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ON ENUMERATION AND CLASSIFICATION OF
EL2-SEMIHYPERGROUPS AND

EL2-Hv-SEMIHYPERGROUPS WITH 2 ELEMENTS

S. H. GHAZAVI, S. MIRVAKILI∗ AND M. A. DEHGHANIZADEH

Abstract. EL-hypergroups were defined by Chvalina 1995. Till
now, no exact statistics of EL-hypergroups have been done.
Moreover, there is no classification of EL-hypergroups and EL2-
hypergroups even over small sets. In this paper, we classify all EL-
(semi)hypergroups over sets with two elements obtained from quasi
ordered semigroups. Also, we characterize all quasi ordered Hv-
group and then we enumerate the number of EL2-Hv-hypergroups
and EL2-hypergroups of order 2.

1. Introduction

Hypergroups were first introduced by Marty. A hypergroup is a
generalization of a group. Also, Vougioklis introduced the Hv-groups
as a generalization of hypergroups[26]. The first book on algebraic
hyperstructures was written by Corsini[3]. Moreover, Vougioklis wrote
a book on the Hv-group [26]. After that, Corsini, Leoreanu, Davvaz
published some books on the applications of hyperstructures and other
branches of hyperstructures.[3, 5, 7, 6].

The connection between semihypergroups and partial ordering has
been started in 1960s. This relations has been introduced by Niemi-
nen, Corsini, Rosenberg and Novak. Ends Lemma hyperstructures(EL-
hyperstructures) are hyperstructures based on po(semi)groups. These
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were first investigated by Chvalina [2] and after that introduced by
Rosenberg in [23], Hoskova in [13], Rackova in [22] and Novak in
[16, 17, 18, 19, 20, 21]. EL-hyperstructures were generalized and ex-
tended by Ghazavi et al. [10] and called EL2-hyperstructures. Also,
Ghazavi et al. studied ELn-hyperstructures and EL-Γ-hyperstructures
in [11, 12].

The number of hypergroups of order 3 is 23192[14]. The number of
hypergroups of the same order up to isomorphism is 3999 [24]. Vou-
giouklis in found 8 hypergroups(up to isomorphism) of order 2 and
Bayon and Lygeros computed 20 Hv-groups(up to isomorphism) of or-
der 2 [1]. Enumerating and classification of hypergroups and related
hyperstructures have many significant applications in other branches of
science. Corssini, Leoreanu and Davvaz [4, 7] presented some of appli-
cations of hypergroups, Hv-groups and hyperrings. The enumeration
and classification of (semi)hypergroups and Hv-(semi)groups will use
to study its application in different sciences.

Recently, Ghazavi and Mirvakili classified EL-hypergroups with 2
elements[9]. In this paper, we characterize all posemihypergroups and
poHv-semigroups of order 2. Then, we concentrate on posemihyper-
groups and poHv-semigroups in order to find and classify all EL2-
semihypergroups and EL2-Hv-semigroups of order 2.

2. Preliminaries

We recall some basic notions and definitions of ordered semigroups
and (semi)hypergroups[3, 6].

Let H ̸= ∅ and P∗(H) = {K ⊆ H|K ̸= ∅}. A hypergroupoid
(hyperstructure) is a pair (H, ◦) where ◦ is a hyperoperation, that
means ◦ : H ×H −→ P∗(H). Let A an B be two non-empty subsets
of hypergroupoid (H, ◦) and x ∈ H, then we set

x ◦A = {x} ◦A, A ◦ x = A ◦ {x} and A ◦B =
∪

{a ◦ b|a ∈ A, b ∈ B}.

