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A SCHEME OVER QUASI-PRIME SPECTRUM OF

MODULES

A. ABBASI ∗ AND D. HASSANZADEH-LELEKAAMI

Abstract. The notions of quasi-prime submodules and developed
Zariski topology was introduced by the present authors in [1]. In
this paper we use these notions to define a scheme. For an R-
module M , let X := {Q ∈ qSpec(M) | (Q :R M) ∈ Spec(R)}. It
is proved that (X,OX) is a locally ringed space. We study the
morphism of locally ringed spaces induced by R-homomorphism
M → N , and also by ring homomorphism R → S. Among other
results, we show that (X,OX) is a scheme by putting some suitable
conditions on M .

1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and
all modules are unital. For a submodule N of an R-module M , (N :R
M) denotes the ideal {r ∈ R | rM ⊆ N} and annihilator of M , de-
noted by AnnR(M), is the ideal (0 :R M). If there is no ambiguity, we
write (N :M) (resp. Ann(M)) instead of (N :R M) (resp. AnnR(M)).
An R-module M is called faithful if Ann(M) = (0). A proper ideal I
of a ring R is said to be quasi-prime if for each pair of ideals A and B
of R, A ∩ B ⊆ I yields either A ⊆ I or B ⊆ I (see [2], [3] and [5]). It
is easy to see that every prime ideal is a quasi-prime ideal. A proper
submodule N of an R-module M is called quasi-prime if (N :R M) is
a quasi-prime ideal of R (see [1]). We define the quasi-prime spectrum
of an R-module M to be the set of all quasi-prime submodules of M
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and denote it by qSpecR(M). If there is no ambiguity, we write only
qSpec(M) instead of qSpecR(M). For any I ∈ qSpec(R), the collection
of all quasi-prime submodules N of M with (N :M) = I is designated
by qSpecI(M). The relationship between the algebraic properties ofM
and the topological properties of qSpec(M) is investigated in [1]. Mod-
ules whose developed Zariski topology is respectively T0, irreducible or
Noetherian have been studied by authors in [1], and several character-
izations of such modules were given.

In this paper, we use the notion of quasi-prime spectrum of modules
to define a scheme.

First of all, we state some preliminaries that are needed for next
section. Let us M be an R-module. By N ≤ M we mean that N is a
submodule of M . For a submodule N of M we define

DM(N) = {L ∈ qSpec(M) | (L :M) ⊇ (N :M)}.
If there is no ambiguity we write D(N) instead of DM(N).

Let M be an R-module. For submodules N , L and a family {Ni}i∈I
of submodules of M one has

(1) D(0) = qSpec(M) and D(M) = ∅,
(2)

⋂

i∈I D(Ni) = D(
∑

i∈I(Ni :M)M),
(3) D(N) ∪D(L) = D(N ∩ L).

Now, we put

ζ(M) = {D(N) | N ≤M }
From (1), (2) and (3) above, it is evident that for any module M there
exists a topology, τ say, on qSpec(M) having ζ(M) as the family of all
closed sets. The topology τ is called the developed Zariski topology on
qSpec(M) (see [1]).

When qSpec(M) 6= ∅, the map ψ : qSpec(M) → qSpec(R/Ann(M))
defined by ψ(L) = (L : M)/Ann(M) for every L ∈ qSpec(M), will be
called the natural map of qSpec(M). An R-module M is called quasi-
primeful if either M = (0) or M 6= (0) and qSpec(M) has a surjective
natural map (See [1]). For an example of quasi-primeful module see
[1, Example 2.13]. Recall that a module M is said to be a Laskerian
module, if every proper submodule ofM has a primary decomposition.
It is well-known that every Noetherian module is Laskerian.

For any element x of an R-module M , we define

c(x) :=
⋂

{A|A is an ideal of R and x ∈ AM}.
An R-module M is called a content R-module if, for every x ∈ M ,
x ∈ c(x)M ([6]). Every free module, or more generally, every pro-
jective module, is a content R-module. Content R-modules can also
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be characterized by that for every family {Ai|i ∈ J} of ideals of R,
(∩i∈JAi)M = ∩i∈J (AiM).

