Journal of Algebra and Related Topics Vol. 2, No 1, (2014), pp 65-77

# A SCHEME OVER QUASI-PRIME SPECTRUM OF MODULES

#### A. ABBASI \* AND D. HASSANZADEH-LELEKAAMI

ABSTRACT. The notions of quasi-prime submodules and developed Zariski topology was introduced by the present authors in [1]. In this paper we use these notions to define a scheme. For an Rmodule M, let  $X := \{Q \in q \operatorname{Spec}(M) \mid (Q :_R M) \in \operatorname{Spec}(R)\}$ . It is proved that  $(X, \mathcal{O}_X)$  is a locally ringed space. We study the morphism of locally ringed spaces induced by R-homomorphism  $M \to N$ , and also by ring homomorphism  $R \to S$ . Among other results, we show that  $(X, \mathcal{O}_X)$  is a scheme by putting some suitable conditions on M.

## 1. INTRODUCTION

Throughout this paper, all rings are commutative with identity and all modules are unital. For a submodule N of an R-module M,  $(N :_R M)$  denotes the ideal  $\{r \in R \mid rM \subseteq N\}$  and annihilator of M, denoted by  $\operatorname{Ann}_R(M)$ , is the ideal  $(\mathbf{0} :_R M)$ . If there is no ambiguity, we write (N : M) (resp.  $\operatorname{Ann}(M)$ ) instead of  $(N :_R M)$  (resp.  $\operatorname{Ann}_R(M)$ ). An R-module M is called *faithful* if  $\operatorname{Ann}(M) = (0)$ . A proper ideal Iof a ring R is said to be *quasi-prime* if for each pair of ideals A and Bof  $R, A \cap B \subseteq I$  yields either  $A \subseteq I$  or  $B \subseteq I$  (see [2], [3] and [5]). It is easy to see that every prime ideal is a quasi-prime if  $(N :_R M)$  is a quasi-prime ideal of R (see [1]). We define the *quasi-prime spectrum* of an R-module M to be the set of all quasi-prime submodules of M

MSC[2010]13C05, 13C13, 13C99, 13E05, 14A05, 14A15, 14A20

Keywords: Quasi-prime submodule, quasi-primeful module, quasi-prime-embedding module, developed Zariski topology.

Received: 25 January 2014, Accepted: 29 May 2014.

<sup>\*</sup>Corresponding author .

and denote it by  $q \operatorname{Spec}^{R}(M)$ . If there is no ambiguity, we write only  $q \operatorname{Spec}(M)$  instead of  $q \operatorname{Spec}^{R}(M)$ . For any  $I \in q \operatorname{Spec}(R)$ , the collection of all quasi-prime submodules N of M with (N : M) = I is designated by  $q \operatorname{Spec}_{I}(M)$ . The relationship between the algebraic properties of M and the topological properties of  $q \operatorname{Spec}(M)$  is investigated in [1]. Modules whose developed Zariski topology is respectively  $T_0$ , irreducible or Noetherian have been studied by authors in [1], and several characterizations of such modules were given.

In this paper, we use the notion of quasi-prime spectrum of modules to define a scheme.

First of all, we state some preliminaries that are needed for next section. Let us M be an R-module. By  $N \leq M$  we mean that N is a submodule of M. For a submodule N of M we define

$$D^M(N) = \{ L \in q \operatorname{Spec}(M) \mid (L:M) \supseteq (N:M) \}.$$

If there is no ambiguity we write D(N) instead of  $D^M(N)$ .

Let M be an R-module. For submodules N, L and a family  $\{N_i\}_{i \in I}$  of submodules of M one has

(1) 
$$D(\mathbf{0}) = q \operatorname{Spec}(M)$$
 and  $D(M) = \emptyset$ ,  
(2)  $\bigcap_{i \in I} D(N_i) = D(\sum_{i \in I} (N_i : M)M)$ ,  
(3)  $D(N) \cup D(L) = D(N \cap L)$ .

Now, we put

$$\zeta(M) = \{ D(N) \mid N \le M \}$$

From (1), (2) and (3) above, it is evident that for any module M there exists a topology,  $\tau$  say, on qSpec(M) having  $\zeta(M)$  as the family of all closed sets. The topology  $\tau$  is called the *developed Zariski topology* on qSpec(M) (see [1]).