The hyperoperation ◦ is called associative (weak associative) if for
triple (a, b, c) ∈ H3 we have

a ◦ (b ◦ c) = (a ◦ b) ◦ c(a ◦ (b ◦ c) ∩ (a ◦ b) ◦ c ̸= ∅).
The semihypergroup (H, ◦) is called hypergroup if reproduction ax-

iom holds. It means that for every a ∈ H

a ◦H = H = H ◦ a
The hypergroupoid (H, ◦) is called a(an) semihypergroup

(Hv-semigroup) if ◦ is an(a) associative (weak associative) hyperoper-
ation. Moreover, a(an) semihypergroup (Hv-semigroup) is called a(an)
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semihypergroup (Hv-semigroup if for the hyperoperation ◦ the repro-
duction axiom holds.

A relation R on non-empty set H is called quasi order if it is reflexive
and transitive. A quasi order relation R is called partially order relation
if R is antisymmetric. Let (S, ·) is a (semi)group. A triple (S, ·, R) is
called quasi ordered (semi)group, if R is a quasi order relation on S
such that monotone condition holds, i.e., for all x, y, z ∈ S,

xRy → (x · z)R(y · z) and (z · x)R(z · y).

If R is partially order relation then (S, ·, R) is called partially ordered
(semi)group or po(semi)group.

Let (S, ·, R) be a po(semi)group. We set [x)R = {s ∈ S;xRs} and

also [A)R =
∪
x∈A

[x)R. Similarly, (x]R = {s ∈ S; sRx} and (A]R =∪
x∈A

(x]R. The EL-(semi)hypergroups are (semi)hypergroups constructed

from a po(semi)groups using ”Ends
lemma”. This concept was first introduced by Chvalina in 1995 [2].

In particular, Chvalina in Theorem 3 in [2] proved that:

Lemma 2.1. Let (S, ·, R) be a posemigroup. Define a hyperoperation
◦ : S × S −→ P∗(S) by a ◦ b = [a · b)R = {x ∈ S, a · bRx}. Then (S, ◦)
is a semihypergroup. Moreover, (S, ◦) is commutative if and only if the
semigroup (S, ·) is commutative.

Also, Chvalina in Theorem 1.4 in [2] showed that

Theorem 2.2. Suppose that (S, ·, R) is a posemigroup. Then the fol-
lowing conditions are equivalent:

(I) For every a, b ∈ S there exist c, d ∈ S such that (b · d)Ra and
(c · b)Ra.

(II) The hyperstructure (S, ◦) is a hypergroup.

Remark 2.3. If (S, ·, R) is a pogroup, then the condition (II) in Theorem
2.2 is valid. Therefore, (S, ◦, R) is a hypergroup.

3. Main results

Now, we try to study and count all semihypergroups and
Hv-semigroups, of order 2, which has EL2-construction. As men-
tioned before, EL2-hyperstructures are a family of hyperstructures con-
structed on quasi ordered hyperstructures and consequently we need
all quasi order relations on a set with two elements.



88 GHAZAVI, MIRVAKILI AND DEHGHANIZADEH

Theorem 3.1. Suppose A = {a, b}. Then, there are four quasi order
relations on A as follows:.

R1 = {(a, a), (b, b)},
R2 = {(a, a), (b, b), (a, b)},
R3 = {(a, a), (b, b), (b, a)},
R4 = {(a, a), (b, b), (a, b), (b, a))} = A× A.

Definition 3.2. The triple (H, ◦, R) is known as a (partially) quasi
ordered hypergroupoid provided that (H, ◦) be a hypergroupoid and
“R” be a (partially) quasi order relation on H and, in addition, for all
a, b, c ∈ H with the property aRb there holds a ◦ cRb ◦ c and c ◦ aRc ◦ b
(monotone condition), where if A and B are non-empty subsets of H,
then we define ARB whenever for all a ∈ A, there exists b ∈ B and for
all b ∈ B there exists a ∈ A such that aRb.

Example 3.3. Suppose (S, ·, R) is a (partially) quasi ordered semi-
group. For (x, y) ∈ S2, define x ◦ y = {xi : i ∈ N}. Now, it is easy to
see that the monotone condition holds and therefore the triple (S, ◦, R)
is a (partially) quasi ordered semihypergroup.

