- Ahn B., Ranjit R., Piekarz K., Poopal A., Bian J., Sataranatarajan K., et al. (2018). Skeletal muscle specific overexpression of the mitochondrial H2O2 scavenger, peroxiredoxin 3, rescues mitochondrial dysfunction and sarcopenia phenotypes elicited by redox imbalance. Free Radic. Biol. Med. 128, S123. 10.1016/j.freeradbiomed.10.302.
- Allen DL, Bandstra ER, Harrison BC, Thorng S, Stodieck LS, Kostenuik PJ, et al.(2009). Effects of spaceflight on murine skeletal muscle gene expression. Journal of Applied Physiology; 106(2): 582-95.
- Alway S. E., Mohamed J. S., Myers M. J. (2017). Mitochondria initiate and regulate sarcopenia. Exerc. Sport Sci. Rev. 45 (2), 58–69. 10.1249.
- Angleri, V., Soligon, S. D., da Silva, D. G., Bergamasco, J. G. A., and Libardi, C. A. (2020). Suspension training: a new approach to improve muscle strength, mass, and functional performances in older adults? Front. Physiol. 10. doi: 10.3389/fphys.2019.01576.
- Balan E., Schwalm C., Naslain D., Nielens H., Francaux M., Deldicque L. (2019). Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front. Physiol. 10, 1088. 10.3389.
- Balan E., Schwalm C., Naslain D., Nielens H., Francaux M., Deldicque L. (2019). Regular endurance exercise promotes fission, mitophagy, and oxidative phosphorylation in human skeletal muscle independently of age. Front. Physiol. 10.21.
- Borges I. B. P., de Oliveira D. S., Marie S. K. N., Lenario A. M., Oba-Shinjo S. M., Shinjo S. K. (2021). Exercise training attenuates ubiquitin-proteasome pathway and increases the genes related to autophagy on the skeletal muscle of patients with inflammatory myopathies. J. Clin. Rheumatol. 27, S224–S231. 10.1097.
- Borges I. B. P., de Oliveira D. S., Marie S. K. N., Lenario A. M., Oba-Shinjo S. M., Shinjo S. K. (2021). Exercise training attenuates ubiquitin-proteasome pathway and increases the genes related to autophagy on the skeletal muscle of patients with inflammatory myopathies. J. Clin. Rheumatol. 27, S224–S231.
- Caldo-Silva, A.; Furtado, G.E.; Chupel, M.U.; Letieri, R.V.; Valente, P.A.; Farhang, M.; Barros, M.P.; Bachi, A.L.L.; Marzetti, E.; Teixeira, A.M.; et al. (2021). Effect of a 40-weeks multicomponent exercise program and branched chain amino acids supplementation on functional fitness and mental health in frail older persons. Exp. Gerontol, 155, 111592.
- Casuso R. A., Huertas J. R. (2020). The emerging role of skeletal muscle mitochondrial dynamics in exercise and ageing. Ageing Res. Rev. 58, 101025.
- Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. (2016). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature genetics; 38(2), 228-33.
- Chen P. B., Yang J. S., Park Y. (2018). Adaptations of skeletal muscle mitochondria to obesity, exercise, and polyunsaturated fatty acids. Lipids 53 (3), 271–278.
- Di Liu Y. B., Tao X. H., Pan W. L., Wu Y. X., Wang X. H., He Y. Q., et al. (2021). Mitochondrial quality control in sarcopenia: Updated overview of mechanisms and interventions. Aging Dis. 12, 2016–2030. 10.14336.
- Englund, D.A.; Zhang, X.; Aversa, Z.; LeBrasseur, N.K. (2021). Skeletal muscle aging, cellular senescence, and senotherapeutics: Current knowledge and future directions. Mech. Ageing Dev, 200, 111595.
- Estébanez, B.; de Paz, J.A.; Cuevas, M.J.; González-Gallego, J.(2018). Endoplasmic reticulum unfolded protein response, aging and exercise: An update. Front. Physiol, 9, 1744.
- Cadore, E.L.; Moreira, O.C.; Almar, M.; de Paz, J.A.; Gonzalez-Gallego, J.; Cuevas, M.J. Effects of a resistance-training programme on endoplasmic reticulum unfolded protein response and mitochondrial functions in PBMCs from elderly subjects. Eur. J. Sport Sci. 2019, 19, 931–940.
