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Abstract. Multilinear Discriminant Analysis (MDA) is a powerful dimension reduction method specifi-
cally formulated to deal with tensor data. Precisely, the goal of MDA is to find mode-specific projections
that optimally separate tensor data from different classes. However, to solve this task, standard MDA
methods use alternating optimization heuristics involving the computation of a succession of tensor-
matrix products. Such approaches are most of the time difficult to solve and not natural, highligthing the
difficulty to formulate this problem in fully tensor form. In this paper, we propose to solve multilinear
discriminant analysis (MDA) by using the concept of transform domain (TD) recently proposed in [15].
We show here that moving MDA to this specific transform domain make its resolution easier and more
natural. More precisely, each frontal face of the transformed tensor is processed independently to build
a separate optimization sub-problems easier to solve. Next, the obtained solutions are converted into
projective tensors by inverse transform. By considering a large number of experiments, we show the
effectiveness of our approach with respect to existing MDA methods.

Keywords: Krylov subspaces, linear tensor equations, tensor L-product.
AMS Subject Classification 2010: 65F10, 65F22.

1 Introduction

Linear Discriminant Analysis (LDA) is a supervised dimensionality reduction tool allowing the classifi-
cation to multiple categories in datasets. There are used in numerous areas as diverse as speech and music
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classification [1], video classification [25], outlier detection [28], supervised novelty detection [4,6], etc..
Considering that each data is labeled, the goal of LDA is to find a set of projections which maximizes the
between-class scatter while minimizing the within-class scatter. In the litterature, this objective is com-
monly formulated in two different ways as solving: a trace ratio problem which is typically nonconvex
and need an iterative optimization procedure or a ratio trace problem which is inexact but equivalent to
a generalized eigenvalue problem (GEP).

When dealing with high order data such as grayscale images, RGB images, multispectral images,
. . . a conventional practice is to vectorize the whole data set before applying LDA. This preprocessing
involves systematically an increase of the dimensionality of the data sample and may result in singularity
problems commonly referred as the small sample size problem (SSS).

A way to solve this question is to adopt the tensor representation which allows to preserve the natural
multidimensional form of the data while reducing implicitly the dimensionality of the data. A n-order
tensor can be seen as a hyper-parallepiped with n sides and where each side represents a “mode”. A
tensor generalizes thus the notions of matrix (2-order tensor) and vector (1-order tensor).

In this framework, to perform LDA on tensor data, several methodologies have been introduced in the
past. Among them, we can cite discriminant analysis with tensor representation (DATER) [33], Tensor
subspace analysis (TSA) [11], multilinear discriminant analysis (MDA) [32, 33] and constrained multi-
linear discriminant analysis (CMDA) [20]. The principle of MDA is to find a lower dimensional tensor
subspace represented by orthonormal matrices. However, the main drawback of the current approaches
relies on its optimization step which is based on heuristic optimization approaches.

In this paper, we propose a new way to compute linear discriminant analysis from three-order tensors.
This new method is based on recent developments on tensor-tensor products [3, 7, 8, 13, 15]. The first
work on this issue is due to Kilmer et al. [15] where they introduced the notion of the t-product which
allows to mutiply easily 3-order tensors. The multiplication uses a convolution-type operation which can
be advantageously computed by Fast Fourier Transform (FFT). More recently, Kernfeld et al. extended
this approach and defended the principle that any tensor-tensor product can be defined with arbitrary
invertible linear transforms [13]. As an example, they introduced the tensor cosine transform product
which is an alternative of the t-product and can be efficiently computed by the Discret Cosine Transform
(DCT).

