add
environmental disturbance factor directly to the deterministic dynamical model such that expressive the
effect of a randomly fluctuating environment without affecting any particular parameter. One of the
strengths of this approach is that the influence of any parameter in the deterministic model does not
change separately. This paper was based on this approach which does not depend on specific data.
The second one is to replace the time-independent parameters involved with the deterministic model
system by some random parameters or the values of the parameters are randomly selected. In [14] the
authors used this approach to study the stochastic Brusselator system and proved that stochastic Hopf
bifurcation could arise from the variation of intensity of the random parameter alone.
In general, neurons are excitable because they are near bifurcations from resting to spiking activity, so
the type of the bifurcation determines the excitable properties of the neuron. Indeed different classes of
excitability occur because neurons have different bifurcations of resting and spiking states [11]. Based on
neurobiological experiments and numerical simulations, individual neurons have irregular bursts, while
ensembles of such irregularly bursting neurons can synchronize and produce regular, rhythmical bursting.
In this direction, Rulkov used the second approach and showed that synchronization among chaotically
bursting cells can lead to the onset of regular bursting [17]. The proposed model combines two one-
dimensional fast and slow subsystems and is known as the Rulkov map. Recursive nonlinear and mean-
reverting properties of Rulkov maps caused this model to be highly suitable for the modeling of financial
time series, such as the occurrence of data clusters, mutual synchronization, chaos and regularization of
bursts of activity across the markets [16, 18].

First of all, the Rulkov map and its results confirm the need to consider neuron dynamics as a stochas-
tic process. Also, Izhikevich explains the noise-induced bursting in a two-dimensional system (4) coex-
istence of an equilibrium and a limit cycle attractor [11]. Rulkov in [17] concluded that this mechanism
of chaos regularization is due to the dynamical features of each cell at the beginning and at the end of
the chaotic burst which are similar to saddle-node bifurcation and the appearance of a homoclinic orbit.
All of these results are obtained based on similarity of figures and numerical simulations. But, in the
present paper, we consider the first approach mentioned above to determine the necessary and sufficient
conditions on noise and deterministic parameters for stability and bifurcations of the FitzHugh-Nagumo
model as a stochastic model. The sign of largest Lyapunov exponent is a simple and efficient tool to study
stochastic stability and stochastic bifurcation. Theorem 2 determines the largest Lyapunov exponent de-
pending on the eigenvalues and noise of the stochastic systems. We provided conditions on eigenvalues
of the Jacobian matrix at non-origin equilibrium points and additive noise that our stochastic system
undergoes pitchfork and phenomenological bifurcations. Phenomenological and pitchfork bifurcations
describe spiking limit cycles and stability of neuron’s resting state of neuron dynamics, respectively,
as a stochastic process. Researching bursting in the stochastic FitzHugh-Nagumo model with the first
approach mentioned above can be an attractive topic for further studies.
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