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TRIPLE FACTORIZATION OF NON-ABELIAN
GROUPS BY TWO MAXIMAL SUBGROUPS

A. GHARIBKHAJEH ∗ AND H. DOOSTIE

Abstract. The triple factorization of a group G has been stud-
ied recently showing that G = ABA for some proper subgroups A
and B of G, the definition of rank-two geometry and rank-two coset
geometry which is closely related to the triple factorization was de-
fined and calculated for abelian groups. In this paper we study two
infinite classes of non-abelian finite groups D2n and PSL(2, 2n) for
their triple factorizations by finding certain suitable maximal sub-
groups, which these subgroups are define with original generators
of these groups. The related rank-two coset geometries motivate
us to define the rank-two coset geometry graphs which could be
of intrinsic tool on the study of triple factorization of non-abelian
groups.

1. Introduction

The factorization of a finite group G as the inner product G = ABA
where, A and B are proper subgroups of G, defined and studied by
Gorenstein ([8]) in 1962 and the notation T = (G,A,B) is used for
a triple factorization of the group G. This was based on the article
[9] where a class of Frobenius groups is studied. In 1990 the factor-
ization of finite simple groups and their automorphism groups were
studied in [11]. Also the geometric ABA groups have been studied by
Higman ([10]) in 1961. Following [1] and using the notations of the
articles [3, 4, 15] we recall the notions of incidence geometry, rank-two
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geometry, flag and rank-two coset geometry. These are related to the
triple factorization of a group and product of groups ([2]). The aim
of this paper is to study the rank-two coset geometry by defining a
graph, which is named a rank-two coset geometry graph. The notation
Γ(G,A,B) will be used for this graph, where G = ABA. Our compu-
tational results based on the study of two classes of non-abelian groups
D2n (the dihedral group of order 2n) and the projective special linear
groups PSL(2, 2n), (n ≥ 3). The nice and very interesting presentation
of projective special linear groups may be found in ([5, 6, 7]) and the
related references.

It is necessary to recall that for studying the triple factorization of
groups the important tools come from permutation group theory and
we recall some of them which will be useful in our proofs. The set of
all permutations of a set Ω is the symmetric group on Ω, denoted by
Sym(Ω), and a subgroup of Sym(Ω) is called a permutation group on
Ω. If a group G acts on Ω we denote the induced permutation group
of G by GΩ, a subgroup of Sym(Ω). We say that G is transitive on Ω
if for all α, β ∈ Ω there exists g ∈ G such that αg = β. For a transitive
group G on the set Ω, a nonempty subset ∆ of Ω is called a block for
G if for each g ∈ G, either ∆g = ∆, or ∆g ∩ ∆ = ∅; in this case the
set Σ = {∆g|g ∈ G} is said to be a block system for G. The group
G induces a transitive permutation group GΣ on Σ, and the set stabi-
lizer G∆ induces a transitive permutation group G∆

∆ on ∆. If the only
blocks for G are the singleton subsets or the whole of Ω we say that G
is primitive, and otherwise G is imprimitive.

Definition 1.1. A triple factorization T = (G,A,B) of a finite groupG
is called degenerate if G = AB or G = BA. Otherwise, T = (G,A,B)
is called a non-degenerate triple factorization. A group with a triple
factorization T = (G,A,B), is sometimes called an ABA-group.

Definition 1.2. Let P and L be the sets of right cosets of the proper
subgroups A and B of a finite group G, respectively. The property ∗
between the elements of P and L which is named a ”non-empty inter-
section relation” is defined as follows:

Ax ∗By ⇐⇒ Ax ∩By 6= ∅
Then (Ω = P ∪ L, ∗) is called a rank-two coset geometry and will be
denoted by Cos(G,A,B).

In a rank-two coset geometry, if the property ∗ holds between two
members Ax ∈ P and By ∈ L, then we say that these members are
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incident, and in this case the pair (Ax,By) is called a flag of rank-two
coset geometry.

Definition 1.3. The rank-two coset geometry graph of a finite non-
abelian group G will be denoted by Γ(G,A,B), is an undirected graph
with the vertex set P ∪ L and two points Ax and By are adjacent if
and only if Ax ∩By 6= ∅ where, G = ABA.

Our main results are the following theorems:

Theorem A. Let G = D2n = 〈a, b|an = b2 = (ab)2 = 1〉 be the
dihedral group of order 2n. Then,

(1) For n = 3k, (k = 1, 2, ...), there are at least two proper dihedral
subgroups B and C of G such that G = BCB (non-degenerate
triple factorization).

(2) For n = 2k, (k = 1, 2, ...), there is no non-degenerate triple
factorization for G.

(3) For the prime values of n ≥ 5, there is no non-degenerate triple
factorization for G.