Example 3.4. Suppose (A,R) is a (partially) quasi ordered set. Define
the hyperopration “∗” on A as a∗ b = {a, b} for all (a, b) ∈ A2. It easy
to see that (A, ∗, R) is a (partially) quasi ordered hypergroup.

Example 3.5. Look at (H = {x, y, z}, ◦,R) where

R = {(x, x), (y, y), (z, z), (x, y), (x, z), (y, z)}
and hyperoperation “ ◦ ” is given by the Table 1.

Table 1. Ordered hypergroup with 3 elements

◦ x y z
x x x, y x, z
y x, y y y, z
z x, z y, z z

.

A simple computation shows that the triple (H, ◦, R) is quasi ordered
hypergroup.

Definition 3.6 ([10]). Let (H, ◦, R) be a (partially) quasi ordered hy-
pergroupoid. For (a, b) ∈ H2, define the new hyperoperation ∗ on H
as

∗ : H ×H −→ P∗(H)



CLASSIFICATION OF EL2-Hv-SEMIHYPERGROUPS 89

a ∗ b = [a ◦ b)R =
∪

m∈a◦b

[m)R.

Remark 3.7. This hyperopration is known as the extended version of
Ends Lemma.

Remark 3.8. From now on, we name (H, ∗) as the EL2-hypergroupoid
associated to (partially) quasi ordered hypergroupoid (H, ◦, R).

Theorem 3.9 ([10]). Suppose (S, ·, R) is a (partially) quasi ordered
Hv-semigroup. Then, its associated EL2-hyperstructure (H, ∗) is an
Hv-semigroup i.e. “ ∗ ” is weak associative.

Corollary 3.10 ([10]). If (H, ◦, R) is a (partially) quasi ordered Hv-
group, then (H, ∗) is an Hv-group.

Notice that the converse of the above corollary does not hold. Look
at the following example.

Example 3.11. Look at the hypergroupoid (H = {a, b}, ◦) in Table
2. Then the triple (H = {a, b}, ◦, R) in which R = H × H is a quasi

Table 2. hypergroupoid

◦ a b
a a a
b b a

ordered hypergroupoid. Now, because (b ◦ a) ◦ b
∩

b ◦ (a ◦ b) = ∅, the
pair (H, ◦) is not an Hv-group. Setting EL2-construction on (H =
{a, b}, ◦, R), we get its associated EL2-hyperstructure as in the Table
3. Clearly, the hypergroupoid (H, ∗) is an Hv-group.

Table 3. EL2-hypergroup

∗ a b
a H H
b H H

Theorem 3.12. Suppose (H, ◦, R) is a quasi (partially) ordered semi-
hypergroup i.e. “◦” is an associative hyperoperation and the monotone
condition holds. Then, its associated EL2-hyperstructure (H, ∗) is a
semihypergroup.
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3.1. EL2-semihypergroup. .

EL2-semihypergroups are hyperstructures constructed on a quasi
(partially) ordered semihypergroup using extended version of Ends
Lemma. By 3.12, if we start with a quasi (partially) ordered semi-
hypergroup (S, ◦, R) and set the EL2-construction on it, its associatd
EL2 hyperstructure (S, ∗) would be a semihypergroup. So, at the be-
gining, we should know all semihypergroups of order 2. Then,

Theorem 3.13. [8] There exist, up tp isomorphism, 17 semihyper-
groups of order 2 in Table 4.