When  $q\operatorname{Spec}(M) \neq \emptyset$ , the map  $\psi : q\operatorname{Spec}(M) \to q\operatorname{Spec}(R/\operatorname{Ann}(M))$ defined by  $\psi(L) = (L:M)/\operatorname{Ann}(M)$  for every  $L \in q\operatorname{Spec}(M)$ , will be called the *natural map* of  $q\operatorname{Spec}(M)$ . An *R*-module *M* is called *quasiprimeful* if either  $M = (\mathbf{0})$  or  $M \neq (\mathbf{0})$  and  $q\operatorname{Spec}(M)$  has a surjective natural map (See [1]). For an example of quasi-primeful module see [1, Example 2.13]. Recall that a module *M* is said to be a *Laskerian* module, if every proper submodule of *M* has a primary decomposition. It is well-known that every Noetherian module is Laskerian.

For any element x of an R-module M, we define

$$c(x) := \bigcap \{A | A \text{ is an ideal of } R \text{ and } x \in AM \}.$$

An *R*-module *M* is called a *content R*-module if, for every  $x \in M$ ,  $x \in c(x)M$  ([6]). Every free module, or more generally, every projective module, is a content *R*-module. Content *R*-modules can also

be characterized by that for every family  $\{A_i | i \in J\}$  of ideals of R,  $(\bigcap_{i \in J} A_i)M = \bigcap_{i \in J} (A_iM)$ .

*Remark* 1.1. (See [1].) Let M be an R-module. Then M is quasiprimeful in each of the following cases:

- (1) M is free;
- (2) R is a *PID* and M is finitely generated and content;
- (3) R is a Dedekind domain and M is faithfully flat and content;
- (4) R is Laskerian and M is locally free;
- (5) R is Laskerian and M is projective.

An R-module M is called *quasi-prime-embedding*, if the natural map

$$\psi: q\operatorname{Spec}(M) \to q\operatorname{Spec}(R/\operatorname{Ann}(M))$$

is injective. An *R*-module *M* is called a *multiplication* module if every submodule *N* of *M* is of the form *IM* for some ideal *I* of *R*. Every multiplication module is quasi-prime-embedding (see [1, Corollary 2.23]).

### 2. MAIN RESULTS

In this section we use the notion of quasi-prime spectrum of a module to define a sheaf of rings. Let M be an R-module. Here, we consider a certain subset X of qSpec(M) equipped with induced topology and we define a scheme over X.

Throughout the paper X denotes the subset

 $\{Q \in q \operatorname{Spec}(M) \mid (Q :_R M) \in \operatorname{Spec}(R)\}$ 

of  $q\operatorname{Spec}(M)$ . We recall that, for any element r of a ring R, the set  $D_r = \operatorname{Spec}(R) - V(rR)$  is open in  $\operatorname{Spec}(R)$  and the family  $F = \{D_r | r \in R\}$  forms a base for the Zariski topology on  $\operatorname{Spec}(R)$ . Each  $D_r$ , in particular,  $D_1 = \operatorname{Spec}(R)$  is known to be quasi-compact. It is shown in [1, Proposition 3.17] that the set  $B' = \{\Gamma_M(a) \mid a \in R\}$  forms a base for the developed Zariski topology on  $q\operatorname{Spec}(M)$ , where for any  $a \in R$ ,  $\Gamma_M(a) = q\operatorname{Spec}(M) - D(aM)$ . For each element  $a \in R$  we define  $X_a = X \cap \Gamma_M(a)$ .

**Proposition 2.1.** For any *R*-module *M*, the set  $B = \{X_a \mid a \in R\}$  forms a base for *X* with the induced topology.

*Proof.* We may assume that  $X \neq \emptyset$ . Let U be any open subset in X. Then there exists an open subset G of qSpec(M) such that  $U = X \cap G$ . There exists a submodule N of M such that G = qSpec(M) - D(N). Hence by [1, Proposition 3.17],

$$U = X \cap G = X \cap (\bigcup_{a_i \in (N:M)} \Gamma_M(a_i)) = \bigcup_{a_i \in (N:M)} (X \cap \Gamma_M(a_i)) = \bigcup_{a_i \in (N:M)} X_{a_i}$$

**Proposition 2.2.** Let M be an R-module. For every element  $a, b \in R$ ,

$$X_{ab} = X_a \cap X_b.$$

*Proof.* Let  $Q \in X$ . Then

$$Q \in X_{ab} \iff Q \in X \cap \Gamma_M(ab)$$
  

$$\Leftrightarrow (abM:M) \not\subseteq (Q:M) \in \operatorname{Spec}(R)$$
  

$$\Leftrightarrow a \notin (Q:M) \text{ and } b \notin (Q:M)$$
  

$$\Leftrightarrow Q \in X_a \cap X_b.$$

**Proposition 2.3.** Let M be an R-module and  $a \in R$ . Then  $X_{a^n} = X_a$ for any positive integer n. In particular, if b is a nilpotent element of R, then  $X_b = \emptyset$ .

