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A GRAPH ASSOCIATED TO SPECTRUM OF A
COMMUTATIVE RING

M. KARIMI

Abstract. Let R be a commutative ring. In this paper, by using
algebraic properties of R, we study the Hase digraph of prime ideals
of R.

1. Introduction

Throughout this paper all rings are commutative with non-zero iden-
tity and all prime ideals have finite height. For a ring R, also we denote
the sets of prime ideals, maximal ideals, and minimal prime ideals of
R by Spec(R), Max(R), and Min(R), respectively.

Throughout the rest of this paper, R will denote a commutative
ring. There are many papers on assigning a graph to a ring, see for
example [4], [3], [5], [7] and [9]. Also, the Hase diagram of ideals of
R is defined. In this paper, among the other things, we study some
combinatorial property of the Hase digraph of prime ideals of R. Hence,
for an arbitrary commutative ring R, we define the Spec-graph of R,
which is denoted by S(R), as follows: The vertex set of S(R) is Spec(R)
and, for two distinct vertices p and q in Spec(R), p is adjacent to q if
and only if the inclusions p $ q or q $ p is saturated.

Whenever the inclusion p $ q is saturated, we say that q is a cover
of p and write p # q. Hence, for two distinct prime ideals p and q of
R, p is adjacent to q if and only if p# q or q# p.

Clearly a vertex p in S(R) is singular if and only if p is both maximal
and minimal prime ideal of R. Hence, the Spec-graph S(R) is totally
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disconnected if and only if Min(R) = Max(R). Also, If R is an Artinian
ring, then S(R) is totally disconnected.

Now we recall some definitions and notations on graphs. We use
the standard terminology of graphs in [4] and [6], and commutative
algebra in [1] and [8]. The distance between two distinct vertices a and
b in a graph G, denoted by d(a, b), is the length of the shortest path
connecting a and b, if such a path exists; otherwise, we set d(a, b) :=∞.
The diameter of G is diam(G) = sup{d(a, b) : a and b are distinct
vertices of G}. A graph G is said to be connected if there exists a path
between any two distinct vertices, and it is complete if it is connected
with diameter one. We use Kn to denote the complete graph with n
vertices. We say that G is empty if no two vertices of G are adjacent.
For a vertex x in G, we denote the set of all adjacent vertices to x,
by NG(x) and also the size of NG(x) is called the degree or valence
of x in G, and we denote it by vG(x). A vertex x is an isolated, if
vG(x) = 0. An independent set of G is a subset of the vertices of G
such that no two vertices in the subset represent an edge of G. The
independence number of G, denoted by α(G), is the cardinality of the
largest independent set. For a graph G, let χ(G) denote the chromatic
number of the graph G, i.e., the minimal number of colours which can
be assigned to the vertices of G in such a way that every two adjacent
vertices have different colours. A clique of a graph is its complete sub-
graph and the number of vertices in the largest clique of G, denoted
by ω(G), is called the clique number of G.

2. spec-graph and ring extension

For a subset T of Spec(R), we denote the induced sub-graph of S(R)
with vertex set T by S(R)T .

Theorem 2.1. (i) Let I be an ideal of R. Then S(R/I) ∼= S(R)V (I),
where V (I) := { p ∈ Spec(R) | p ⊇ I }.

(ii) Let S be a multiplicatively closed subset of R. Then S(S−1R) ∼=
S(R)ρ, where ρ := { p ∈ Spec(R) | p ∩R = ∅ }.

Proof. (i) Consider the map ϕ : S(R/I) −→ S(R) given by ϕ(p/I) = p
for all p ∈ Spec(R) with p ⊇ I. Clearly ϕ induces an isomorphism
between two graphs S(R/I) and S(R)V (I).

(ii) Suppose that f : R −→ S−1R is the natural homomorphism
given by f(r) = r/1 for all r ∈ R. Clearly, for every arbitrary distinct
elements p and q of ρ, p # q if and only if pe # qe, where pe is
the extension of prime ideal p under f . This means that the map
ψ : S(R)ρ −→ S(S−1R) with ψ(p) = pe for all p ∈ ρ, is a graph
isomorphism. �
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Corollary 2.2. If f : R −→ R′ is a ring epimorphism, then S(R′) is
an isomorphism to an induced sub-graph of S(R).