Remark 1.1. (See [1].) Let M be an R-module. Then M is quasi-
primeful in each of the following cases:

(1) M is free;
(2) R is a PID and M is finitely generated and content;
(3) R is a Dedekind domain and M is faithfully flat and content;
(4) R is Laskerian and M is locally free;
(5) R is Laskerian and M is projective.

An R-moduleM is called quasi-prime-embedding, if the natural map

ψ : qSpec(M) → qSpec(R/Ann(M))

is injective. An R-module M is called a multiplication module if every
submodule N of M is of the form IM for some ideal I of R. Ev-
ery multiplication module is quasi-prime-embedding (see [1, Corollary
2.23]).

2. MAIN RESULTS

In this section we use the notion of quasi-prime spectrum of a module
to define a sheaf of rings. Let M be an R-module. Here, we consider
a certain subset X of qSpec(M) equipped with induced topology and
we define a scheme over X .

Throughout the paper X denotes the subset

{Q ∈ qSpec(M) | (Q :R M) ∈ Spec(R)}
of qSpec(M). We recall that, for any element r of a ring R, the set
Dr = Spec(R)−V (rR) is open in Spec(R) and the family F = {Dr|r ∈
R} forms a base for the Zariski topology on Spec(R). Each Dr, in
particular, D1 = Spec(R) is known to be quasi-compact. It is shown
in [1, Proposition 3.17] that the set B′ = {ΓM(a) | a ∈ R} forms a
base for the developed Zariski topology on qSpec(M), where for any
a ∈ R, ΓM(a) = qSpec(M) − D(aM). For each element a ∈ R we
define Xa = X ∩ ΓM(a).

Proposition 2.1. For any R-module M , the set B = {Xa | a ∈ R}
forms a base for X with the induced topology.

Proof. We may assume that X 6= ∅. Let U be any open subset in X .
Then there exists an open subset G of qSpec(M) such that U = X ∩G.
There exists a submodule N of M such that G = qSpec(M) −D(N).
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Hence by [1, Proposition 3.17],

U = X∩G = X∩(
⋃

ai∈(N :M)

ΓM(ai)) =
⋃

ai∈(N :M)

(X∩ΓM (ai)) =
⋃

ai∈(N :M)

Xai .

�

Proposition 2.2. Let M be an R-module. For every element a, b ∈ R,

Xab = Xa ∩Xb.

Proof. Let Q ∈ X . Then

Q ∈ Xab ⇔ Q ∈ X ∩ ΓM(ab)

⇔ (abM :M) 6⊆ (Q :M) ∈ Spec(R)

⇔ a 6∈ (Q :M) and b 6∈ (Q :M)

⇔ Q ∈ Xa ∩Xb.

�

Proposition 2.3. Let M be an R-module and a ∈ R. Then Xan = Xa

for any positive integer n. In particular, if b is a nilpotent element of
R, then Xb = ∅.
Proof. Use Proposition 2.2. �

Recall that a sheaf F of rings on a topological space X consists of
the Data

(a) for every open subset U ⊆ X , a ring F(U), and
(b) for every inclusion V ⊆ U of open sets of X , a morphism of

rings ρUV : F(U) −→ F(V ) with the following conditions
(1) F(∅) = 0, where ∅ is the empty set,
(2) ρUU : F(U) −→ F(U) is the identity,
(3) if W ⊆ V ⊆ U are three open subsets, then ρUW = ρVW ◦

ρUV ,
(4) if U is an open set and if {Vi} is an open covering of U ,

and if s ∈ F(U) is an element such that s|Vi
= 0 for all

i,then s = 0.
(5) if U is an open set and if {Vi} is an open covering of U , and

if we have elements si ∈ F(Vi) for each i,with the property
that for each i, j, si|Vi∩Vj

= sj |Vi∩Vj
, then there exists an

element s ∈ F(U) such that s|Vi
= si for each i.

Let P be a point of X , one can define the stalk of FP of F at P to be
the direct limit of the F(U) for all open sets U containing P , via the
restriction maps ρ.
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Definition 2.4. Let M be an R-module. For every open subset U of
X we define Supp(U) = {(P :M) | P ∈ U}.

Definition 2.5. Let M be an R-module. For every open subset U of
X we define OX(U) to be a subring of

∏

p∈Supp(U)Rp, as the ring of

functions s : U → ∐

p∈Supp(U)Rp, where s(P ) ∈ Rp for each P ∈ U

where p = (P : M) and for each P ∈ U , there is a neighborhood V of
P , contained in U , and elements a, f ∈ R, such that for each Q ∈ V ,
f 6∈ q := (Q :M), and s(Q) = a/f in Rq.