*Proof.* Use Proposition 2.2.

Recall that a sheaf  $\mathcal{F}$  of rings on a topological space X consists of the Data

- (a) for every open subset  $U \subseteq X$ , a ring  $\mathcal{F}(U)$ , and
- (b) for every inclusion  $V \subseteq U$  of open sets of X, a morphism of rings  $\rho_{UV} : \mathcal{F}(U) \longrightarrow \mathcal{F}(V)$  with the following conditions
  - (1)  $\mathcal{F}(\emptyset) = 0$ , where  $\emptyset$  is the empty set,
  - (2)  $\rho_{UU} : \mathcal{F}(U) \longrightarrow \mathcal{F}(U)$  is the identity,
  - (3) if  $W \subseteq V \subseteq U$  are three open subsets, then  $\rho_{UW} = \rho_{VW} \circ$  $\rho_{UV}$ ,
  - (4) if U is an open set and if  $\{V_i\}$  is an open covering of U, and if  $s \in \mathcal{F}(U)$  is an element such that  $s|_{V_i} = 0$  for all *i*,then s = 0.
  - (5) if U is an open set and if  $\{V_i\}$  is an open covering of U, and if we have elements  $s_i \in \mathcal{F}(V_i)$  for each *i*, with the property that for each  $i, j, s_i|_{V_i \cap V_j} = s_j|_{V_i \cap V_j}$ , then there exists an element  $s \in \mathcal{F}(U)$  such that  $s|_{V_i} = s_i$  for each *i*.

Let P be a point of X, one can define the stalk of  $\mathcal{F}_P$  of  $\mathcal{F}$  at P to be the direct limit of the  $\mathcal{F}(U)$  for all open sets U containing P, via the restriction maps  $\rho$ .

68

**Definition 2.4.** Let M be an R-module. For every open subset U of X we define  $\text{Supp}(U) = \{(P : M) \mid P \in U\}.$ 

**Definition 2.5.** Let M be an R-module. For every open subset U of X we define  $\mathcal{O}_X(U)$  to be a subring of  $\prod_{\mathfrak{p}\in \operatorname{Supp}(U)} R_\mathfrak{p}$ , as the ring of functions  $s: U \to \coprod_{\mathfrak{p}\in \operatorname{Supp}(U)} R_\mathfrak{p}$ , where  $s(P) \in R_\mathfrak{p}$  for each  $P \in U$  where  $\mathfrak{p} = (P:M)$  and for each  $P \in U$ , there is a neighborhood V of P, contained in U, and elements  $a, f \in R$ , such that for each  $Q \in V$ ,  $f \notin \mathfrak{q} := (Q:M)$ , and s(Q) = a/f in  $R_\mathfrak{q}$ .

It is clear that for an open set U of X,  $\mathcal{O}_X(U)$  is closed under sum and product. Thus  $\mathcal{O}_X(U)$  is a commutative ring with identity (the identity element of  $\mathcal{O}_X(U)$  is the function which sends all  $P \in U$  to 1 in  $R_{(P:M)}$ ). If  $V \subseteq U$  are two open sets, the natural restriction map  $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$  is a homomorphism of rings. It is then clear that  $\mathcal{O}_X$  is a presheaf. Finally, from the local nature of the definition  $\mathcal{O}_X$  is a sheaf. Hence

## Lemma 2.6. Let M be an R-module.

- (1) For each open subset U of X, O<sub>X</sub>(U) is a subring of ∏<sub>p∈Supp(U)</sub> R<sub>p</sub>.
- (2)  $\mathcal{O}_X$  is a sheaf.

In next proposition, we find the stalk of the sheaf.

**Proposition 2.7.** Let M be an R-module. Then for each  $P \in X$ , the stalk  $\mathcal{O}_{X,P}$  of the sheaf  $\mathcal{O}_X$  is isomorphic to  $R_{\mathfrak{p}}$ , where  $\mathfrak{p} := (P : M)$ .

*Proof.* Let  $P \in X$  be a quasi-prime submodule of M such that  $\mathfrak{p} = (P:M)$  and

$$m \in \mathcal{O}_{X,P} = \varinjlim_{P \in U} \mathcal{O}_X(U).$$

Then there exists a neighborhood U of P and  $s \in \mathcal{O}_X(U)$  such that m is the germ of s at the point P. We define a homomorphism  $\varphi : \mathcal{O}_{X,P} \to R_{\mathfrak{p}}$  by  $\varphi(m) = s(P)$ . This is a well-defined homomorphism. Let V be another neighborhood of P and  $t \in \mathcal{O}_X(V)$  such that m is the germ of s at the point P. Then there exists an open subset  $W \subseteq U \cap V$  such that  $P \in W$  and  $s|_W = t|_W$ . Since  $P \in W$ , s(P) = t(P). We claim that  $\varphi$  is an isomorphism.