Table 4. Classification of the semihypergroups of order 2

◦1 a b
a a a
b a a

◦2 a b
a a a
b a b

◦3 a b
a a a
b b b

◦4 a b
a a b
b b a

◦5 a b
a a b
b a b

◦6 a b
a S a
b a b

◦7 a b
a a S
b a b

◦8 a b
a a S
b b b

◦9 a b
a S b
b b b

◦10 a b
a S S
b a b

◦11 a b
a S a
b S b

◦12 a b
a S S
b b b

◦13 a b
a a S
b S b

◦14 a b
a S b
b S b

◦15 a b
a S S
b S a

◦16 a b
a a S
b S S

◦17 a b
a S S
b S S

Similar to EL-construction, in EL2-construction we have to recog-
nize and determine all triples (S, ◦i, Rj) which have the monotone con-
dition. ( i.e. those who are quasi ordered semihypergroups). So, we
can see that:

Proposition 3.14. For all i ∈ {1, 2, . . . , 17} and j ∈ {1, 4}, the triple
(S, ◦i, Rj) is a quasi ordered semihypergroup.

Proof. Let S = {a, b}. Then,
(i) For j = 1, the proof is straightforward, since R1 consists diago-

nal pairs (x, x), x ∈ S and product of any element in these pairs
are again diagonal.



CLASSIFICATION OF EL2-Hv-SEMIHYPERGROUPS 91

(ii) Because R4 = S × S, all possible pairs (x ◦i y, x ◦i z) and (y ◦i
x, z ◦i x) for all x, y, z,∈ S, are contained in R4 and therefore
the monotone condition holds.

□

Proposition 3.15. For all i ∈ {1, 2, 3, 5, 7, 8, 9, 12, 13, 14, 16, 17} and
j ∈ {2, 3}, triples (S, ◦i, Rj) are quasi ordered semihypergroups.

Proof. We focus on all of these 12 cases in separate parts. Notice
that we should ignore diagonal pairs and focus on nondiagonal pairs
(b, a) ∈ R3 and (a, b) ∈ R2.

1) The triple (S, ◦1, Rj) has monotone condition for j ∈ {2, 3}
since for all (x, y) ∈ S2 it holds x ◦1 y = a and (a, a) ∈ Rj,
j ∈ {2, 3}.

2) Look at (b, a) ∈ R3. As (b ◦i x, a ◦i x) and (x ◦i b, x ◦i a),
x ∈ S = {a, b}, are all in R3 we can conclude that (S, ◦i, R3) is
a quasi ordered semihypergroup for all i ∈ {2, 3, 5}. Also, for
(a, b) ∈ R2 we can see that (a◦ix, b◦ix) ∈ R2 and (x◦ib, x◦ia) ∈
R2, x ∈ {a, b}, which means that (S, ◦i, R2), i ∈ {2, 3, 5}, is a
quasi ordered semihypergroup.

3) For (b, a) ∈ R3 ( (a, b) ∈ R2 ) and x ∈ {a, b} it holds (b ◦i x, a ◦i
x) ∈ R3 and (x ◦i b, x ◦i a) ∈ R3 ( (a ◦i x, b ◦i x) ∈ R2 and
(x ◦i b, x ◦i a) ∈ R2) for all i ∈ {7, 8, 9, 12, 13, 14, 16, 17}. So,
(S, ◦i, Rj) is a quasi ordered semihypegroup for i ∈ {2, 3} and
i ∈ {7, 8, 9, 12, 13, 14, 16, 17}.

□

Proposition 3.16. For all i ∈ {4, 6, 10, 11, 15} and j ∈ {2, 3}, the
triple (H, ◦i, Rj) is not a quasi ordered semihypergroup.

Proof. Consider the following five cases:

1) Since (b, a) ∈ R3 and (b ◦4 b, a ◦4 b) /∈ R3, (S, ◦4, R3) is not a
quasi ordered semihypergroup. Also, (S, ◦4, R2) is not a quasi
ordered semihypergroup as (a, b) ∈ R2 but (a ◦4 b, b ◦4 b) /∈ R2.

2) (S, ◦6, R3) is not a quasi ordered semihypergroup because (a, b) ∈
R2 but (b ◦6 a, a ◦6 a) /∈ R3. Similarly, (S, ◦6, R2) is not a quasi
ordered semihypergroup because (a, b) ∈ R2 but (a◦6a, b◦6a) /∈
R2.