It is clear that for an open set U of X , OX(U) is closed under sum
and product. Thus OX(U) is a commutative ring with identity (the
identity element of OX(U) is the function which sends all P ∈ U to 1
in R(P :M)). If V ⊆ U are two open sets, the natural restriction map
OX(U) → OX(V ) is a homomorphism of rings. It is then clear that
OX is a presheaf. Finally, from the local nature of the definition OX is
a sheaf. Hence

Lemma 2.6. Let M be an R-module.

(1) For each open subset U of X, OX(U) is a subring of
∏

p∈Supp(U)Rp.

(2) OX is a sheaf.

In next proposition, we find the stalk of the sheaf.

Proposition 2.7. Let M be an R-module. Then for each P ∈ X, the
stalk OX,P of the sheaf OX is isomorphic to Rp, where p := (P :M).

Proof. Let P ∈ X be a quasi-prime submodule of M such that p =
(P :M) and

m ∈ OX,P = lim−→
P∈U

OX(U).

Then there exists a neighborhood U of P and s ∈ OX(U) such that
m is the germ of s at the point P . We define a homomorphism ϕ :
OX,P → Rp by ϕ(m) = s(P ). This is a well-defined homomorphism.
Let V be another neighborhood of P and t ∈ OX(V ) such that m is the
germ of s at the point P . Then there exists an open subset W ⊆ U ∩V
such that P ∈ W and s|W = t|W . Since P ∈ W , s(P ) = t(P ). We
claim that ϕ is an isomorphism.

Let x ∈ Rp. Then x = a/f where a ∈ R and f ∈ R \ p. Since f 6∈ p,
P ∈ Xf . Now we define s(Q) = a/f in Rq, where q := (Q :M), for all
Q ∈ Xf . Then s ∈ O(Xf). If m is the equivalent class of s in OX,P ,
then ϕ(m) = x. Hence ϕ is surjective.
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Now, let m ∈ OX,P and ϕ(m) = 0. Let U be an open neighborhood
of P andm be the germ of s ∈ OX(U) at P . There is an open neighbor-
hood V ⊆ U of P and elements a, f ∈ R such that s(Q) = a/f ∈ Rq,
where q := (Q : M), for all Q ∈ V , f 6∈ q. Thus V ⊆ Xf . Then
0 = ϕ(m) = s(P ) = a/f in Rp. So, there is h ∈ R\p such that ha = 0.
By Proposition 2.2, for Q ∈ Xfh = Xf ∩Xh we have s(Q) = a/f ∈ Rq.
Since h 6∈ q, s(Q) = a

f
= h

h
a
f
= 0. Hence s|O(Xfh) = 0. This yields,

s = 0 in OX(Xfh). Consequently m = 0. �

As a direct consequence of Proposition 2.7, we have

Corollary 2.8. If M is an R-module, then (X,OX) is a locally ringed
space.

Lemma 2.9. Let M and M ′ be two R-modules and let f :M →M ′ be
an epimorphism. If N is a quasi-prime submodule of M ′, then f−1(N)
is a quasi-prime submodule of M .

Proposition 2.10. Let M an N be R-modules and φ :M → N be an
epimorphism. Then the map

θ : qSpec(N) → qSpec(M)

Q 7→ φ−1(Q)

is continuous. In particular, if Y := {Q ∈ qSpec(N) | (Q :R N) ∈
Spec(R)}, then the map

f = θ|Y : Y → X

Q 7→ φ−1(Q)

is continuous.

Proof. For any Q ∈ qSpec(N) and any closed set DM(K) in qSpec(M),
where K ≤M , we have

Q ∈ θ−1(DM(N)) ⇔ θ(Q) = φ−1(Q) ⊇ (N :M)M

⇔ Q ⊇ φ((K :M)M) = (K :M)N

⇔ Q ∈ DN((K :M)N).