Let  $x \in R_{\mathfrak{p}}$ . Then x = a/f where  $a \in R$  and  $f \in R \setminus \mathfrak{p}$ . Since  $f \notin \mathfrak{p}$ ,  $P \in X_f$ . Now we define s(Q) = a/f in  $R_{\mathfrak{q}}$ , where  $\mathfrak{q} := (Q : M)$ , for all  $Q \in X_f$ . Then  $s \in \mathcal{O}(X_f)$ . If m is the equivalent class of s in  $\mathcal{O}_{X,P}$ , then  $\varphi(m) = x$ . Hence  $\varphi$  is surjective.

#### ABBASI AND HASSANZADEH

Now, let  $m \in \mathcal{O}_{X,P}$  and  $\varphi(m) = 0$ . Let U be an open neighborhood of P and m be the germ of  $s \in \mathcal{O}_X(U)$  at P. There is an open neighborhood  $V \subseteq U$  of P and elements  $a, f \in R$  such that  $s(Q) = a/f \in R_{\mathfrak{q}}$ , where  $\mathfrak{q} := (Q : M)$ , for all  $Q \in V$ ,  $f \notin \mathfrak{q}$ . Thus  $V \subseteq X_f$ . Then  $0 = \varphi(m) = s(P) = a/f$  in  $R_{\mathfrak{p}}$ . So, there is  $h \in R \setminus \mathfrak{p}$  such that ha = 0. By Proposition 2.2, for  $Q \in X_{fh} = X_f \cap X_h$  we have  $s(Q) = a/f \in R_{\mathfrak{q}}$ . Since  $h \notin \mathfrak{q}$ ,  $s(Q) = \frac{a}{f} = \frac{h}{h} \frac{a}{f} = 0$ . Hence  $s|_{\mathcal{O}(X_{fh})} = 0$ . This yields, s = 0 in  $\mathcal{O}_X(X_{fh})$ . Consequently m = 0.

As a direct consequence of Proposition 2.7, we have

**Corollary 2.8.** If M is an R-module, then  $(X, \mathcal{O}_X)$  is a locally ringed space.

**Lemma 2.9.** Let M and M' be two R-modules and let  $f : M \to M'$  be an epimorphism. If N is a quasi-prime submodule of M', then  $f^{-1}(N)$ is a quasi-prime submodule of M.

**Proposition 2.10.** Let M an N be R-modules and  $\phi: M \to N$  be an epimorphism. Then the map

$$\begin{array}{rcl} \theta : q \mathrm{Spec}(N) & \to & q \mathrm{Spec}(M) \\ Q & \mapsto & \phi^{-1}(Q) \end{array}$$

is continuous. In particular, if  $Y := \{Q \in q \operatorname{Spec}(N) | (Q :_R N) \in \operatorname{Spec}(R)\}$ , then the map

$$f = \theta|_Y : Y \to X$$
$$Q \mapsto \phi^{-1}(Q)$$

is continuous.

*Proof.* For any  $Q \in q \operatorname{Spec}(N)$  and any closed set  $D^M(K)$  in  $q \operatorname{Spec}(M)$ , where  $K \leq M$ , we have

$$Q \in \theta^{-1}(D^M(N)) \iff \theta(Q) = \phi^{-1}(Q) \supseteq (N:M)M$$
$$\Leftrightarrow Q \supseteq \phi((K:M)M) = (K:M)N$$
$$\Leftrightarrow Q \in D^N((K:M)N).$$

Hence,  $\theta^{-1}(D^M(N)) = D^N((K:M)N)$ , so  $\theta$  is continuous. The last statement follows from the first part.

**Proposition 2.11.** Let M an N be R-modules and  $\phi : M \to N$  be an epimorphism and let X, Y be as in Proposition 2.10. Then  $\phi$  induces a morphism of locally ringed spaces