Motivated by these works, we propose to solve Tensor Linear Discriminant Analysis (TLDA) by
using the concept of “transform-domain” and the cited new family of tensor-tensor products. We show
here that moving TLDA to the transform domain (TD) makes its resolution easier and more natural. First,
one of the fundamental step of the previous tensor LDA approaches is to compute some tensor-matrix
products that involve a succession of tensor unfoldings. In this context, the corresponding optimization
problem relies on the determination of a set of projection matrices i.e., two-dimensional projective sub-
spaces. Such an approach shows the difficulty to formulate this problem in fully tensor form by directly
searching for a projective tensor instead of a set of projective matrices. By moving in the transform
domain, the main ingredients of TLDA can be formulated as tensor-tensor products which are efficiently
computed by a sequence of matrix-matrix products. Secondly, a key point of this approach is that the op-
timization problem can be solved in the transform domain benefiting from its properties. More precisely,
each frontal face of the transformed tensor are processed independently to build independent optimiza-
tion sub-problems easier to address. The obtained solutions are returned in the form of a projective tensor
by inverse transform. This paper is organized as follows: Section 2 introduces the notation and the main
definitions. Section 3 recalls the main definitions of the tensor-tensor product under the concept of in-
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vertible linear transforms. In Section 4, after recalling the principle of the standard LDA (matricial case)
and the tensor LDA (TLDA) formulated with the n-product, we present a new multilinear discriminant
analysis based on third-order tensors and formulated with new tensor-tensor products. Section 5 analyses
and compares the performance of the proposed approach with recent tensor based LDA approaches on
several multidimensional data sets. Section 6 ends the paper with a conclusion.

2 Notation and preliminaries

Scalars, vectors, matrices and high-order tensors will be denoted by lowercase letters, e.g. a, boldface
lowercase letters, e.g. a, capital letters, e.g. A and Euler script letters, e.g. A , respectively. In this work,
we will limit our study to third-order tensors. Third-order tensors are compact and well adapted to repre-
sent multidimensional data from vision based applications such as face identification, video monitoring
or classification of multispectral images. Let A ∈ Rn1×n2×n3 be a third-order tensor. By convention, the
first dimension is devoted to the pixels of the images, the second dimension for the number of images
and the third dimension is for the number of modalities of the images. As an illustrative example, if we
consider a sequence of l color images of size n×m, the corresponding third order tensor will be sized as
follows: n1 = nm, n2 = l and n3 = 3.

The tensor A is sampled by a triplet of indexes (i, j,k) which allows to select different subparts of
A . By fixing the whole set of indexes we obtain a scalar entry of A denoted by ai jk and fixing two
indexes over three, we select a fiber of A . We will denote a column (1-mode), row (2-mode) and tube
(3-mode) fiber by a: jk, ai:k and ai j:, respectively. Lastly, by fixing one index over three, we define a slice
of A . Therefore, slices are declined in three modes: horizontal (1-mode), lateral (2-mode) and frontal
(3-mode) slides which are represented by Ai::, A: j: and A::k, respectively. In the sequel, the kth frontal
slide of a third-order tensor will be denoted more compactly byA(k).

Manipulating tensors needs specific algebra. Here we just list some definitions which are directly
relevant to this paper. For a detailed description, see for example [15, 17]. .

2.1 Tensor unfolding

Tensor unfolding or flattening consists in reordering the elements of a tensor into a matrix. Consider
the general case of a Nthorder tensor A ∈ Rn1×n2×...×nN , flattening A along the kth mode or the k-mode
matricization of A gives a matrix denoted A(k) which consists in arranging the k-mode fibers to be the
columns of the resulting matrix.

2.2 Tensor products

Let us recall several tensor products.

Definition 1 (k-mode product). Consider the general case of an Nth order tensor A ∈ Rn1×n2×...×nN .
The k-mode product of A with a matrix U ∈ Rm×nk is a new tensor B ∈ Rn1×...×nk−1×m×nk+1×...×nN

defined by
B = A ×k U, (1)

which is equivalent to the following matrix-matrix product

B(k) =UA(k), (2)
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where A(k) and B(k) denotes the k-mode matricization (see section 2.1) of A and B, respectively.

Definition 2 (generalization of the k-mode product). Consider the general case of an Nthorder tensor
A ∈ Rn1×n2×...×nN . The multiplication of A with a set of N matrices {Uk ∈ Rmk×nk ,k = 1, . . . ,N} is
defined by

B = A Π
n
i=1×i Ui = A ×1 U1×2 U2×·· ·×N UN . (3)

The k-mode matricization of B can be obtained by

B(k) =UkA(k)Uk, (4)

where Uk =U1⊗·· ·⊗Uk−1⊗Uk+1⊗·· ·⊗UN .