3) (S, ◦10, R3) is not a quasi ordered semihypergroup because (b, a)
∈ R2 but (b ◦10 a, a ◦10 a) /∈ R3. Similarly, (S, ◦10, R2) is not
a quasi ordered semihypergroup because (a, b) ∈ R2 but (a ◦10
a, b ◦10 a) /∈ R2.
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4) (S, ◦11, R3) is not a quasi ordered semihypergroup because (b, a)
∈ R3 but (a ◦11 b, a ◦11 a) /∈ R3. Similarly, (S, ◦11, R2) is not
a quasi ordered semihypergroup because (a, b) ∈ R2 but (a ◦11
a, a ◦11 b) /∈ R2.

5) (S, ◦15, R3) is not a quasi ordered semihypergroup because (b, a)
∈ R3 but (b ◦15 b, a ◦15 b) /∈ R3. Similarly, (S, ◦15, R2) is not a
quasi ordered semihypergroup because (a, b) ∈ R2 but (a ◦15
b, b ◦15 b) /∈ R2.

□

Now, regarding Propositions 3.14, 3.15 and 3.16, we have:

Corollary 3.17. There exist 58 quasi ordered semihypergroups with 2
elements.

Definition 3.18. The semihypergroup (S, ∗) is said to be a non-trivial
semihypergroup if it is not total semihypergroup ( i.e. a ∗ b = H for all
(a, b) ∈ H) nor it is not associated to (H, ◦i, R1), i ∈ {1, 2, · · · , 17} in
EL2-construction.

Theorem 3.19. There exist only 5 non-trivial EL2-semihypergroups
of order 2. ((S, ◦i) has the EL2-construction for i ∈ {1, 9, 12, 14, 16}.)

Proof. At first look at the quasi ordered semihypergroups founded in
3.14. Clearly, (S, ◦i, R1) tends to (S, ◦i), for all i = 1, 2, · · · , 17, via
EL2-construction, which are trivial by Definition 3.18. Also, for all
i ∈ {1, 2, · · · , 17}, the triple (H, ◦i, R4) leads to total hypergroup. In
addition, focus on 24 non-trivial ones founded in 3.15. We have:

1) Setting EL2-construction on (S, ◦1, R3), we can achieve (S, ◦1).
2) Setting EL2-construction on (S, ◦9, R2), we can achieve (S, ◦9).
3) Setting EL2-construction on (S, ◦5, R3), (S, ◦7, R3), (S, ◦3, R2),

(S, ◦8, R2) and (S, ◦12, R2) we can achieve (S, ◦12).
4) Setting EL2-construction on (S, ◦5, R2) and (S, ◦14, R2) we can

achieve (S, ◦14).
5) Setting EL2-construction on (S, ◦10, R3), (S, ◦8, R3), (S, ◦13, R3),

(S, ◦2, R2), (S, ◦13, R2) and (S, ◦16, R2) we can achieve (S, ◦16).
6) Setting EL2-construction on (S, ◦i, R2), i ∈ {1, 15, 16}, and

(S, ◦i, R3), i ∈ {9, 12, 14} we can get (S, ◦17) which is trivial
by Definition 3.18.

Notice that by Setting EL2-construction on (S, ◦2, R3), (S, ◦3, R3) and
(S, ◦5, R3) we get
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a b
a a S
b a S

which is clearly isomorphic to (S, ◦12). □

3.2. EL2-Hv-semigroups with 2 elements. .

In this section, we determine all EL2-Hv-semigroups with two ele-
ments. Now, in order to find and study EL2-Hv-semigroups of order
2, we need all Hv-semigroups with two elements. Then, we obtain the
next theorem:

Theorem 3.20. [8] There exist 36 non-isomorphic Hv-semigroups of
order 2 given in Table 5. In this table the Cayley table (abcd) of Hv-
semigroups (H = {a, b}, ◦) means that a = a ◦ a, b = a ◦ b, c = b ◦ a
and d = b ◦ b. Also, Hi = (abcd) means that the Hv-semigroups (H =
{a, b}, ◦i)