$$(f, f^{\sharp}) : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X).$$

Proof. By Proposition 2.10, the map  $f: Y \to X$  which is defined by  $P \mapsto \phi^{-1}(P)$ , is continuous. Let U be an open subset of X and  $s \in \mathcal{O}_{\operatorname{Spec}(M)}(U)$ . Suppose  $P \in f^{-1}(U)$ . Then  $f(P) = \phi^{-1}(P) \in U$ . Assume that W is an open neighborhood of  $\phi^{-1}(P)$  with  $W \subseteq U$  and  $a, g \in R$ , such that for each  $Q \in W$ ,  $g \notin \mathfrak{q} := (Q:M)$ , and s(Q) = a/gin  $R_{\mathfrak{q}}$ . Since  $\phi^{-1}(P) \in W$ ,  $P \in f^{-1}(W)$ . As we mentioned, f is continuous, so  $f^{-1}(W)$  is an open subset of Y. We claim that for each  $Q' \in f^{-1}(W), g \notin (Q':N)$ . Suppose  $g \in (Q':N)$  for some  $Q' \in$  $f^{-1}(W)$ . Then  $\phi^{-1}(Q') = f(Q') \in W$ . Since  $\phi$  an epimorphism,  $(Q':N) = (\phi^{-1}(Q'):M)$ . So,  $g \in (\phi^{-1}(Q'):M)$ . This is a contradiction. Therefore, we can define

$$f^{\sharp}(U): \mathcal{O}_X(U) \to \mathcal{O}_Y(f^{-1}(U))$$

by  $f^{\sharp}(U)(s) = s \circ f$ .

Assume that  $V \subseteq U$  and  $P \in f^{-1}(V)$ . Then according to the diagram below

$$f^{-1}(U) \xrightarrow{f} U \xrightarrow{t} R_{(P:M)}$$

$$\int f^{-1}(V) \xrightarrow{f} V$$

we have

$$(t \circ f)|_{f^{-1}(V)}(P) = t|_V \circ f(P).$$
 (2.1)

Consider the diagram

Since

$$\rho'_{f^{-1}(U)f^{-1}(V)}f^{\sharp}(U)(t)(P) = \rho'_{f^{-1}(U)f^{-1}(V)}(t \circ f)(P) \\
= (t \circ f)|_{f^{-1}(V)}(P) \\
= t|_{V} \circ f(P) \quad \text{by equation 2.1} \\
= \rho_{UV}(t) \circ f(P) \\
= f^{\sharp}(V)\rho_{UV}(t)(P),$$

for each  $t \in \mathcal{O}_X(U)$ , the diagram (A) is commutative, and it follows that

$$f^{\sharp}: \mathcal{O}_X \longrightarrow f_*\mathcal{O}_Y$$

is a morphism of sheaves. By Proposition 2.7, the map on stalks

$$f_P^{\sharp}: \mathcal{O}_{X, f(P)} \longrightarrow \mathcal{O}_{Y, P}$$

is clearly the map of local rings

$$R_{(f(P):M)} \longrightarrow R_{(P:N)}.$$

This implies that

$$(Y, \mathcal{O}_Y) \xrightarrow{(f, f^{\sharp})} (X, \mathcal{O}_X)$$

is a morphism of locally ringed spaces.

**Theorem 2.12.** Let  $\Phi : R \to S$  be a ring homomorphism, N an Smodule and M a quasi-primeful and quasi-prime-embedding R-module such that  $\operatorname{Ann}_R(M) \subseteq \operatorname{Ann}_R(N)$  (here, we consider N as an R-module by means of  $\Phi$ ). Let X, Y be as in Proposition 2.10. Then  $\Phi$  induces a morphism of locally ringed spaces

$$(Y, \mathcal{O}_Y) \xrightarrow{(h,h^{\sharp})} (X, \mathcal{O}_X).$$

Proof. Since  $\operatorname{Ann}_R(M) \subseteq \operatorname{Ann}_R(N)$ ,  $\Phi$  induces the map  $\Theta : R/\operatorname{Ann}_R(M) \to S/\operatorname{Ann}_S(N)$ . It is well-known that the maps  $f : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ by  $\mathfrak{p} \mapsto \Phi^{-1}(\mathfrak{p})$  and  $d : \operatorname{Spec}(S/\operatorname{Ann}_S(N)) \to \operatorname{Spec}(R/\operatorname{Ann}_R(M))$  by  $\overline{\mathfrak{p}} \mapsto \Theta^{-1}(\overline{\mathfrak{p}})$  and  $\psi_N : q\operatorname{Spec}(N) \to q\operatorname{Spec}(S/\operatorname{Ann}_S(N))$  with  $\psi(P) = (P :_S N)/\operatorname{Ann}_S(N)$  for each  $P \in q\operatorname{Spec}(N)$  are continuous maps (see [1, Proposition 3.2]). Hence, the map

$$\chi_N = \psi_N|_Y : Y \quad \to \quad \operatorname{Spec}(S/\operatorname{Ann}_S(N))$$
$$P \quad \mapsto \quad (P:_S N)/\operatorname{Ann}_S(N)$$

is continuous. Also  $\psi_M : q \operatorname{Spec}(M) \to q \operatorname{Spec}(R/\operatorname{Ann}_R(M))$  is homeomorphism by [1, Proposition 3.2]. Thus the map