Proof. By using the first isomorphism theorem for rings, R/Ker(f) ∼=
R′. The result now immediately follows from Theorem 2.1 (i). �

Remark 2.3. Let R′ be an extension ring of R and q ∈ Spec(R). A
prime ideal Q of R′ lying over q if Q∩R = q. In this situation we say
that lying over theorem holds. Also we denote the set of all prime ideals
of R′ lying over q, by O(q). Note that if R′ is an integral extension of
R, then, by [8, Theorem 9.3] lying over theorem holds; thus O(q) is not
empty for all prime ideal q of R. Clearly for every Q ∈ Spec(R′), we
have that Q ∈ O(Q ∩R).

Lemma 2.4. Let R′ be an integral extension of R. Then S(R′)O(q) is
totally disconnected for all q ∈ Spec(R).

Proof. Suppose that Q1 and Q2 are two distinct vertices in O(q) such
that Q1 # Q2 for some q ∈ Spec(R). Then Q1 ⊆ Q2, and so Q1 ∩R =
Q2 ∩ R = q. Hence, by [8, Theorem 9.3(ii)], we have Q1 = Q2, which
is impossible. Hence the graph S(R′)O(q) is totally disconnected for all
q ∈ Spec(R). �

Proposition 2.5. Let R′ be an integral extension of R and there exist
p, q ∈ Spec(R) such that p is adjacent to q in S(R). Then there exists
an edge between a vertex in O(p) and a vertex in O(q) in S(R′).

Proof. Without loss of generality, we may assume that p# q in S(R).
Now, by lying over theorem, there exists P ∈ O(p). Also, by the Going
Up Theorem (cf.[1, page 67]), there is Q ∈ O(q) that P $ Q. We
only need to show that the inclusion P $ Q is saturated. Assume in
contrary that there exists a prime ideal H of R′ with P $ H $ Q.
Thus p = P ∩R ⊆ H∩R ⊆ Q∩R = q. Hence p = H∩R or q = H∩R.
Again by applying [8, Theorem 9.3(ii)]we have that H = P orH = Q,
which is the required contradiction. Therefore P # Q, and so the
vertices P and Q are adjacent in S(R′). �

Let R′ be an integral extension of R. We define a graph H(R′, R)
as a simple graph with vertex set {O(p) | p ∈ Spec(R) } and two
distinct vertices O(p) and O(q) are adjacent if and only if there is an
adjacency in S(R) between a vertex in O(p) and a vertex in O(q).
Clearly {O(p) | p ∈ Spec(R)} is a partition of Spec(R′), since O(p) ∩
O(q) = ∅, for distinct prime ideals p and q in R. Moreover, in view of
Remark 2.3, Spec(R′) = ∪p∈Spec(R)O(p).
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Theorem 2.6. With the above notation, S(R) is isomorphic to an
spanning sub-graph of H(R,R′).

Proof. Consider the mapping ϕ : S(R) −→ H(R,R′) given by ϕ(p) =
O(p) for all p ∈ Spec(R). In view of Proposition 2.5, ϕ is a one to one
homomorphism of graphs. Moreover, the image of this homomorphism
is an spanning sub-graph of H(R,R′). �

Remarks 2.7. Let R′ be an integral extension of R. Then we have the
following facts.

(i) Suppose that the graph S(R) is connected. Then it is easy to
see that the graph H(R,R′) has a connected component at least
in size of S(R).

(ii) The graphs S(R) and H(R,R′) are isomorphic, if |O(p)| = 1
for all p ∈ Spec(R).

3. connectedness of Spec-graph

In this section, we will study the connectedness of graph S(R). So
we investigate the case that S(R) has not isolated vertex. Thus we
assume that the set Min(R) ∩Max(R) is empty.

Proposition 3.1. Suppose that S(R) is disconnected. Then each ver-
tex in any connected component is co-prime with vertices lie in other
connected components.

Proof. Suppose that C1 and C2 are two different connected components
of S(R) and that p ∈ C1 and q ∈ C2. We must show that p and q are co-
prime. Assume in contrary that p + q 6= R. Then there is r ∈ Spec(R)
such that p + q ⊆ r. Since ht(r) is finite, we can obtain two saturated
chains p = p0 $ p1 $ · · · $ pt = r and q = q0 $ q1 $ · · · $ qs = r.
This means that there are paths from p to r and from q to r. Hence
p, r ∈ C1 and q, r ∈ C2 which is the required contradiction. Thus p and
q are co-prime. �

Proposition 3.2. A minimal (respectively, maximal) element in a con-
nected component of S(R) is a minimal (respectively, maximal) element
in Spec(R).