(4) The graph associated to a triple factorization T = (G,A,B) of
G, (Γ(G,A,B)) is bipartite graph if and only if the factorization
is degenerate.

Theorem B. Let G = PSL(2, 2n), (n ≥ 3) be the projective special
linear group. Then, there are two distinct maximal subgroups A and B
of G such that G = ABA. Moreover, Γ(G,A,B) ' Kr,s, the bipartite
graph.

2. The dihedral Groups D2n, n ≥ 3

The well-known presentation for the dihedral group of order 2n is
D2n = 〈a, b|an = b2 = (ab)2 = 1〉. The nature and the number of
subgroups of D2n are of interest to know and we collect all of these
subgroups and their properties in the following preliminary lemma.

Lemma 2.1. Every subgroup of D2n (n ≥ 3), is cyclic or a dihedral
group such that:

(i) the cyclic subgroups are < ad >, where d|n and |D2n :< ad >
| = 2d,

(ii) the dihedral subgroups are < ad, aib >, where d|n, and 0 ≤ i ≤
d− 1, and |D2n :< ad, aib > | = d,
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(iii) let n be odd and m|2n. For odd values of m there are m sub-
groups of index m in D2n. However, if m is even there is exactly
one subgroup of index m,

(iv) let n be even and m|2n. For odd values of m there are m sub-
groups of index m. If m is even and doesn’t divide n, there is
only one subgroup of index m. Finally, if m is even and m|n,
there are exactly m+ 1 subgroups of index m.

There are also certain obvious relations in D2n. Indeed, for every
integer i = 1, 2, ..., n, the following relations hold in D2n:
baib = a−i, aiba−i = a2ib, (aib)b(aib)−1 = a2ib, aiba−i = b.

The following lemma gives a necessary and sufficient condition for
a triple T = (G,A,B) to be a triple factorization of finite group G in
terms of the two proper and distinct subgroups A and B (for a proof
one may see [1]).

Lemma 2.2. Let A and B be two proper subgroups of a group G,
and consider the right coset action of G on ΩA = {Ag|g ∈ G}. Set
α = A ∈ ΩA. Then T = (G,A,B) is a triple factorization if and only
if the B-orbit αB intersects nontrivially each Gα-orbit in ΩA.

It is necessary to recall that, using the permutation notations the
Lemma 2.2 may be reduced to:

Lemma 2.3. Let A and B be two proper subgroups of a group G and
consider the right coset action of G on ΩA = {Ag|g ∈ G}. Set α =
A ∈ ΩA. Then, T = (G,A,B) is a triple factorization if and only if
for all g ∈ G there exists elements b ∈ B, a ∈ A such that Ab = Aga.

Lemma 2.4. For any two proper and distinct subgroups A and B of
D2n if T = (D2n, A,B) is a degenerate (non-degenerate) triple fac-
torization for D2n then T = (D2n, B,A) is also a degenerate (non-
degenerate) triple factorization for D2n. Moreover, D2n = ABA =
BAB.

Proof. The proof is easy by using Lemma 2.3 and the relations of D2n.
�

Proof of Theorem A.

(1) For n = 3k, (k = 1, 2, 3, ...), D2n = 〈a, b|a3k = b2 = (ab)2 = 1〉
and its dihedral subgroups are in the form < ad, aib > where,
d ≥ 3, d|n = 3k and 0 ≤ i ≤ d − 1. Now if B =< ar, aib >
and C =< as, ajb > be two distinct dihedral subgroup of D2n =
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D2(3k) such that |B||C||B| ≥ 2n, then for some i, j, l,m, n that,
0 ≤ i, j, l ≤ n − 1 and 0 ≤ m,n ≤ 1, there exist elements
x = aibm ∈ B, y = ajbn ∈ C and g = al ∈ D2n such that
By = Bgx. So, by Lemma 2.3, T = (D2n, A,B) is a triple
factorization of D2n, and by using the relations baib = a−i,
aiba−i = a2ib, (aib)b(aib)−1 = a2ib and aiba−i = b, (0 ≤ i ≤
n − 1) of D2n we get that for every 0 ≤ r, s, l ≤ n − 1 and
0 ≤ α, β, γ ≤ 1, the word arbαasbβalbγ of BCB is one of the
elements of D2n. So, this triple factorization is non-degenerate
and D2n = BCB = CBC.

(2) For n = 2k, (k = 1, 2, 3, ...), by Lemma 2.1, the number of non-
trivial cyclic and dihedral subgroups of D2n is k and 2k+1−2, re-
spectively. In the case k = 1, the non-trivial cyclic subgroup of
D4 is A =< a >= {1, a} and the nontrivial dihedral subgroups
are B =< a2, a0b >=< 1, b >= {1, b} and C =< a2, a1b >=<
1, ab >= {1, ab}, such that by using the relations of D2n we
get, AB = BA = AC = CA = BC = CB = D4. And
for every k ≥ 2, it is easy to see that for the cyclic subgroup
A =< a1 > and for any two distinct nontrivial dihedral sub-
groups B and C satisfying B * C, C * B and |B||C||B| ≥ 2n
we get AB = BA = AC = CA = BC = CB = D2n. Hence, the
triples (D2n, A,B), (D2n, A, C) and (D2n, B, C) are degenerate
triple factorizations.