- Estébanez, B.; Moreira, O.C.; Almar, M.; de Paz, J.A.; Gonzalez-Gallego, J.; Cuevas, M.J. (2019). Effects of a resistance-training programme on endoplasmic reticulum unfolded protein response and mitochondrial functions in PBMCs from elderly subjects. Eur. J. Sport Sci, 19, 931–940.
- Farsijani, S.; Payette, H.; Morais, J.A.; Shatenstein, B.; Gaudreau, P.; Chevalier, S. (2017). Even mealtime distribution of protein intake is associated with greater muscle strength, but not with 3-y physical function decline, in free-living older adults: The Quebec longitudinal study on Nutrition as a Determinant of Successful Aging (NuAge study). Am. J. Clin. Nutr., 106, 113–124.
- Fragala, M.S.; Cadore, E.L.; Dorgo, S.; Izquierdo, M.; Kraemer, W.J.; Peterson, M.D.; Ryan, E.D. (2019). Resistance Training for Older Adults: Position Statement from the National Strength and Conditioning Association. J. Strength Cond. Res., 33, 2019–2052.
- Franceschi, C.; Garagnani, P.; Morsiani, C.; Conte, M.; Santoro, A.; Grignolio, A.; Monti, D.; Capri, M.; Salvioli, S.(2018). The Continuum The Continuum of Aging and Age-Related Diseases: Common Mechanisms but Different Rates, Front Med (Lausanne). 2018; 5: 61.
- Gasparotto AS, Borges DO, Sassi MG, Milani A, Rech DL, Terres M, et al. (2019). Differential expression of miRNAs related to angiogenesis and adipogenesis in subcutaneous fat of obese and nonobese women. Mol Biol Rep; 46(1):965-73.
- Krug AL, Macedo AG, Zago AS, Rush JW, Santos CF, Amaral SL.(2016). High‐intensity resistance training attenuates dexamethasone‐induced muscle atrophy. Muscle & nerve.; 53(5): 779-88.
- Lee, D.Y.; Shin, S. (2022). Sarcopenia Is Associated with Metabolic Syndrome in Korean Adults Aged over 50 Years: A Cross-Sectional Study. Int. J. Env. Res. Pub. Health, 19, 1330.
- Liao CD, Wu YT, Tsauo JY, Chen PR, Tu YK, Chen HC, et al.(2020). Effects of protein supplementation combined with exercise training on muscle mass and function in older adults with lower-extremity osteoarthritis: a systematic review and meta-analysis of randomized trials. Nutrients J Am Geriatr Soc 2017; 65: 827– 832.
- Moriwaki, M.; Wakabayashi, H.; Sakata, K.; Domen, K. (2019). The Effect of Branched Chain Amino Acids-Enriched Nutritional Supplements on Activities of Daily Living and Muscle Mass in Inpatients with Gait Impairments: A Randomized Controlled Trial. J. Nutr. Health Aging, 23, 348–353.
- Neinast, M.; Murashige, D.(2019). Arany, Z. Branched Chain Amino Acids. Annu. Rev. Physiol. 2019, 81, 139–164.
- Oliveira, V.; Borsari, A.L.; Cardenas, J.; Alves, J.C.; Castro, N.F.; Marinello, P.C.; Padilha, C.S.; Webel, A.R.; Erlandson, K.M.; Deminice, R.(2021) Low Agreement Between Initial and Revised European Consensus on Definition and Diagnosis of Sarcopenia Applied to People Living With HIV. Jaids-J. Acquir. Immune Defic. Syndr, 86, e106–e113.
- Soci UPR, Fernandes T, Hashimoto NY, Mota GF, Amadeu MA, Rosa KT, et al. (2017). MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological genomics; 43(11): 665-73.
- Ter Borg, S.; Luiking, Y.C.; van Helvoort, A.; Boirie, Y.; Schols, J.; de Groot, C. (2019). Low Levels of Branched Chain Amino Acids, Eicosapentaenoic Acid and Micronutrients Are Associated with Low Muscle Mass, Strength and Function in Community-Dwelling Older Adults. J. Nutr. Health Aging, 23, 27–34.
- Thomas, R.; Wang, W.; Su, D.M. (2020). Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing, 17, 2.
- Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. (2018). The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev., 47, 123–132.
- Yoshimura, Y.; Bise, T.; Shimazu, S.; Tanoue, M.; Tomioka, Y.; Araki, M.; Nishino, T.; Kuzuhara, A.; Takatsuki, F. Effects of a leucine-enriched amino acid supplement on muscle mass, muscle strength, and physical function in post-stroke patients with sarcopenia: A randomized controlled trial. Nutrition 2019, 58, 1–6.
|