Proof. We prove the claim for minimal elements. By similar arguments
one can establish the result for maximal elements. So suppose that C
is a connected component of S(R) and that p ∈ C is a minimal element
in C. Assume in contrary that p is not minimal in Spec(R). Thus there
exists a prime ideal q of R such that q $ p. Hence we can obtain a
saturated chain of prime ideals from q to p. This means that there is a
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path between p and q in S(R), and so q ∈ S(R) which is the required
contradiction. �

Suppose that nil(R) is the nil-radical of R. The following theorem
shows that in Spec-graph S(R), we may replace R by R/nil(R). So in
the rest of the paper we assume that R is reduced.

Theorem 3.3. We have the following isomorphism.

S(R) ∼= S(R/nil(R))

Proof. Clearly nil(R) = ∩p∈Spec(R)p. So for all p ∈ Spec(R), we have
p ⊇ nil(R). This means that the natural homomorphism ϕ : R −→
R/nil(R) provide a graph isomorphism S(R) ∼= S(R/nil(R)). �

Theorem 3.4. Suppose that S is another non-zero commutative ring.
Then S(R× S) is disconnected.

Proof. Let p and q be prime ideals of R and S, respectively. Then
R×q, p×S ∈ Spec(R×S). If there exists a path between two vertices
R × q and p × S, then we have a path as follows: p × S = P0 − P1 −
· · · − Pt = R × q. Since Pi = pi × S, for some prime ideal pi of R
1 ≤ i ≤ t. It follows that q = S, which is impossible. This means that
two vertices R× q and p×S lie in two different connected components
of S(R× S), and so S(R× S) is disconnected. �

We use G⊕H to denote disjoint union of two graphs G and H.

Theorem 3.5. S(R× S) ∼= S(R)⊕ S(S)

Proof. Consider the mapping ϕ : S(R × S) −→ S(R) ⊕ S(S) given
by ϕ(R × q) = q if q ∈ Spec(S) and ϕ(p × S) = q if p ∈ Spec(R).
By definition ϕ is one to one and onto. Also it is clear that ϕ is a
isomorphism between two graphs, because the adjacency p×S # p′×S
in S(R × S) implies that p # p′ in S(R). Also R × q # R × q′ in
S(R × S) implies that q # q′ in S(S). Moreover, it is easy to see
that ϕ−1 is also a homomorphism between graphs. Thus S(R×S) and
S(R)⊕ S(S) are isomorphic. �

Corollary 3.6. Suppose that α and β are the numbers of connected
components of Spec-graph S(R) and S(S) of non-zero rings R and S,
respectively. Then the number of connected component of S(R × S) is
equal to α + β.

Proof. It is immediate result of Theorem 3.5. �

Theorem 3.7. Suppose that Min(R) is a finite set. The following
statements are equivalent:
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(i) S(R) is disconnected.
(ii) R ∼= A1 × A2 for some non-zero rings A1 and A2.

(iii) R has non-trivial idempotent.

Proof. (1)⇒(2) Let C be a connected component of S(R) and Cc be
the complement of C. By our assumption we have that Cc 6= ∅. Now,
consider two ideals

I :=
⋂

q∈Min(R)
q∈C

q and J :=
⋂

q∈Min(R)
q∈Cc

q

of R. Since R is reduced, we have that I ∩ J = 0. We will show that
I and J are co-prime. Assume in contrary that I + J 6= R. So there is
r ∈ Spec(R) such that I + J ⊆ r. Now, two inclusions I ⊆ r and J ⊆ r
imply that there are p ∈ Min(R) ∩ C and q ∈ Min(R) ∩ Cc such that
p ⊆ r and q ⊆ r. Thus there is a path joining p to q passing through r.
This means that p and q lie in same a connected component, whereas
p ∈ C and q ∈ Cc. This is the required contradiction. Therefore
I + J = R, and so R ∼= R/I ×R/J .

(2)⇒(3) Clearly, the element (0, 1) ∈ A1 × A2 is an idempotent .
(3)⇒(2) Let e ∈ R be a non-trivial idempotent. Since Ann(e) ∩

Ann(1−e) = 0 and Ann(e)+Ann(1−e) = 0, we have R ∼= R/Ann(e)×
R/Ann(1− e),

(2)⇒(1) It immediately follows from Theorem 3.4. �

Remark 3.8. In view of Theorem 3.7, if R is a ring with finite num-
ber of minimal prime ideals, then the Zariski topology on spec(R) is
connected if and only if the graph S(R) is connected.