Definition 3 (face-wise product [13]). Let A ∈Rn1×n2×n3 and B ∈Rn2×m×n3 be two third-order tensors,
then the face-wise product between them consists in computing a matrix-matrix product between the 3-
mode slides of A and B as follows

(A4B)(i) = A(i)B(i), i = 1, . . . ,n3. (5)

2.3 Specific block matrices

Tensor-tensor products require the definition of specific structured block matrices build from the frontal
slices of the third-order tensor. We recall here some definitions

Definition 4. The Toeplitz-plus-Hankel matrix of the tensor A is a n1n3×n2n3 block matrix composed
of the frontal slices A(i), i = 1, . . . ,n3 of A and defined by

mat(A ) =


A(1) A(2) · · · A(n3)

A(2) A(1) · · · A(n3−1)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

+


A(1) · · · A(n3) 0
...

. . .
. . . A(n3)

A(n3) 0
. . .

...

0 A(n3) · · · A(1)

 , (6)

where 0 denotes the zero matrix of size n1×n2. We will denote ten the inverse operator such as:

ten(mat(A )) = A .

Definition 5. The block circulant matrix of a tensor A is the n1n3×n2n3 block matrix composed by the
frontal slices of A and defined by

bcirc(A ) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 . (7)

Definition 6. The block diagonal matrix of a tensor A is the n1n3×n2n3 block matrix composed by the
frontal slices of A and defined by

bdiag(A ) =


A(1) 0 · · · 0

0 A(2) · · · 0
...

...
. . .

...

0 0 · · · A(n3)

 . (8)
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3 Tensor-tensor products with invertible linear transform

Recently, a new type of tensor-tensor products, called t-product, has been proposed in [14]. The t-product
generalizes matrix multiplication for third-order tensors. It is based on a convolution-like operation
which is efficiently computed by the Fast Fourier Transform (FFT). This work opens the way towards
the idea that there exits a transform domain where the tensor-tensor product can be defined. Motivated
by this idea, Kernfeld et al. [13] extend this concept by introducing a new family of tensor-tensor prod-
ucts which can be efficiently computed in a transform domain for any invertible linear transform. To
illustrate their principle, they defined the c-product which is an alternative to the t-product which can be
efficiently computed in the transform domain via the discret cosinus transform (DCT). In the sequel, we
will consider that the result of the transformation is at more of complex type. We first recall the main
properties and definitions introduced in [13] .

Definition 7. Let L : R1×1×n3 →C1×1×n3 be an invertible transform and A ∈Rn1×n2×n3 be a third-order
tensor. L transforms any tube fibers a ∈ R1×1×n3 of A into ã ∈ C1×1×n3 in the following way

ã(k) = (L(a))(k) = (M.vec(a))k k = 1, . . . ,n3,

where M is a n3× n3 invertible matrix associated to L and vec(a) is the vector in Rn3 whose elements
are the elements of the tube a . From a practical point of view, Ã ∈ Cn1×n2×n3 , the transform domain
version of A , can be efficiently computed as follows

Ã = L(A ) = A ×3 M. (9)

Similarly, we have
A = L−1(Ã ) = Ã ×3 M−1, (10)

where ×3 is the 3-mode product as defined in (1).

Notice that the matrix M is specific to the transform L and to the corresponding tensor-tensor product.

Definition 8. Let opL(A ) be a structured block matrix build from A and specific to the L-transform. Let
A ∈ Cn1n3×n2n3 be a block diagonal matrix where each block represents a frontal slice of the transform
tensor Ã , then it can be shown that Ã results from the block diagonalization of opL(A ) as

A= bdiag
(
Ã
)
= (M⊗ In1)opL(A )(M−1⊗ In2), (11)

where M is the n3×n3 transform matrix associated to L and In is the n×n identity matrix.