Hence, θ−1(DM(N)) = DN((K : M)N), so θ is continuous. The last
statement follows from the first part. �

Proposition 2.11. Let M an N be R-modules and φ :M → N be an
epimorphism and let X, Y be as in Proposition 2.10. Then φ induces
a morphism of locally ringed spaces

(f, f ♯) : (Y,OY ) → (X,OX).
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Proof. By Proposition 2.10, the map f : Y → X which is defined
by P 7→ φ−1(P ), is continuous. Let U be an open subset of X and
s ∈ OSpec(M)(U). Suppose P ∈ f−1(U). Then f(P ) = φ−1(P ) ∈ U .
Assume that W is an open neighborhood of φ−1(P ) with W ⊆ U and
a, g ∈ R, such that for each Q ∈ W , g 6∈ q := (Q :M), and s(Q) = a/g
in Rq. Since φ−1(P ) ∈ W , P ∈ f−1(W ). As we mentioned, f is
continuous, so f−1(W ) is an open subset of Y . We claim that for each
Q′ ∈ f−1(W ), g 6∈ (Q′ : N). Suppose g ∈ (Q′ : N) for some Q′ ∈
f−1(W ). Then φ−1(Q′) = f(Q′) ∈ W . Since φ an epimorphism, (Q′ :
N) = (φ−1(Q′) : M). So, g ∈ (φ−1(Q′) : M). This is a contradiction.
Therefore, we can define

f ♯(U) : OX(U) → OY (f
−1(U))

by f ♯(U)(s) = s ◦ f .
Assume that V ⊆ U and P ∈ f−1(V ). Then according to the dia-

gram below

f−1(U)
f // U

t // R(P :M)

f−1(V )
f //

?�

OO

V
?�

OO

t|V

<<
③③③③③③③③③

we have
(t ◦ f)|f−1(V )(P ) = t|V ◦ f(P ). (2.1)

Consider the diagram

(A) OX(U)
f♯(U)

//

ρUV

��

OY (f
−1(U))

ρ′
f−1(U)f−1(V )

��

OX(V )
f♯(V )

// OY (f
−1(V )).

Since

ρ′f−1(U)f−1(V )f
♯(U)(t)(P ) = ρ′f−1(U)f−1(V )(t ◦ f)(P )

= (t ◦ f)|f−1(V )(P )

= t|V ◦ f(P ) by equation 2.1

= ρUV (t) ◦ f(P )
= f ♯(V )ρUV (t)(P ),

for each t ∈ OX(U), the diagram (A) is commutative, and it follows
that

f ♯ : OX −→ f∗OY
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is a morphism of sheaves. By Proposition 2.7, the map on stalks

f ♯
P : OX,f(P ) −→ OY,P

is clearly the map of local rings

R(f(P ):M) −→ R(P :N).

This implies that

(Y,OY )
(f,f♯)

// (X,OX)

is a morphism of locally ringed spaces. �

Theorem 2.12. Let Φ : R → S be a ring homomorphism, N an S-
module and M a quasi-primeful and quasi-prime-embedding R-module
such that AnnR(M) ⊆ AnnR(N) (here, we consider N as an R-module
by means of Φ). Let X, Y be as in Proposition 2.10. Then Φ induces
a morphism of locally ringed spaces

(Y,OY )
(h,h♯)

// (X,OX).

Proof. Since AnnR(M) ⊆ AnnR(N), Φ induces the map Θ : R/AnnR(M)
→ S/AnnS(N). It is well-known that the maps f : Spec(S) → Spec(R)
by p 7→ Φ−1(p) and d : Spec(S/AnnS(N)) → Spec(R/AnnR(M)) by
p 7→ Θ−1(p) and ψN : qSpec(N) → qSpec(S/AnnS(N)) with ψ(P ) =
(P :S N)/AnnS(N) for each P ∈ qSpec(N) are continuous maps (see
[1, Proposition 3.2]). Hence, the map

χN = ψN |Y : Y → Spec(S/AnnS(N))

P 7→ (P :S N)/AnnS(N)

is continuous. Also ψM : qSpec(M) → qSpec(R/AnnR(M)) is homeo-
morphism by [1, Proposition 3.2]. Thus the map

χM = ψM |X : X → Spec(R/AnnR(M))

Q 7→ (Q :R N)/AnnR(M)

is a one-to-one correspondence continuous map and χ−1
M is continuous.

Therefore the map

h : Y −→ X

P 7→ χ−1
M d χN(P )

is continuous. For each P ∈ Y , we get a local homomorphism

Φ(P :SN) : Rf(P :SN) −→ S(P :SN).