Corollary 3.9. Suppose that Min(R) is a finite set. Then the number
of connected components of S(R) is equal to number of factors in a
decomposition of R to Cartesian product of indecomposable rings.

Proof. Suppose that C1, . . . , Ck are connected components of S(R). If
k = 1, then S(R) is connected, so by Theorem 3.7 R is indecomposable.
Hence we assume that k 6= 1. For i =, 1 . . . , k, we set

Ii :=
⋂

q∈Min(R)∩Ci

q.

By a method which is similar to that we used in Theorem 3.2, we
have that Ii + Ij = R for all 1 ≤ i, j ≤ k with i 6= j. Moreover
∩ki=1Ii = 0. Hence R ∼= R/I1 × · · · × R/Ik. Now, by Theorem 3.5,
S(R) ∼= S(R/I1) ⊕ · · · ⊕ S(R/Ik). On the other hand, by applying
Corollary 3.6 and that S(R) has k connected component, the graph
S(R/Ii) is connected, for i = 1, . . . , k. Thus, in view of Theorem 3.7,



A GRAPH ASSOCIATED TO SPECTRUM 17

R/Ii is indecomposable, for i = 1, . . . , k. In other words, k is equal
to number of factors in a decomposition of R to Cartesian product of
indecomposable rings. �

Lemma 3.10. Let R be a reduced ring and f(x) be an idempotent
element in R[x].Then deg(f(x)) = 0.

Proof. Assume in contrary that deg(f(x)) 6= 0 and that ak 6= 0 is the
leading coefficient of f(x). Since f(x) is idempotent, we have that
a2k = 0. But, by our assumption R is reduced. Thus ak = 0, which is
contradiction. �

Lemma 3.11. We have |Min(R)| = |Min(R[x])|.
Proof. Consider the map ϕ : Min(R[x]) −→ Min(R) given by ϕ(P ) =
P ∩ R for all P in Spec(R[x]). Assume that P is minimal prime ideal
in R[x]. We claim that P ∩R is a minimal prime ideal in Spec(R). To
do this, let q ⊆ P ∩ R, for some prime ideal q in R. Then we have
that q[x] ⊆ (P ∩ R)[x] ⊆ P . Thus, by the minimality assumption of
P , we have q[x] = P . Therefore q = P ∩ R. By a similar way, if p is
a minimal prime ideal in Spec(R), then p[x] is minimal prime ideal in
Spec(R[x]). Thus p[x] ∩ R = p. This implies that ϕ is onto. On the
other hand, ϕ is one to one, because whenever P,Q ∈ Min(R[X]) then
we have P ∩R = Q∩R. So we have (P ∩R)[x] ⊆ P and (Q∩R)[x] ⊆ Q,
but (P ∩R)[x] and (Q∩R)[x] are prime ideals in Spec(R[x]). Now, the
minimality of P,Q implies that P = (P ∩ R)[x] and Q = (Q ∩ R)[x].
Therefore P = Q. �

Theorem 3.12. Suppose that Min(R) is a finite set. Then S(R[x]) is
connected if and only if S(R) is connected.

Proof. The result follows from lemmas 3.10, 3.11 and then, Theorem
3.7. �

4. degree of vertices and tree condition

In this section all rings assumed to be Noetherian. Recall that, if p
and q are prime ideals of R, with non saturated inclusion p $ q, then
there are infinite number of prime ideals between p and q.

Lemma 4.1. (i) Let R be an integral domain. Then vS(R)(0) is
equal to number of prime ideals p with ht(p) = 1.

(ii) Let (R,m) be a local ring. Then dim(R) = 0 if and only if
vS(R)(m) = 0.

In view of Theorem 2.1, S(Rp) and S(R/p) can be considered as
sub-graphs of S(R). These two sub-graphs admit a unique vertex in
common that we denote by p.
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Theorem 4.2. Let p be a prime ideal in R. Then

vS(R)(p) = vS(R/p)(0) + vS(Rp)(pRp).

