| تعداد نشریات | 32 |
| تعداد شمارهها | 814 |
| تعداد مقالات | 7,877 |
| تعداد مشاهده مقاله | 36,671,336 |
| تعداد دریافت فایل اصل مقاله | 8,299,524 |
On a special class of Stanley-Reisner ideals | ||
| Journal of Algebra and Related Topics | ||
| مقاله 3، دوره 2، شماره 2، اسفند 2014، صفحه 25-36 اصل مقاله (358.38 K) | ||
| نوع مقاله: Research Paper | ||
| نویسنده | ||
| K. Borna* | ||
| Kharazmi University | ||
| چکیده | ||
| For an $n$-gon with vertices at points $1,2,\cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, we generalize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},\cdots, x_{n}]$ and $I$ is the associated ideal to the generalized suspension of it in the Stanley-Reisner sense. Applications to Stanley-Reisner ideals and simplicial complexes are considered. | ||
| کلیدواژهها | ||
| Betti numbers؛ Stanley؛ graded Betti numbers؛ Reisner ideal؛ graded minimal free resolution؛ Stanley-Reisner ideal؛ simplicial complexes | ||
|
آمار تعداد مشاهده مقاله: 2,065 تعداد دریافت فایل اصل مقاله: 2,108 |
||