$$\chi_M = \psi_M|_X : X \to \operatorname{Spec}(R/\operatorname{Ann}_R(M))$$
$$Q \mapsto (Q:_R N)/\operatorname{Ann}_R(M)$$

is a one-to-one correspondence continuous map and  $\chi_M^{-1}$  is continuous. Therefore the map

$$h: Y \longrightarrow X$$
$$P \mapsto \chi_M^{-1} d \chi_N(P)$$

is continuous. For each  $P \in Y$ , we get a local homomorphism

$$\Phi_{(P:sN)}: R_{f(P:sN)} \longrightarrow S_{(P:sN)}.$$

Let U be an open subset of X and let  $t \in \mathcal{O}_X(U)$ . Suppose that  $P \in h^{-1}(U)$ . Then  $h(P) \in U$  and there exists a neighborhood W of

72

h(P) with  $W \subseteq U$  and elements  $r, g \in R$  such that for each  $Q \in W$ ,  $g \notin (Q :_R M)$ , and  $t(Q) = \frac{r}{g} \in R_{(Q:_R M)}$ . Hence  $g \notin (h(P) :_R M)$ . By definition of h,  $(h(P) :_R M) = \Phi^{-1}(P :_S N)$ . So,  $\Phi(g) \notin (P :_S N)$ and  $\Phi_{(P:_S N)}(\frac{r}{g})$  defines a section on  $\mathcal{O}_Y(h^{-1}(W))$ . Since



is commutative, we can define

$$h^{\sharp}(U): \mathcal{O}_X(U) \longrightarrow h_*\mathcal{O}_Y(U) = \mathcal{O}_Y(h^{-1}(U))$$

by  $h^{\sharp}(U)(t)(P) = \Phi_{(P:_SN)}(t(h(P)))$  for each  $t \in \mathcal{O}_X(U)$  and  $P \in h^{-1}(U)$ . Assume that  $V \subseteq U$  and  $P \in h^{-1}(V)$ . According to the diagram below



we have

$$\Phi_{(P:sN)} \circ t|_V \circ h(P) = (\Phi_{(P:sN)} \circ t \circ h)|_{h^{-1}(V)}(P).$$
(2.2)

Consider the diagram

(B) 
$$\mathcal{O}_X(U) \xrightarrow{h^{\sharp}(U)} \mathcal{O}_Y(h^{-1}(U))$$
$$\begin{array}{c} \rho_{UV} \\ \rho_{UV} \\ \mathcal{O}_X(V) \xrightarrow{h^{\sharp}(V)} \mathcal{O}_Y(h^{-1}(V)). \end{array}$$

Since

$$\begin{aligned}
\rho_{h^{-1}(U)h^{-1}(V)}^{\prime}h^{\sharp}(U)(t)(P) &= \rho_{h^{-1}(U)h^{-1}(V)}^{\prime}\Phi_{(P:_{S}N)} \circ t \circ h(P) \\
&= (\Phi_{(P:_{S}N)} \circ t \circ h)|_{h^{-1}(V)}(P) \\
&= \Phi_{(P:_{S}N)} \circ t|_{V} \circ h(P) \quad \text{by equation } 2.2 \\
&= h^{\sharp}(V)(t|_{V})(P) \\
&= h^{\sharp}(V)\rho_{UV}(t)(P),
\end{aligned}$$

the diagram (B) is commutative, and it follows that

$$h^{\sharp}: \mathcal{O}_X \longrightarrow h_*\mathcal{O}_Y$$

is a morphism of sheaves. By Proposition 2.7, the map on stalks

$$h_P^{\sharp}: \mathcal{O}_{X,h(P)} \longrightarrow \mathcal{O}_{Y,P}$$

is clearly

$$R_{f(P:_SN)} \longrightarrow S_{(P:_SN)}.$$

This implies that

$$(Y, \mathcal{O}_Y) \xrightarrow{(h, h^{\sharp})} (X, \mathcal{O}_X)$$

is a morphism of locally ringed spaces.

**Lemma 2.13.** Let M be a faithful and quasi-primeful R-module and let  $a, b \in R$ . If  $X_a \subseteq X_b$ , then  $a \in \sqrt{Rb}$ .

Proof. Let  $\mathfrak{p} \in V(Rb) := \{\mathfrak{q} \in \operatorname{Spec}(R) \mid \mathfrak{q} \supseteq Rb\}$ . Then there exists a quasi-prime submodule Q of M such that  $(Q : M) = \mathfrak{p}$ . So,  $Q \notin X_b$ , whence  $Q \notin X_a$ . Therefore  $a \in (aM : M) \subseteq (Q : M) = \mathfrak{p}$ . Consequently,  $a \in \bigcap_{\mathfrak{p} \in V(Rb)} \mathfrak{p} = \sqrt{Rb}$ .