Proof. Let NS(R)(p) be set of all vertices in S(R) which are adjacent to
p. Put

A := {q ∈ Spec(R) | p# q}
and

B := {q ∈ Spec(R) | q# p}.
Clearly NS(R)(p) = A ∪ B and valenceS(R)(p) = |NS(R)(p)| = |A| + |B|.
On the other hand, by Lemma 4.1, vS(R/p)(0) = |A| and vS(Rp)(pRp) =
|B|. �

Corollary 4.3. Let p be a prime ideal in R. Then the following state-
ments hold:

(i) p ∈ Min(R) if and only if vS(Rp)(pRp) = 0.
(ii) p ∈ Max(R) if and only if vS(R/p)(0) = 0.

Proof. We only prove the first statement. The second one is similar.
Let p be a minimal prime ideal of R. Thus by using the notations

in the proof of Theorem 4.2, we have that |B| = 0. This implies that
vS(Rp)(pRp) = 0.
Conversely, if vS(Rp)(pRp) = 0, then B = ∅, and so |B| = 0. Thus
ht(p) = 0, and hence p ∈ Min(R). �

Theorem 4.4. Let p be a prime ideal of R. Then the followings state-
ments hold:

(i) If dim(R/p) ≥ 2 or dim(Rp) ≥ 2, then vS(R)(p) =∞.
(ii) If dim(R/p) = dim(Rp) = 1, then vS(R)(p) = |Min(Rp)| +
|Max(R/p)|. Moreover vS(R)(p) =∞ if and only if |Max(R/p)|
=∞.

(iii) If dim(R/p) = 1 and dim(Rp) = 0, then vS(R)(p) = |Max(R/p)|.
(iv) If dim(R/p) = 0 and dim(Rp) = 1, then vS(R)(p) = |Min(Rp)|.

Proof. (i) If dim(R/p) ≥ 2, then there exists a saturated chain p $
p′ $ p′′ of prime ideals in R. As we mentioned at the beginning of this
section, there exist infinitely many prime ideals p′ of R with p $ p′ $
p′′, and so p has not finite valence in S(R). Similarly, one can show
that the inequality dim(Rp) ≥ 2 implies that vS(R)(p) =∞.

(ii) Suppose that dim(R/p) = dim(Rp) = 1, and q is a prime ideal
of R such that q # p. Hence htRp(qRp) = 0. This means that qRp is
a minimal prime ideal of Rp. Moreover, all minimal prime ideals of Rp

are adjacent to pRp. Hence, vS(Rp)(pRp) = |Min(Rp)|. On the other
hand, dim(R/p) = 1. Thus, there exists a one to one correspondence
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between elements in the set Max(R/p) and prime ideal of R/p of height
one. Therefore, in view of Lemma 4.1, vS(R/p)(0) = |Max(R/p)|. Now
the result follows from Corollary 4.3. Moreover, since a Noetherin
ring admits only finitely many minimal prime ideals, we have that
vS(R)(p) =∞ if and only if |Max(R/p)| =∞.

(iii) Suppose that dim(Rp) = 0. Thus p is a minimal prime ideal of R
and so p is an isolated vertex in S(Rp). This means that vS(Rp)(pRp) =
0. Thus, by Theorem 4.2, we have vS(R)(p) = vS(R/p)(0). Now, the
claim follows from a method similar to that we use in the proof of part
(ii).

(iv) Suppose that dim(R/p) = 0. Thus p is a maximal ideal of R.
Moreover p is an isolated vertex in S(R/p). Thus vS(R/p)(0) = 0. Now,
by Theorem 4.2, we have that vS(R)(p) = vS(Rp)(pRp). On the other
hand, a vertex in S(Rp) is adjacent to p if and only if p is a minimal
prime ideal of R. Thus, vS(R)(p) = |Min(Rp)|. �

Corollary 4.5. All vertices in S(R) have finite valency if and only if
dim(R) ≤ 1 and |Max(R)| is finite.

Proof. Suppose that vS(R)(p) <∞ for all p ∈ Spec(R). So, by Theorem
4.4(i), one can easily check that dim(Rp) ≤ 1 for all prime ideals p of
R. This implies that dim(R) = 1. On the other hand, |Min(R)| is
finite and every adjacent vertices to minimal primes are in Max(R).
This implies that |Max(R)| is finite.

The converse is clear, because S(R) is a finite graph. �

Theorem 4.6. Let p be a prime ideal of R. If vS(R)(p) = 1, then p
together with a vertex that is adjacent to it are minimal or maximal
ideals of R.