Let U be an open subset of X and let t ∈ OX(U). Suppose that
P ∈ h−1(U). Then h(P ) ∈ U and there exists a neighborhood W of
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h(P ) with W ⊆ U and elements r, g ∈ R such that for each Q ∈ W ,
g 6∈ (Q :R M), and t(Q) = r

g
∈ R(Q:R M). Hence g 6∈ (h(P ) :R M). By

definition of h, (h(P ) :R M) = Φ−1(P :S N). So, Φ(g) 6∈ (P :S N)
and Φ(P :SN)(

r
g
) defines a section on OY (h

−1(W )). Since

Rg
//

��

SΦ(g)

��
RΦ−1(P :SN)

// S(P :SN)

is commutative, we can define

h♯(U) : OX(U) −→ h∗OY (U) = OY (h
−1(U))

by h♯(U)(t)(P ) = Φ(P :SN)(t(h(P ))) for each t ∈ OX(U) and P ∈
h−1(U). Assume that V ⊆ U and P ∈ h−1(V ). According to the
diagram below

h−1(U)
h // U

t

$$■
■■

■■
■■

■■
■■

h−1(V )
h //

?�

OO

Φ(P :SN)◦t|V ◦h

--

V
?�

OO

t|V// RΦ−1(P :SN)

Φ(P :SN)

��
S(P :SN)

we have

Φ(P :SN) ◦ t|V ◦ h(P ) = (Φ(P :SN) ◦ t ◦ h)|h−1(V )(P ). (2.2)

Consider the diagram

(B) OX(U)
h♯(U)

//

ρUV

��

OY (h
−1(U))

ρ′
h−1(U)h−1(V )

��

OX(V )
h♯(V )

// OY (h
−1(V )).

Since

ρ′h−1(U)h−1(V )h
♯(U)(t)(P ) = ρ′h−1(U)h−1(V )Φ(P :SN) ◦ t ◦ h(P )

= (Φ(P :SN) ◦ t ◦ h)|h−1(V )(P )

= Φ(P :SN) ◦ t|V ◦ h(P ) by equation 2.2

= h♯(V )(t|V )(P )
= h♯(V )ρUV (t)(P ),
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the diagram (B) is commutative, and it follows that

h♯ : OX −→ h∗OY

is a morphism of sheaves. By Proposition 2.7, the map on stalks

h♯P : OX,h(P ) −→ OY,P

is clearly

Rf(P :SN) −→ S(P :SN).

This implies that

(Y,OY )
(h,h♯)

// (X,OX)

is a morphism of locally ringed spaces. �

Lemma 2.13. Let M be a faithful and quasi-primeful R-module and
let a, b ∈ R. If Xa ⊆ Xb, then a ∈

√
Rb.

Proof. Let p ∈ V (Rb) := {q ∈ Spec(R) | q ⊇ Rb}. Then there exists
a quasi-prime submodule Q of M such that (Q : M) = p. So, Q 6∈
Xb, whence Q 6∈ Xa. Therefore a ∈ (aM : M) ⊆ (Q : M) = p.

Consequently, a ∈ ⋂

p∈V (Rb) p =
√
Rb. �

Proposition 2.14. Let M be a faithful and quasi-primeful R-module.
For any element f ∈ R, the ring OX(Xf) is isomorphic to the localized
ring Rf .

Proof. We define the map Θ : Rf → OX(Xf) by

a

fm
7→ (s : Q 7→ a

fm
∈ R(Q:M)).

It is easy to see Θ is a well-defined homomorphism. We are going to
show that Θ is an isomorphism.

We first show that Θ is injective. If Θ( a
fn ) = Θ( b

fm ), then for every

P ∈ Xf ,
a
fn and b

fm have the same image in Rp, where p = (P : M).

Thus there exists h ∈ R \ p such that h(fma − fnb) = 0 in R. Let
I = (0 :R fma − fnb). Then h ∈ I and h 6∈ p, so I * p. This happen
for any P ∈ Xf , so we conclude that

V (I) ∩ Supp(Xf) = ∅
hence

Supp(Xf) ⊆ D(I) := Spec(R) \ V (I).