The L-product of two tensors is defined as follows

Definition 9. Let ∗L : Rm×l×n3×Rl×p×n3 → Rm×p×n3 be the product operator in L defined such as

L(A ∗L B) = L(A )4L(B) , (12)

where 4 is the face-wise product as defined in (5). Let C ∈ Rm×p×n3 be the result of the L-product
between A and B , then we have

C = A ∗L B = L−1 (L(A )4L(B)) . (13)
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The main known and used L-products are the t-product and the c-product. For these two products,
the matrix M is given as follows.
For the c-product which is based on DCT, M is given by

M =W−1C (I +Z) , (14)

where C is the n3×n3 DCT matrix where each entry is defined by

ci j =

√
2−δi j

n3
cos
(
(i−1)(2 j−1)

2n3

)
, i, j = 1, . . . ,n3, (15)

where δ is the Kronecker indicator. W = diag(c.1) is the diagonal matrix build from the first column of
C and Z is an n3×n3 circulant upshift matrix.

For the t-product which is based on FFT, M is given by

M = F, (16)

where F is the n3×n3 FFT matrix where each entry is defined by

fi j = exp
(
− j2π

(i−1)( j−1)
n3

)
. (17)

We also notice that op(A ) is defined by

opL(A ) =

{
bcirc(A ), for the t-product,
mat(A), for the c-product,

where the operators bcirc and mat are defined in Section 1.
From the relation (11), it can be shown that C = A ∗L B is equivalent to compute C =AB in the

transform domain. Algorithm 1 allows us to compute in an efficient way the L-product of the tensors A
and B.

Algorithm 1 Tensortensor product via the operator L

Inputs: A ∈ Rm×l×n3 , B ∈ Rl×p×n3

Output: C ∈ Rm×p×n3

Ã = L(A )
B̃ = L(B)
for i = 1, . . . ,n3 do

C (i) = A (i)B(i).
end for
C = L−1(C̃ )

Some basic algebraic properties are associated to L-product such as associativity, distribution over
addition and invertibility. ∗L has a identy element, the hermitian transpose, norms and inner products
(for more details see [13]).
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4 Tensor LDA using the L-product: ∗L- TLDA

Linear discriminant analysis is a supervised dimensionality reduction method which aims to find a low-
dimensional projective subspace which best separates n training data vectors x1,x2, . . . ,xn into c classes
or clusters. In the sequel, we will consider that each data vector xk belongs to a class indexed as lk ∈
{1,2, . . . ,c} and each class i is defined by a set of indices Ci of length ni such as n = ∑

c
i=1 ni . In this

section, considering the previous notation, we propose to develop the tensor linear discriminant analysis
using the L-product which will be denoted by ∗L-TLDA. Before all, let us recall the formulation of LDA
in the matricial case and the tensor LDA (using the n-product).

4.1 LDA

Consider that the training samples are collected into a matrix X = [x1,x2, . . . ,xn] ∈ Rn1×n where each
component xi is an n1 dimensional data vector. Let m = 1

n ∑
n
i=1xi be the global centroid of X and

mi =
1
ni

∑i∈Ci xi be the centroid of the data vectors belonging to the cluster i, then the goal of LDA can
be defined as follows.

Definition 10 (LDA). Let V = [v1,v2, . . . ,vm]∈Rn1×m be a matrix defining a low-dimensional projective
subspace (m� n1) and {

ψB(V ) = ∑
c
j=1 n j

∥∥V T (m j−m)
∥∥2

F , (a)
ψW (V ) = ∑

c
j=1 ∑i∈C j

∥∥V T (xi−m j)
∥∥2

F , (b)
(18)

be the between and within scatters measured in the projective subspace V , respectively. Then, LDA
consists in finding the projective subspace V ∗ which maximizes the between scatter measure (a) while
minimizing the within scatter measure (b) which can be formulated as follows

V ∗ = arg max
V>V=I

ψB(V )

ψW (V )
. (19)

Let us introduce {
SB = ∑

c
j=1 n j (m j−m)(m j−m)T , (a)

SW = ∑
c
j=1 ∑i∈C j (xi−m j)(xi−m j)

> , (b)
(20)

the between and within scatter matrices, respectively, then it can be shown easily that the problem (19)
can be re-written as