**Proposition 2.14.** Let M be a faithful and quasi-primeful R-module. For any element  $f \in R$ , the ring  $\mathcal{O}_X(X_f)$  is isomorphic to the localized ring  $R_f$ .

*Proof.* We define the map  $\Theta : R_f \to \mathcal{O}_X(X_f)$  by

$$\frac{a}{f^m} \mapsto (s: Q \mapsto \frac{a}{f^m} \in R_{(Q:M)}).$$

It is easy to see  $\Theta$  is a well-defined homomorphism. We are going to show that  $\Theta$  is an isomorphism.

We first show that  $\Theta$  is injective. If  $\Theta(\frac{a}{f^n}) = \Theta(\frac{b}{f^m})$ , then for every  $P \in X_f$ ,  $\frac{a}{f^n}$  and  $\frac{b}{f^m}$  have the same image in  $R_{\mathfrak{p}}$ , where  $\mathfrak{p} = (P : M)$ . Thus there exists  $h \in R \setminus \mathfrak{p}$  such that  $h(f^m a - f^n b) = 0$  in R. Let  $I = (0 :_R f^m a - f^n b)$ . Then  $h \in I$  and  $h \notin \mathfrak{p}$ , so  $I \notin \mathfrak{p}$ . This happen for any  $P \in X_f$ , so we conclude that

$$V(I) \cap \operatorname{Supp}(X_f) = \emptyset$$

hence

$$\operatorname{Supp}(X_f) \subseteq D(I) := \operatorname{Spec}(R) \setminus V(I).$$

Since M is faithful quasi-primeful,

$$D_f = \operatorname{Supp}(X_f) \subseteq D(I).$$

74

Therefore  $f \in \sqrt{I}$  and so,  $f^l \in I$  for some positive integer l. Now we have  $f^l(f^m a - f^n b) = 0$  which shows that  $\frac{a}{f^n} = \frac{b}{f^m}$  in  $R_{\mathfrak{p}}$ . Hence  $\Theta$  is injective.

Let  $s \in \mathcal{O}_X(X_f)$ . Then we can cover  $X_f$  with open subset  $V_i$ , on which s is represented by  $\frac{a_i}{g_i}$ , with  $g_i \notin (P:M)$  for all  $P \in V_i$ , in other words  $V_i \subseteq X_{g_i}$ . By Proposition 2.1, the open sets of the form  $X_h$  are a base for the topological space X. So, we may assume that  $V_i = X_{h_i}$ for some  $h_i \in R$ . Since  $X_{h_i} \subseteq X_{g_i}$ , by Lemma 2.13,  $h_i \in \sqrt{(g_i)}$ . Thus  $h_i^n = cg_i$  for some  $n \in \mathbb{N}$  and  $c \in R$ . So,

$$\frac{a_i}{g_i} = \frac{ca_i}{cg_i} = \frac{ca_i}{h_i^n}$$

We see that s is represented by  $\frac{b_i}{k_i}$ ,  $(b_i = ca_i, k_i = h_i^n)$  on  $X_{k_i}$  and (since  $X_{h_i} = X_{h_i^n}$ ) the family  $X_{k_i}$ 's cover  $X_f$ . By [1, Proposition 3.18], that the open cover  $X_f = \bigcup X_{k_i}$  has a finite subcover. Suppose,  $X_f \subseteq X_{k_1} \cup \cdots \cup X_{k_n}$ . For  $1 \leq i, j \leq n$ ,  $\frac{b_i}{k_i}$  and  $\frac{b_j}{k_j}$  both represent s on  $X_{k_i} \cap X_{k_j}$ . By Proposition 2.2,  $X_{k_i} \cap X_{k_j} = X_{k_i k_j}$  and by injectivity of  $\Theta$ , we get  $\frac{b_i}{k_i} = \frac{b_j}{k_i}$  in  $R_{k_i k_j}$ . Hence for some  $n_{ij}$ ,

$$(k_i k_j)^{n_{ij}} (k_j b_i - k_i b_j) = 0.$$

Let  $m = \max\{n_{ij} | 1 \le i, j \le n\}$ . Then

$$k_j^{m+1}(k_i^m b_i) - k_i^{m+1}(k_j^m b_j) = 0.$$

By replacing each  $k_i$  by  $k_i^{m+1}$ , and  $b_i$  by  $k_i^m b_i$ , we still see that *s* represented on  $X_{k_i}$  by  $\frac{b_i}{k_i}$ , and furthermore, we have  $k_j b_i = k_i b_j$  for all i, j. Since  $X_f \subseteq X_{k_1} \cup \cdots \cup X_{k_n}$ , by [1, Proposition 3.18], we have