Table 5. Hv-semigroups of order 2

H∗
1 = (a, a, a, a) H10 = (H, b, b, a) H19 = (H, a,H, a) H28 = (a,H,H, a)

H∗
2 = (a, a, a, b) H∗

11 = (H, b, b, b) H∗
20 = (H,H, a, b) H∗

29 = (a,H,H, b)

H∗
3 = (a, a, b, b) H12 = (a,H, a, a) H∗

21 = (H, a,H, b) H30 = (b,H,H, a)

H∗
4 = (a, b, a, b) H13 = (a, a,H, a) H22 = (H,H, b, a) H∗

31 = (H,H,H, a)

H∗
5 = (a, b, b, a) H∗

14 = (a,H, a, b) H23 = (H, b,H, a) H32 = (H,H, a,H)

H6 = (H, a, a, a) H∗
15 = (a,H, b, b) H∗

24 = (H,H, b, b) H33 = (H, b, a,H)

H∗
7 = (H, a, a, b) H16 = (a,H, b, a) H∗

25 = (H, b,H, b) H34 = (H, a,H,H)

H8 = (H, a, b, b) H17 = (b,H, a, b) H26 = (H, a, a,H) H∗
35 = (a,H,H,H)

H9 = (H, b, a, b) H18 = (H,H, a, a) H27 = (H, a, b,H) H∗
36 = (H,H,H,H)

Among these 36 Hv-semigroups there are 17 ones which are semi-
hypergroups. We mention them by a “ ∗ ” sign in the related Cayley
tables of Table 5.

By Theorem 3.1 there are 4 quasi order relations on a set with
two elements. Hence, there are 4*36=144 triples (H, ◦i, Rj) for i ∈
{1, 2, ..., 36} and j ∈ {1, 2, 3, 4}. To find those which has monotone
condition among these 144 cases, we have:

Theorem 3.21. For all i ∈ {1, 2, . . . , 36} and j ∈ {1, 4}, the triple
(H, ◦i, Rj) is a quasi ordered Hv-semigroups.

Proof. The proof is straightforward. □

Theorem 3.22. For all i ∈ {1, 2, 3, 4, 11, 14, 15, 24, 25, 30, 35, 36} and
j ∈ {2, 3}, triples (H, ◦i, Rj) are quasi ordered Hv-semigroups.
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Proof. First of all, we mention that among these 12 Hv-semigroups,
there are 11 cases which are semihypergroups (i.e. they have ∗ sign).
So, by Proposition 3.15 the triple (H, ◦i, Rj) has monotone condition
for i ∈ {1, 2, 3, 4, 11, 14, 15, 24, 25, 35, 36} and j ∈ {2, 3}. To complete
the proof, we should only show that (H, ◦30, R3) and (H, ◦30, R2) have
monotone condition. To do this, Look at (b, a) ∈ R3. Since (b◦30a, a◦30
a) and (b◦30 b, a◦30 b) are both in R3. So, we can see that (H, ◦30, R3) is
a partially ordered Hv-semigroup. Notice that (H, ◦30) is abelian. The
same argument holds for (H, ◦30, R2) □

Proposition 3.23. For all i ∈ {5, 6, 7, 8, 9, 10, 12, 13, 16, 17, 18, 19, 20,
21, 22, 23, 26, 27, 28, 29, 31, 32, 33, 34} and j ∈ {2, 3}, the triple
(H, ◦i, Rj) is not a partially ordered Hv-semigroup.

Proof. We prove the proposition in the following steps:

1) For i ∈ {5, 7, 20, 21, 29, 31}, the pair (H, ◦i) is a semihyper-
group and by proposition 3.16 it does not have the monotone
condition.

