- Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. (2017). Parkinson disease. Nat Rev Dis Primers. 3:17013.
- Dorsey ER, Bloem BR. (2018). The Parkinson pandemic-A call to action. JAMA Neurol. 75:9–10.
- Takamiya A, Seki M, Kudo S, Yoshizaki T, Nakahara J, Mimura M, et al. (2021). Electroconvulsive therapy for Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 36:50–58.
- Braak H, Del Tredici K. (2008). Invited article: Nervous system pathology in sporadic Parkinson disease. Neurology.70:1916–25.
- Ren Y, Jiang H, Pu J, Li L, Wu J, Yan Y, et al. (2022). Molecular features of parkinson's disease in patient-derived midbrain dopaminergic neurons. Movement Disord. 37:70–9.
- Tian L, Al-Nusaif M, Chen X, Li S, Le W. (2022). Roles of transcription factors in the development and reprogramming of the dopaminergic neurons. Int J Mole Sci. 23(2):845.
- Al-Nusaif M, Yang Y, Li S, Cheng C, Le W. (2022). The role of NURR1 in metabolic abnormalities of Parkinson’s disease. Molecul Neurodegenerat. 17:46-61.
- Sacchetti P, Carpentier R, Ségard P, Olivé-Cren C, Lefebvre P. (2006). Multiple signaling pathways regulate the transcriptional activity of the orphan nuclear receptor NURR1. Nucleic Acids Res. 34:5515–27.
- Li Y, Cong B, Ma C, Qi Q, Fu L, Zhang G, et al. (2011). Expression of Nurr1 during rat brain and spinal cord development. Neurosc Letters. 488:49–54.
- Zetterström RH, Solomin L, Jansson L, Hoffer BJ, Olson L, Perlmann T. (1997). Dopamine neuron agenesis in Nurr1-deficient mice. Science (New York, NY). 276:248–50.
- Yang Z, Li T, Li S, Wei M, Qi H, Shen B. (2019). Altered expression levels of MicroRNA-132 and Nurr1 in peripheral blood of Parkinson's disease: Potential disease biomarkers. ACS Chem Neurosci. 10(5):2243-2249.
- Al-Nusaif M, Lin Y, Li T, Cheng C, Le E. (2022). Advances in NURR1-regulated neuroinflammation associated with Parkinson’s disease. Int J Mol Sci. 23:1618.
- Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, et al. (2022). Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci. 14:975248.
- Qazi TJ, Lu J, Duru L, Zhao J, Qing H. (2021). Upregulation of mir-132 induces dopaminergic neuronal death via activating SIRT1/P53 pathway. Neurosci Lett. 740:135465.
- Ge Y, Wang Z, Gu F, Yang X, Chen Z, Dong W, et al. (2021). Clinical application of magnetic resonance-guided focused ultrasound in Parkinson’s disease: a meta-analysis of randomized clinical trials. Neurol Sci. 42:3595–3604.
- da Silva FC, Iop RDR, de Oliveira LC, Boll AM, de Alvarenga JGS, Gutierres Filho PJB, et al. (2018). Effects of physical exercise programs on cognitive function in Parkinson’s disease patients: a systematic review of randomized controlled trials of the last 10 years. PLoS One 13:e0193113.
- Earhart GM, Falvo MJ. (2013). Parkinson disease and exercise. Compr Physiol. 3:833–848.
- Sadaharu T, Asuka M, Takafumi S, Bumpei S, Susumu M, Jun T. (2020). Exercise promotes neurite extensions from grafted dopaminergic neurons in the direction of the dorsolateral striatum in Parkinson’s disease model rats. J Parkinson Dis. 10(2):511-521.
- da Costa RO, Gadelha-Filho CVJ, da Costa AEM, Feitosa ML, de Araújo DP, de Lucena JD, et al. (2017). The treadmill exercise protects against dopaminergic neuron loss and brain oxidative stress in Parkinsonian rats. Oxid Med Cell Longev. 2017:2138169.
- Amoasii L, Sanchez-Ortiz E, Fujikawa T, Elmquist JK, Bassel-Duby R, Olson EN. (2019). NURR1 activation in skeletal muscle controls systemic energy homeostasis. Proc Natl Acad Sci USA. 116(23):11299–11308.
- Dong J, Liu Y, Zhan Z, Wang X. (2018). MicroRNA-132 is associated with the cognition improvement following voluntary exercise in SAMP8 mice. Brain Res Bull. 140:80-87.
- Yazdian MR, Khalaj A, Kalhor N. (2018). The effect of caloric restriction and treadmill exercise on reserpine-induced catalepsy in a rat model of Parkinson’s disease. Shefaye Khatam. 6(4): 45-52.
- Zahraei H, Mogharnasi M, Afzalpour ME, Fanaei H. (2022). The effect of 8 weeks of continuous and high intensity interval swimming on chemerin levels in liver and visceral fat tissues and insulin resistance in male rats with metabolic syndrome. Journal of Sport and Exercise Physiology. 15(1): 33-44.
- Hubrecht R, Kirkwood J. (2010). UFAW Handbook on the care and management of laboratory and other research animals. 8th ed. Wiley-Blackwell Publishing Ltd. P:460-520.
- Abbasi M, Kordi M, Daryanoosh F. (2023). The effect of eight weeks of high-intensity interval swimming training on the expression of PGC-1α and IL-6 proteins and memory function in brain hippocampus in rats with non-alcoholic steatohepatitis induced by high fat diet. J Appl Health Study Sport Physiol. In press.
- Le W, Pan T, Huang M, Xu P, Xie W, Zhu W, et al. (2008). Decreased NURR1 gene expression in patients with Parkinson's disease. J Neurol Sci. 273:29–33.
- Paliga D, Raudzus F, Leppla S, Heumann R, Neumann S. (2019). Lethal Factor Domain-Mediated Delivery of Nurr1 Transcription Factor Enhances Tyrosine Hydroxylase Activity and Protects from Neurotoxin-Induced Degeneration of Dopaminergic Cells. Mole Neurobiol. 56:3393–403.
- Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. (2020). Modeling Parkinson’s disease with the alpha-synuclein protein. Front Pharmacol. 11: 356.
- Jia C, Qi H, Cheng C, Wu X, Yang Z, Cai H, et al. (2020). α-Synuclein Negatively Regulates Nurr1 Expression Through NF-κB-Related Mechanism. Front Mole Neurosci. 13:64.
- Yang Y, Latchman D. (2008). Nurr1 transcriptionally regulates the expression of alpha-synuclein. Neuroreport. 19:867–71.
- Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, et al. (2009). A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell. 137:47–59.
- Li H, Yu L, Li M, Chen X, Tian Q, Jiang Y, Li N. (2020). MicroRNA‐150 serves as a diagnostic biomarker and is involved in the inflammatory pathogenesis of Parkinson's disease. Molecular Genetics & Genomic Medicine. 8(4):e1189.
- Fu H, Cheng Y, Luo H, Rong Z, Li Y, Lu P, et al. (2019). Silencing microRNA-155 attenuates kainic acid-induced seizure by inhibiting microglia activation. Neuroimmunomodulation. 26(2):67-76.
- Babri S, Habibi P, Nouri F, Khazaei M, Nayebi Rad S, Javani G. (2021). Protective effect of swimming and genistein on the expression of microRNA 132, insulin growth factor 1, and brain-derived neurotrophic factor genes, as well as spatial memory, in the hippocampus of diabetic ovariectomized rats. Avicen J Neuro Psycho Physiol. 8(4): 178-185.
|