Since M is faithful quasi-primeful,

Df = Supp(Xf) ⊆ D(I).
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Therefore f ∈
√
I and so, f l ∈ I for some positive integer l. Now we

have f l(fma− fnb) = 0 which shows that a
fn = b

fm in Rp. Hence Θ is
injective.

Let s ∈ OX(Xf). Then we can cover Xf with open subset Vi, on
which s is represented by ai

gi
, with gi 6∈ (P :M) for all P ∈ Vi, in other

words Vi ⊆ Xgi. By Proposition 2.1, the open sets of the form Xh are
a base for the topological space X . So, we may assume that Vi = Xhi

for some hi ∈ R. Since Xhi
⊆ Xgi , by Lemma 2.13, hi ∈

√

(gi). Thus
hni = cgi for some n ∈ N and c ∈ R. So,

ai
gi

=
cai
cgi

=
cai
hni
.

We see that s is represented by bi
ki
, (bi = cai, ki = hni ) on Xki and

(since Xhi
= Xhn

i
) the family Xki’s cover Xf . By [1, Proposition 3.18],

that the open cover Xf =
⋃

Xki has a finite subcover. Suppose, Xf ⊆
Xk1 ∪ · · · ∪ Xkn. For 1 ≤ i, j ≤ n, bi

ki
and

bj
kj

both represent s on

Xki ∩Xkj . By Proposition 2.2, Xki ∩Xkj = Xkikj and by injectivity of

Θ, we get bi
ki

=
bj
kj

in Rkikj . Hence for some nij,

(kikj)
nij(kjbi − kibj) = 0.

Let m = max{nij |1 ≤ i, j ≤ n}. Then
km+1
j (kmi bi)− km+1

i (kmj bj) = 0.

By replacing each ki by k
m+1
i , and bi by k

m
i bi, we still see that s repre-

sented on Xki by
bi
ki
, and furthermore, we have kjbi = kibj for all i, j.

Since Xf ⊆ Xk1 ∪ · · · ∪Xkn , by [1, Proposition 3.18], we have

Df = ψ(Xf) ⊆
n
⋃

i=1

ψ(Xki) =
n
⋃

i=1

Dki,

where ψ is the natural map ψ : Spec(M) → Spec(R). So, there are
c1, · · · , cn in R and t ∈ N, such that f t =

∑

i ciki. Let a =
∑

i cibi.
Then for each j we have

kja =
∑

i

cibikj =
∑

i

cikibj = bjf
t.

This implies that a
f t =

bj
kj

on Xkj . So Θ( a
f t ) = s everywhere, which

shows that Θ is surjective. �

Corollary 2.15. Let M be a faithful and quasi-primeful R-module.
Then OX(X) is isomorphic to R.
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We recall that a scheme X is locally Noetherian if it can be covered
by open affine subsets Spec(Ai), where each Ai is a Noetherian ring.
X is Noetherian if it is locally Noetherian and quasi-compact ([4]).

Theorem 2.16. Let M be a faithful, quasi-primeful and quasi-prime-
embedding R-module. Then (X,OX) is a scheme. Moreover, if R is
Noetherian, then (X,OX) is a Noetherian scheme.

Proof. Let g ∈ R. Because the natural map ψ : qSpec(M) → qSpec(R)
is continuous by [1, Proposition 3.2], the map ψ|Xg : Xg → ψ(Xg) is also
continuous. SinceM is quasi-prime-embedding, ψ|Xg is a bijection. Let
E be a closed subset ofXg. Then E = Xg∩DM(N) for some submodule
N of M . Hence ψ(E) = ψ(Xg ∩DM(N)) = ψ(Xg) ∩ DR(N : M) is a
closed subset of ψ(Xg). Therefore, ψ|Xg is a homeomorphism.

Suppose X =
⋃

i∈I Xgi. Since M is faithful, quasi-primeful and
quasi-prime-embedding, for each i ∈ I

Xgi
∼= ψ(Xgi) = Supp(Xgi) = Dgi

∼= Spec(Rgi).

Thus by Proposition 2.14, Xgi is an affine scheme and this implies that
(X,OX) is a scheme. For the last statement, we note that since R is
Noetherian, so is Rgi for each i ∈ I. Hence (X,OX) is a locally Noe-
therian scheme. By [1, Proposition 3.18], X is quasi-compact, therefore
(X,OX) is a Noetherian scheme. �
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