2) The triple (H, ◦i, R3) does not have the monotone condition be-
cause (b, a) ∈ R3 but (a◦ib, a◦ia) /∈ R3 for all i = 6, 8, 10, 17, 26,
27, 28, 34. Also, Since (b ◦i b, a ◦i b) /∈ R3, (H, ◦i, R3) is not a
partially ordered Hv-semigroup for i = 12, 16, 18, 22, 23, 32. In
addition, (H, ◦9, R3), (H, ◦20, R3) and (H, ◦33, R3) do not have
monotone condition since (b ◦i a, a ◦i a) /∈ R3, i = 9, 20, 33 and
finally because (b ◦13 b, b ◦13 a) /∈ R3, the triple (H, ◦13, R3) is
not a partially ordered Hv-semigroup.

3) The triple (H, ◦i, R2) does not have the monotone condition be-
cause (a, b) ∈ R2 but (a◦ia, a◦ib) /∈ R2 for all i = 6, 8, 17, 26, 27,
31, 32, 34. Also, Since (a◦ib, b◦ib) /∈ R2, (H, ◦i, R2) is not a quasi
ordered Hv-semigroup for i = 10, 12, 16, 22, , 23, 28, 29, 32, 33.
In addition, (H, ◦9, R2), (H, ◦18, R2) are not quasi ordered as
(a ◦i a, b ◦i a) /∈ R3, i = 9, 18 and finally because (b ◦13 a, b ◦13
b) /∈ R2 and (b ◦19 a, b ◦19 b) /∈ R2 two triples (H, ◦13, R2) and
(H, ◦19, R2) are not partially ordered Hv-semigroups.

□

Now, by Theorems 3.21 and 3.22, we have:

Corollary 3.24. There exist 96 quasi ordered Hv-semigroups of order
2.

Definition 3.25. Suppose (H, ∗) is an Hv-semigroups. Then, (H, ∗) is
said to be a nontrivial Hv-semigroups if it is not total Hv-semigroups (
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i.e. a ∗ b = H for all (a, b) ∈ H) nor it is not associated to (H, ◦i, R1),
i ∈ {1, 2, · · · , 36} in EL2-construction.

Theorem 3.26. There are 5 non-trivial EL2-Hv-semigroups of order
2. (Hi has the EL2-construction for i ∈ {1, 11, 24, 25, 35}.)

Proof. In order to find non-trivialEL2-Hv-semihypergroup, it is enough
to set EL2-construction on quasi ordered Hv-semigroup founded in
3.22. But all of them except one, (H, ◦30), are semigroup and we study
them in 3.19. Now, by setting EL2-construction on (H, ◦30, R3) we get
(H, ◦35) and by setting EL2-construction on (H, ◦30, R2) we achieve

a b
a a S
b a S

which is isomorphic to (S, ◦35). At the end, it should be mentioned
that (S, ◦1) = (H, ◦1), (S, ◦9) = (H, ◦11), (S, ◦12) = (H, ◦24), (S, ◦14) =
(H, ◦25) and (S, ◦16) = (H, ◦35). □
Definition 3.27. The Hv-semigroups (H, ∗) is said to be a proper Hv-
semigroups if it is not a Hv-groups. (i.e. the hyperoperation ∗ is not
reproductive.)

Theorem 3.28. There are 4 proper EL2-Hv-semigroups created by
Hv-semigroups.( H1, H11, H24, H25 are proper EL2-Hv-semigroups).

Proof. The proof is straightforward. □
Corollary 3.29. There is only one non-trivial Hv-group with EL2-
construction which is H35.

4. Conclusion

In this contribution, we enumerated all EL2-semihypergroups and
EL2-Hv-groups of order 2. As we showed, there are only five non-
trivial EL2-Hv-hypergroup, with two elements, which are all EL2-
semihypergroups.

The approach and method used in this paper can be use to enumerate
the larger EL (EL2)-hyperstructures. For future work, we can count
and classify all EL-hypergroups of order 3 or other algebraic EL (EL2)-
hyperstructures of small order.
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