V ∗ = arg max
V>V=I

Trace
(
V>SBV

)
Trace(V>SWV )

. (21)

Problem (21), also referred as the trace ratio problem, is non-convex and does not have a closed-form
solution. Fortunately, it can be shown that it is equivalent to a trace difference problem

V ∗ = arg max
V>V=I

Trace(V T (SB−ρSW )V ). (22)

which can be solved iteratively by the Newton-Lanczos algorithm [23]. Algorithm 2 summarizes the
main steps of the maximization of the trace ratio problem with the Newton-Lanczos algorithm (22).
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Algorithm 2 Newton-Lanczos algorithm for Trace Ratio
Input : two matrix SA and SB.

• Select a unitary matrix V with k columns and compute ρ =
Trace(V T SBV )

Trace(V T SWV )
.

• Until convergence do:

1. Call the Lanczos algorithm to compute the largest k eigenvalues λ1(ρ), . . . ,λk(ρ), of SB−
ρSW and the associated eigenvectors: V = [v1, . . . ,vk].

2. Set ρ =
Trace(V T

k SBVk)

Trace(V T
k SWVk)

and go to Step 1.

• EndDo

It has been shown in [23] that this algorithm converges to a global optimum. However, the draw-
back of this procedure is the repeated calls to an eigensolver which can be time-consuming when
the dimensionality of the data is very large. Another critical point concerns the choice of the re-
duced dimension. Indeed, the output dimension m is bounded by the rank of the matrix SW since the
rank(SB−ρSW ) = rank(SW ); (rank(SB)< rank(SW )). Since rank(SW )< n− c, then m is at most n− c.
As a consequence, the optimal output dimension is related to the sample size n and its selection may be
also time-consuming when the size of the training sample is very large. These observations often lead to
replace the trace ratio problem by the simpler, but not equivalent ratio trace problem

V ∗ = arg max
V>V=I

Trace
(
(V>SWV )−1(V>SBV )

)
, (23)

which has a closed-form solution. It is equivalent to solve the following generalized eigenvalue problem

SBU = ΛSWU, (24)

where U denotes the matrix of eigenvectors and Λ the diagonal matrix of eigenvalues. Thus the pro-
jection matrix V is explicitly characterized through the eigen-decomposition of the matrix S−1

W SB if SW

is nonsingular. Moreover, the dimension of the projective subspace is defined by the rank of SB which
implies that m is at most c− 1; (m = c− 1 when data are linearly independent). When SW becomes
singular, the problem is said “undersampled”, i.e., the sample size is smaller than the dimension of the
data. A common strategy is to introduce regularization into the problem (24) which translates into

(SW + γI)−1SBU = ΛU, (25)

where I is the identity matrix and γ > 0 the regularization parameter. The value of γ must be chosen with
care and its selection can be obtained by cross validation.

4.2 The ×n-TLDA

Consider the general case where each data sample is represented by an Nth order tensor Xi ∈Rn1×n2×···×nN

and the sample set by a (N +1)th order tensor X ∈ Rn1×n2×···×nN×n. Let M = 1
N ∑

n
i=1 Xi be the global
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mean of X and Mi =
1
ni

∑i∈Ci Xi be the mean of the cluster i. Then the goal of the tensor LDA or
multilinear DA can be defined as follows

Definition 11 (×n-TLDA). Let Vk |Kk=1 be a set low-dimensional projective matrices of size nk×mk with
mk� nk and let {

ψB(Vk |Kk=1) = ∑
c
j=1 n j

∥∥(M j−M )ΠK
k=1×k Vk

∥∥2
F , (a)

ψW (Vk |Kk=1) = ∑
c
j=1 ∑i∈C j

∥∥(Xi−M j)ΠK
k=1×k Vk

∥∥2
F , (b)

(26)

be the between and within scatters measured in the set of projective subspace Uk |Kk=1, respectively. Then,
×n-TLDA consists in finding a set projective subspace V ∗ that maximizes the between scatter measure
(a) while minimizing the within scatter measure (b), i.e.,

V ∗k = argmax
Vk

ψB(Vk)