Proof. In view of Theorem 4.2, we have that vS(R/p)(0)+vS(Rp)(pRp) =
1, and so vS(R/p)(0) = 0 or vS(Rp)(pRp) = 0, this means that p ∈ Min(R)
or p ∈ Max(R).
Now, suppose that q is an adjacent vertex to p. So we have the following
cases.

Case 1: Suppose that p is a maximal ideal of R. Then in view of
Theorem 4.4, dim(Rp) = 1, and hence ht(p) = 1. Thus ht(q) = 0,
which implies that q is minimal prime ideal of R.

Case 2: Suppose that p is a minimal prime ideal of R. Again in
view of Theorem 4.4, we have that dim(R/p) = 1. Therefore q/p is a
maximal ideal of R/p. This means that q is a maximal ideal of R. �

Theorem 4.7. The following statements hold:
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(i) Let R be an integral domain. Then S(R) is a tree if and only if
S(Rp) is a tree for all non zero prime ideal p of R. Moreover,
if S(R) is a tree, then dim(R) = 1 and S(R) is a star graph.

(ii) Let R be local. Then S(R) is a tree if and only if S(R/p) is a
tree for all non-zero prime ideal p of R. Moreover, if S(R) is a
tree, then dim(R) = 1 and S(R) is a star graph.

Proof. We prove only the statement (i). The second one is similar.
Hence suppose that R is an integral domain and that S(R) is a tree.

By Theorem 2.1, it is easy to see that S(Rp) is a tree for all p ∈ Spec(R).
Conversely, suppose that S(Rp) is a tree for all p ∈ Spec(R). Assume

in contrary that S(R) is not a tree. Hence S(R) contains a cycle say C.
Let p be a maximal vertex in C with respect to inclusion. So there exist
two distinct non-zero prime ideals p1 and p2 in C, such that p1 # p
and p2 # p. This implies that there exists a cycle in S(Rp) passing
trough vertices 0, p1Rp, p2Rp and pRp. Thus S(Rp) is not tree which is
the required contradiction.

For the second assertion, in the case that dim(R) ≥ 2, as we men-
tioned in the beginning of this section, S(R) admits a cycle, which is
impossible. Thus dim(R) = 1. Hence all non-zero vertices in Spec(R)
are maximal ideals of R and also they are adjacent to zero vertex. This
means that S(R) is a star graph with center zero. �

5. bipartition conditions on S(R)

First of all we establish our notation. For each i ∈ N0 with i ≤
dim(R), put

Speci(R) := {p ∈ Spec(R) | ht(p) = i}.
We define a simple graph denoted by S ′(R) with vertex set

{Speci(R)}dim(R)
i=1 , and two distinct vertices Speci(R) and Specj(R) are

adjacent if and only if there is an adjacency in S(R), between a vertex
in Speci(R) and a vertex in Specj(R). Fore two graphs S(R) and S ′(R)
we have the following remark.

Remark 5.1. (i) Speci(R) is an independent set in S(R), for i =
0, 1, . . . , dim(R).

(ii) |S ′(R)| = dim(R).
(iii) Two vertices Speci(R) and Speci+1(R) of S ′(R) are adjacent in
S ′(R), for i = 0, . . . , dim(R) − 1. Hence, the graph S ′(R) is a
tree if and only if it is a path.

We say that the condition (∗) holds in R, if for given prime ideals
p and q of R with p ⊆ q satisfy the equality ht(q/p) = ht(q) − ht(p).
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Recall that a commutative ring R is Catenary, if the length of saturated
chains between any two prime ideals p and q of R with p ⊆ q, is equal to
ht(q/p). By [8, page 84] , the condition (∗) holds in Catenary domains.
Also one can easily see that the condition (∗) holds in the rings of
dimension one.

Theorem 5.2. The graph S ′(R) is bipartite if and only if S(R) is a
bipartite graph such that all minimal prime ideals of R lie in a same
part.

Proof. Suppose that S ′(R) is a bipartite graph and thatA and B are
two parts of S ′(R). Without loss of the generality, we may assume that
Spec0(R) ∈ A. This implies that the even height vertices of S ′(R) lie
in A. Therefore B contains only the odd vertices. Now, put

A′ :=
⋃

i is even

Speci(R) B′ :=
⋃

i is odd

Speci(R)

then it is easy to see that S(R) is bipartite graph with parts A′ and
B′. Moreover, it is clear that Min(R) = Spec0(R) lie in the part A′.