(3) For the prime values of n ≥ 5, the number of nontrivial cyclic
and dihedral subgroups of D2n are 1 and n, respectively, where
A =< a > is the only nontrivial cyclic subgroup and for every
i (i = 0, 1, ..., n − 1), Bi =< an, aib > is a nontrivial dihedral
subgroup. By using the relations of D2n one may see that for
every 1 ≤ i, j ≤ n− 1, ABiA = ABi = D2n but BiBjBi 6= D2n.
Thus, in this case there is no non-degenerate triple factorization
for D2n.

(4) By (2) and (3), T = (D2n, A,Bi) is a degenerate triple factor-
ization of D2n where, A =< a > is the only cyclic subgroup
of D2n of index 2 and Bi =< an, aib >, (i = 0, 1, ..., n − 1) is
a dihedral subgroup of index n, where n ≥ 5 is a prime and
the set of distinct right cosets of A and Bi are {A,Ab} and
{Bi, Bia,Bia

2, ..., Bia
n−1}, respectively. By using the relations

of D2n we get that for every 0 ≤ i, k ≤ n − 1, A ∩ Bia
k and

Ab∩Bia
k are not empty. So by the definition of rank-two coset

geometry, for every i, (i = 0, 1, ..., n − 1), each coset of A is
adjacent to all cosets of Bi. Therefore, Γ(D2n, A,Bi) = K2,n−1,
the complete bipartite graph. By the same method one may
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see that if T = (D2n, A,B) is a degenerate triple factorization
for two distinct subgroups A and B, then Γ(D2n, A,B) = Kr,s

where, r and s are the indices of the subgroups A and B, re-
spectively. For the inverse case, let Γ(D2n, B, C) = Kp,q. then
by definition of rank-two geometry graph p and q are the or-
ders of two distinct proper subgroups B =< ar, aib > and
C =< as, ajb >, where |D2n : B| = r, |D2n : C| = s and
the set of right cosets of B and C are {B,Ba,Ba2, ..., Bar−1}
and {C,Ca,Ca2, ..., Cas−1}, respectively. Now by considering
the elements of subgroups B, C and D2n one may see that
D2n = BC and the triple factorization is degenerate. 2

3. The Groups PSL(2, 2n), n ≥ 3

The projective special linear group PSL(2, F ) is the quotient of the
special linear group SL(2, F ) by its center. When F = GF (2n) we
known that |SL(2, 2n)| = |PSL(2, 2n)| = 2n(22n − 1).

To study of the triple factorization of PSL(2, 2n), n ≥ 3 by two max-
imal subgroup, we use the Sinkov’s ([13]) presentation for PSL(2, 2n)
with three generators and n+ 5 relations as follows:

〈x, y, z|xl = y2 = z3 = (xz)2 = (yz)2 = [xi, y]2 = R = 1, i = 1, ..., n−1〉

where, l = 2n− 1, R = x−nyxyan−1xyan−2 ...xya0 and a0, a1, ..., an−1 are
the coefficients of an irreducible polynomial of degree n, on the field
GF (2) which vanishes at least for a primitive element of GF (2n). Note
that the interesting and efficient presentations for the cases n = 3, 4, 5
have been given in [6].

Although, Gorenstein ([8]) and Dickson ([7]) have studied the max-
imal subgroups of PSL(2, 2n) in the special case, but we are inerested
to identify them in terms of the original generators of PSL(2, 2n), to
find the maximal subgroups in terms of the original generators x, y
and z. First of all we adopt the Dickson’s results for q = 2n as saying
that, there are five kinds of maximal subgroups for PSL(2, q) as follows:

Type(1): Eq nZq−1 of order q(q − 1) (semidirect product of the ele-
mentary abelian group of order q by the cyclic group of order q − 1).

Type(2): D2(q+1), the dihedral group of order 2(q + 1).

Type(3): D2(q−1), the dihedral group of order 2(q − 1).
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Type(4): A5, the alternating group of order 60, when q = 4r, (r is a
prime).

Type(5): PSL(2, q′), the projective group of order q′((q′)2−1), when
q′ > 2, q = (q′)m, (m is a prime) or q′ = 2 and q = (q′)2.

First of all we derive certain useful information on the above given
presentation of PSL(2, 2n).

Lemma 3.1. There are exactly P2(n) presentations for the group
PSL(2, 2n), (n ≥ 3), where P2(n) = 1

n

∑
d|n µ(n

d
)2d and µ is the Mobius

function.