ψW (Vk)
, k = 1, . . . ,N. (27)

However, the objective function (27) has no closed-form solution due to that the Vks, k = 1, . . . ,N
depends on each other and the standard procedure is to solve it by an iterative optimization procedure.
Considering that ‖X ‖ =

∥∥X(k)
∥∥

F and ‖X‖2 = Trace
(
X>X

)
= Trace

(
XX>

)
, if we assume that K− 1

projective matrices Vi |Ki=1,i6=k have been previously computed, then Vk is updated by maximizing

V ∗k = argmax
Vk

Trace
(
V>k SB(k)Vk

)
Trace

(
V>k SW (k)Vk

) , (28)

where SB(k) and SW (k) denote the between-class and within-class scatter matrices along the kth mode,
respectively and defined by SB(k) =

c

∑
j=1

n j
(
(M j−M )(k)

)
V>k̄ Vk̄

(
(M j−M )(k)

)>
, (a)

SW (k) = ∑
c
j=1 ∑i∈C j

(
(Xi−M j)(k)

)
V>k̄ Vk̄

(
(Xi−M j)(k)

)>
, (b)

(29)

where Vk̄ = VK ⊗ ·· · ⊗Vk+1⊗Vk ⊗ ·· · ⊗V1 (see Definition 2, (4)) and the terms (A −B)(k) in (29)
denote the k-mode matricization of the tensor A −B (see Subsection 2.1). This iterative optimization
procedure, also called k-mode optimization, have been originaly introduced in [32] and became the
central part of several work to solve multilinear discriminant analysis (MDA), [20, 21, 32, 33]. However,
all these methods solve the MDA problem from heuristic optimization procedures that do not rigorously
optimize the MDA objective. In the sequel, we propose to solve MDA objective using the L-tensor-tensor
products. The corresponding optimization problem can be moved into an invertible transform domain in
which a closed-form solution exits. In the sequel, we propose to develop TLDA using the L-product,i.e.,
∗L-TLDA.

4.3 The ∗L-TLDA

Assume the learning data set is composed of n samples and each sample is represented by a third-order
tensor, i.e.,

{
Xi ∈ Rn1×1×n3 , i = 1, . . . ,n

}
. The sample set can by represented by a unique third-order

tensor X ∈ Rn1×n×n3 . Let M = 1
n ∑

n
i=1 Xi be the global centroid of X and Mi =

1
ni

∑i∈Ci Xi be the
centroid of the tensors belonging to the cluster i , then the goal of ∗L-TLDA can be defined as follows
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Definition 12 (∗L-TLDA). Let V ∈ Rn1×K×n3 = [V1,V2, . . . ,VK ] , Vi ∈ Rn1×1×n3 be a projective third-
order tensor where K denotes the dimension of the projective subspace and ψB(V ) =

c

∑
j=1

∥∥V T ∗L (M j−M )
∥∥2

F ,

ψW (V ) = ∑
c
j=1 ∑i∈N j

∥∥V T ∗L (Xi−M j)
∥∥2

F ,

(30)

where ψB(V ) and ψW (V ) denote the between and within scatter measures, respectively. Then, the
goal of ∗L- LDA is to find a projective third-order tensor V ∈ Rn1×k×n3 which maximizes the following
objective function

V ∗ ∈ Rn1×K×n3 : max
V

ψB(V )

ψW (V )
. (31)

Notice that the product V T ∗L (Mi−M ) represents the orthogonal projection of one lateral slice
in Rn1×1×n3 or n1 tube fibers onto V which generate K tube fibers. The same remark can be made for
the product V T ∗L (Xi−Mi). Second, (31) can be solved more easily in the transform domain by us-
ing the fact that the L-product between tensors can be advantageously replaced by simple matrix-matrix
products between the transform versions of the tensors (12). Then, the L-product is recovered by inverse
transform. Let us develop the main steps:
From Definition 11, we denote V = bdiag(Ṽ ), M = bdiag(M̃ ), Mi = bdiag(M̃i) and Xi = bdiag(X̃i)
the block diagonal matrices build from the transform versions of the tensors V , M , Mi and Xi, respec-
tively. Since C = A ∗L B is equivalent to compute C =AB in the transform domain, the L-products
V T ∗L (Mi−M ) and V T ∗L (Xi−Mi) can be computed via a simple product of block diagonal matri-
ces, i.e., V > (Mi−M) and V > (Xi−Mi). Then, the computation of ψB(V ) becomes in the transform
domain