$$D_f = \psi(X_f) \subseteq \bigcup_{i=1}^n \psi(X_{k_i}) = \bigcup_{i=1}^n D_{k_i},$$

where  $\psi$  is the natural map  $\psi$ : Spec $(M) \to$  Spec(R). So, there are  $c_1, \dots, c_n$  in R and  $t \in \mathbb{N}$ , such that  $f^t = \sum_i c_i k_i$ . Let  $a = \sum_i c_i b_i$ . Then for each j we have

$$k_j a = \sum_i c_i b_i k_j = \sum_i c_i k_i b_j = b_j f^t.$$

This implies that  $\frac{a}{f^t} = \frac{b_j}{k_j}$  on  $X_{k_j}$ . So  $\Theta(\frac{a}{f^t}) = s$  everywhere, which shows that  $\Theta$  is surjective.

**Corollary 2.15.** Let M be a faithful and quasi-primeful R-module. Then  $\mathcal{O}_X(X)$  is isomorphic to R. We recall that a scheme X is locally Noetherian if it can be covered by open affine subsets  $\text{Spec}(A_i)$ , where each  $A_i$  is a Noetherian ring. X is Noetherian if it is locally Noetherian and quasi-compact ([4]).

**Theorem 2.16.** Let M be a faithful, quasi-primeful and quasi-primeembedding R-module. Then  $(X, \mathcal{O}_X)$  is a scheme. Moreover, if R is Noetherian, then  $(X, \mathcal{O}_X)$  is a Noetherian scheme.

Proof. Let  $g \in R$ . Because the natural map  $\psi : q\operatorname{Spec}(M) \to q\operatorname{Spec}(R)$ is continuous by [1, Proposition 3.2], the map  $\psi|_{X_g} : X_g \to \psi(X_g)$  is also continuous. Since M is quasi-prime-embedding,  $\psi|_{X_g}$  is a bijection. Let E be a closed subset of  $X_g$ . Then  $E = X_g \cap D^M(N)$  for some submodule N of M. Hence  $\psi(E) = \psi(X_g \cap D^M(N)) = \psi(X_g) \cap D^R(N:M)$  is a closed subset of  $\psi(X_g)$ . Therefore,  $\psi|_{X_g}$  is a homeomorphism.

Suppose  $X = \bigcup_{i \in I} X_{g_i}$ . Since *M* is faithful, quasi-primeful and quasi-prime-embedding, for each  $i \in I$ 

$$X_{g_i} \cong \psi(X_{g_i}) = \operatorname{Supp}(X_{g_i}) = D_{g_i} \cong \operatorname{Spec}(R_{g_i}).$$

Thus by Proposition 2.14,  $X_{g_i}$  is an affine scheme and this implies that  $(X, \mathcal{O}_X)$  is a scheme. For the last statement, we note that since R is Noetherian, so is  $R_{g_i}$  for each  $i \in I$ . Hence  $(X, \mathcal{O}_X)$  is a locally Noetherian scheme. By [1, Proposition 3.18], X is quasi-compact, therefore  $(X, \mathcal{O}_X)$  is a Noetherian scheme.  $\Box$ 

### Acknowledgments

The authors would like to thank the referee(s) for careful reading and comments.

#### References

- A. Abbasi And D. Hassanzadeh-Lelekaami, Quasi-prime submodules and developed Zariski topology, Algebra Colloq., 19 (Spec 1) (2012) 1089-1108.
- 2. A. Azizi, Strongly irreducible ideals, J. Aust. Math. Soc. 84 (2008), 145-154.
- 3. Bourbaki, N. Commutative Algebra, Chap. 1-7, Paris: Hermann, (1972).
- 4. R. Hartshorne, Algebraic Geometry, Springer-Verlag New York Inc, (1977).
- W. J. Heinzer and L. J. Ratlif and D. E. Rush, Strongly irreducible ideals of a commutative ring, J. Pure Appl. Algebra, 166 (2002), 267-275.
- J. Ohm And D. E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49-68.

#### A. Abbasi

Department of Pure Mathematics, University of Guilan, P.O.Box 41335-19141,

Rasht, Iran.

Email: aabbasi@guilan.ac.ir

### D. Hassanzadeh-Lelekaami

Department of Pure Mathematics, University of Guilan, P.O.Box 41335-19141, Rasht, Iran. Email: dhmath@guilan.ac.ir