Proof. In the relation xn = yxyan−1xyan−2 ...xya0 of Sinkov’s presenta-
tion, every choice of a0, a1,...,an−1, yields an irreducible polynomial over
GF (2) of degree n. On the other hand by the elementary results of [12],
the number of such polynomials is P2(n) = 1

n

∑
d|n µ(n

d
)2d, where µ is

the Mobius function. More precisely, the named polynomial should be
in the form m(x) = xn +

∑
1≤i≤n−1 aix

i, where, for at least a primitive
α of GF (2n), m(α) = 0. So, the number of distinct presentations for
PSL(2, 2n) is P2(n). �

Lemma 3.2. For every integer n ≥ 3, the last relation of the pre-
sentation of PSL(2, 2n) will be reduced to xn = yxn−1yxy or xn =
yxn−2yx2y, if n is even either is odd.

Proof. For n = 3, P2(3) = 2 (the number of irreducible polynomials
of degree 3 over GF (2)) and one of these polynomials is the trinomial
m(x) = x3 +x2 + 1. For n = 4, P2(4) = 3 and one of these polynomials
is the trinomial m(x) = x4 + x + 1. On the other hand by using the
results of [14] we deduce that, for every integer n ≥ 3, at least one of the
irreducible polynomials of degree n is a trinomial, and this trinomial
is in the form m(x) = xn + x2 + 1 or m(x) = xn + x+ 1 when n is odd
either n is even, respectively. Now, by considering the coefficients of
this trinomials we see that the relation xn = yxyan−1xyan−2 ...xya0 for
even values of n is equal to xn = yxn−1yxy and for the odd values of n
is equal to xn = yxn−2yx2y. �

Lemma 3.3. Let n ≥ 3. By considering the types of maximal subgroups
of G = PSL(2, 2n), if the subgroup H is of type E2n n Z2n−1 and the
subgroup K is of type D2(2n+1) or D2(2n−1) then, there exist elements
h ∈ H, k ∈ K and g ∈ G such that Hgh = Hk.

Proof. For every integer n ≥ 3, consider the maximal subgroups H =
E2n n Z2n−1 and K = D2(2n+1). For every elements g ∈ G, h ∈ H and
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k ∈ K if Hgh 6= Hk, then Hghk−1 6= H. Indeed, for every elements
g, h and k from G, H and K, the element ghk−1 doesn’t belong to H,
which is a contraction, because for three elements h, k and g′ = hkh−1

from H, K and G, g′hk−1 = (hkh−1)hk−1 = h ∈ H. So, there exist
elements h ∈ H, k ∈ K and g ∈ G such that Hgh = Hk. �

Proof of Theorem B.
For every integer n ≥ 3, the subgroups A = E2n n Z2n−1, B =

D2(2n+1) and C = D2(2n−1) are three maximal subgroup ofG = PSL(2, 2n)

where, the indices of these subgroups are 2n + 1, 2n(2n−1)
2

and 2n(2n+1)
2

,
respectively. For these subgroups we give generators in terms of the
original generators x, y and z as follows:
A = E2n n Z2n−1 '< [x, y], [x2, y], ..., [xn−1, y], y, x >, n ≥ 3,
B = D2(2n+1) '< xz, x−nyxn+1z >, n ≥ 4,
(B = D2(23+1) '< xz, x−1yx2z >),
C = D2(2n−1) '< xz, y−1xyz >, n ≥ 3,

where, A ∩ B and A ∩ C are non-empty, and the equation Aga = Ab
holds for at least three nontrivial elements g ∈ PSL(2, 2n), a ∈ A and
b ∈ B. Thus by Lemmas 2.3 and 3.3, the triple (PSL(2, 2n), A,B) is a
triple factorization for the group PSL(2, 2n), i.e.; PSL(2, 2n) = ABA.

Moreover, if the triple (PSL(2, 2n), A,B) is a triple factorization of
PSL(2, 2n) on two maximal subgroups A = E2n n Z2n−1 and B =
D2(2n+1) then, by Higman-Mclaughlin ([10]), every triple factorization
PSL(2, 2n) = ABA gives a G-flag-transitive rank-two coset geometry
(P ∪L, ∗) = Cos(PSL(2, 2n), A,B) where, P and L are the set of right
cosets of maximal subgroups A and B, and G acts transitively on the
elements of P and L. So G acts on the flags of rank-two coset geometry
as follows:

(Ax,By)g = (Axg,Byg), g ∈ G, Ax ∈ P , By ∈ L.
Thus, for this rank-two coset geometry we can define a rank-two coset
geometry graph, and Γ(PSL(2, 2n), A,B) = Kr,s, where r = 2n + 1

and s = 2n(2n−1)
2

are the indices of the maximal subgroups A and B,
respectively. 2
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