ψ̃B(V ) = ∑
c
j=1
〈
V > (M j−M) ,V > (M j−M)

〉
= ∑

C
j=1 Trace

(
V > (M j−M)(M j−M)>V

)
= Trace

(
V >∑

c
j=1 (M j−M)(M j−M)>V

)
= Trace

(
V >SBV

)
,

(32)

with SB = ∑
c
j=1 (M j−M)(M j−M)> (∈ Cn1n3×n1n3). Using the same steps for ψW (V ) , we obtain

ψ̃W (V ) = Trace
(
V >SWV

)
, (33)

with SW = ∑
c
j=1 ∑i∈C j (Xi−M j)(Xi−M j)

> (∈ Cn1n3×n1n3).
It can be noticed that SB (or SW ) represents a block diagonal matrix where the ith block is the the

frontal slice S̃(i)B (or S̃(i)W ) of the third-order tensor S̃B (or S̃W ). Then a new objective function equivalent
to (31) is defined in the transform domain by

V ∗ ∈ Rn1n3×Kn3 : max
V

ψ̃B(V )

ψ̃W (V )
. (34)

As in the matrix case, (34) can be solved either by the Newton-Lanczos algorithm (21) or by eigen-
decomposition with regularization (25). The Newton-Lanczos algorithm involves iteratively the eigen-
value decomposition of the matrix S(ρ) = SB− ρSW . Since S(ρ) is a block diagonal matrix, i.e.,
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S(ρ) = bdiag
(

S̃(i) (ρ)
)

where S̃ (ρ) ∈Cn1×n1 , for i = 1, . . . ,n3, eigen-value decomposition can be com-
puted on each block separately. Concerning the regularized eigen-decomposition problem (21), the in-
version of the block diagonal matrix SW (γ) = (SW +γI) = bdiag(S̃(i)W (γ)) is also a block diagonal matrix
where each block S̃(i)W is separately inverted. Since SW (γ) and SB are square matrices identically parti-
tioned into block diagonal form, the product S−1

W (γ)SB also forms a diagonal block matrix identically
partitioned. Eigen-decomposition can then be computed on each block separately. Algorithms 3 and Al-
gorithm 4 summarize the main steps for computing ∗L-TLDA either formulated as the trace ratio problem
or the ratio trace problem.

Algorithm 3 ∗LTLDA - Trace ratio optimization

Inputs: X ∈ Rn1×K×n3 (input data:third-order tensor),
Y (labels: c classes)
K (reduced dimension)

Output: V ∗ ∈ Rn1×K×n3 (projective tensor)

X̃ = L(X )
for i = 1, . . . ,n3 do

S̃(i)W , S̃(i)B ←BuildScatters(X̃ (i),Y )
(Ṽ ∗)(i)←NewtonLanczos(S̃(i)W ,S̃(i)B ,K) (see Algorithm 1)

end for
V ∗ = L−1(Ṽ ∗)

Algorithm 4 ∗LTLDA - Ratio trace optimization

Inputs: X ∈ Rn1×K×n3 (input data:third-order tensor),
Y (labels: c classes)
γ > 0 (regularization parameter)

Output: V ∗ ∈ Rn1×K×n3 (projective tensor)

X̃ = L(X )
for i = 1, . . . ,n3 do

S̃(i)W , S̃(i)B ← BuildScatters(X̃ (i),Y )
K← rank(SB)

(Ṽ ∗)(i)← eigs((S̃(i)W + γI)−1S̃(i)B ,K,’lm’)
end for
V ∗ = L−1(Ṽ ∗)
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(a) DIV (dim:409650002) (b) WDCM (dim: 648032191)

(c) AR (dim:62526003) (d) GAIT (dim:102473110)

Figure 1: Data sets.