The converse statement follows from Remark 5.1. �

Corollary 5.3. Let R be a local ring or an integral domain. If S(R)
is bipartite, then S ′(R) is bipartite.

Proof. By Theorem 5.2, we only need to prove the claim in the case
that (R,m) is local. Again by Theorem 5.2, it is enough to show that
all minimal prime ideals of R lie in same part. Put n := ht(m). By
Remark 5.1, if n is odd then every minimal prime ideal of R and m lie
in same part; otherwise they lie in different parts. �

Theorem 5.4. The condition (∗) holds in R if and only if S ′(R) is a
path.

Proof. Suppose that the condition (∗) holds in R and that p and q
two prime ideals of R such that p # q in S(R). Thus by condition
(∗), ht(q) = ht(p) + 1. This implies that, two vertices Speci(R) and
Specj(R) are adjacent in S ′(R) if only if |i − j| = 1. Thus S ′(R) has
no cycle, and so by Remark 5.1(iii), S ′(R) is a path.

Conversely, suppose that S ′(R) is a path. For any two prime ideals
p and q of R, with p ⊆ q, we must show that ht(q) = ht(p) + 1, where
ht(q/p) = r . Let ht(p) = k. So, there exists a maximal saturated
chain between p and q of length r as follows.

p# p1 # · · ·# pr = q

Since S ′(R) is a path, thus ht(pi) = ht(pi−1)+1. Consequently, ht(q) =
ht(p) + r as desired. �
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The following corollary immediately follows by Theorems 5.2 and
5.4.

Corollary 5.5. If the condition (∗) holds in R, then S(R) is a bipartite
graph.

Theorem 5.6. If the graph S ′(R) is a path or cycle, then R is Cate-
nary.

Proof. We prove the claim for the case that S ′(R) is a path. The proof
for cycles is similar. So suppose that S ′(R) is the following path.

Spec0(R)# Spec1(R)# · · ·# Speci−1(R)# Speci(R)# Speci+1(R)
# . . . .

Now, Suppose that p and q are two prime ideals of R with p ⊆ q.
Put k := ht(q/p) and r := ht(p). If there exists only one saturated
chain between p and q, then we have nothings to prove. Hence assume
that there exist at least two saturated chains of prime ideals from p to
q as follows

p# p1 # · · ·# pk = q, p# q1 # · · ·# qs = q

We need only to show that k = s. Since S ′(R) is a path, p1, q1 ∈
Specr+1(R). By continuing this process, one can conclude that h = s.
Thus R is catenary. �

At the end of this paper we provide some results about independent
number and chromatic number of graphs S(R) and S ′(R)

Theorem 5.7. If R is a Noetherian ring, then

α(S(R)) = max{|Spec0(R)|, |Spec1(R)|}
Proof. First of all, note that Spec0(R) and Spec1(R) are two indepen-
dent sets of vertices of S(R). If dim(R) = 1, then, by Corollary 5.5,
S(R) is a bipartite graph. Thus S(R) = Spec0(R) ∪ Spec1(R). So
α(S(R)) = max{|Spec0(R)|, |Spec1(R)|}. Now, if dim(R) ≥ 2, then as
we mentioned at the beginning of Section 4, Spec1(R) is an infinite set.
Thus, in this case we have α(S(R)) =∞ = max{|Spec0(R)|, |Spec1(R)|}.

�

Theorem 5.8. Let {Specik(R)}tk=1 be an independent set of vertices in
graph S ′(R) where α(S ′(R)) = t. Then α(S(R)) >

∑t
k=1 |Specik(R)|.

Proof. Clearly,
⋃t
k=1 Specik(R) is a disjoin union of independent subsets

of vertices in S(R). Hence,
⋃t
k=1 Specik(R) is an independent set in

S(R). Thus α(S(R)) ≥ |
⋃t
k=1 Specik(R)| =

∑t
k=1 |Specik(R)|. �
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Theorem 5.9. χ(S(R)) 6 χ(S ′(R)).

Proof. Let χ(S ′(R)) = t. So there is a proper colouring map f :
S ′(R) −→ {1, . . . , k}. Since, for i = 1, . . . , t, Speci(R) is an indepen-

dent set of vertices in S(R), the map f̂ : S(R) −→ {1, . . . , k} given by

f̂(p) = f(Speci(R)) for p ∈ Speci(R), is a proper colouring of vertices
in S(R). Thus, χ(S(R)) 6 χ(S ′(R)). �
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