Table 1: Gait data set : characteristics.

Data sets Gallery (GAR) A (GAL) B (GBR) C (GBL)

nb of seq. 731 727 422 419
nb of subj. 71 71 41 41

Diff. from the gallery set - View Shoe Shoe-view

5 Experimental results

5.1 Data sets

The experimental evaluation is based on five multidimensional data sets: The Digit Image Voice (DIV)
data set, the Facial Recognition Technology (FERET) database , the AR Face (AR) database, the Wash-
ington DC Mall (WDCM) dataset and the HumanID gait (GAIT) data set. Figure 1 illustrates four
examples of the studied data sets.

The WDCM dataset is a 191 band hyperspectral image of Washington DC Mall collected by the
Hyperspectral Digital Imagery Collection Experiment (HYDICE) [10]1 . The whole image contains
1208307 pixels. From this image we defined 4 classes: ‘grass land’, ‘tree’, ‘roof’ and ‘road’ which

1http://lesun.weebly.com/hyperspectral-data-set.html
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are hand-built and defined by 77 image blocs of pixels. We collected a total of 8032 blocs: 1894 for the
‘tree’, 1919 for the ‘grass land’, 2616 for the ‘roof’ and 1603 for the ‘road’. A third-order tensor of size
648032191 is then built where the first dimension corresponds to the vectorization of the 77 image bloc.

The DIV dataset build a tensor representation of the digits 0-9 obtained from two modalities: visual
and audio and based on the MNIST2 and FSDD datasets3 , respectively. The MNIST dataset contains
60000 training and 10000 test grayscale images of handwritten digits, with dimensions of 28x28 pixels.
The FSDD dataset consists of 500, 8 kHz recordings of English pronunciations of the digits 0-9. These
recordings are of varying durations, with a mean of approximately 0.5s. We preprocessed the recordings
by converting them into 6464 grayscale spectrograms. In order to harmonize the image sizes between
modalities, the MNIST images are resized to 6464 pixels. A tensor representation is then generated from
5000 samples combining the two modalities where each sample is randomly selected both in the resized
MNIST dataset and the FSDD data sets. We obtain a 3th-order tensor of size 409650002 where the first
dimension defines the vectorization of the 6464 image.

The FERET database is a standard facial image collection including 14126 images of size 3232
from 1199 individuals with different view points [27]4 . In our experiment, we select a subset composed
of 80 subjects where each of them having at least 10 images, resulting in 1145 images. We generate a
third-order tensor of size 102411451.

The AR dataset contains over 4,000 color images corresponding to 126 people’s faces (70 men
and 56 women) [22]5 . Images feature frontal view faces with different facial expressions, illumination
conditions, and occlusions (sun glasses and scarf). The pictures were taken under strictly controlled
conditions. No restrictions on wear (clothes, glasses, etc.), make-up, hair style, etc. were imposed to
participants. A subset of 100 subjects have been considered corresponding to a total of 2600 images of
size 2525. A third-order tensor of size 62526003 was generated.

The GAIT dataset is build from the USF HumanID Gait Challenge data sets version 1.7 [29]6 .
This data set is composed of 452 sequences from 74 subjects walking in elliptical paths in front of the
camera. For each subject, there are three covariates: viewpoint (left/right), shoe type (two different types)
and surface type (grass/concrete). In our experiments, we consider only the sequences corresponding
to the grass type surface defining thus the gallery set. This dataset contains 731 sequences from 71
subjects (persons) and each subject has an average of roughly 10 samples available under the form of
binary silhouette images of size 3232 (see Figure 1). Thus we define a 3th-order training tensor of size
102473110. The test set is based on three probe sets named A, B and C as detailed in Table 1. More
precisely, the image acquisition conditions for the gallery set and each probe set are summarized in
brackets after the data name in Table 1, where G, A, B, L, and R stand for grass surface, shoe type A,
shoe type B, left view, and right view, respectively. There is no redundancy between the gallery set and
each probe set, i.e., there are no common subjects and sequences between them.

2http://yann.lecun.com/exdb/mnist
3https://github.com/Jakobovski/free-spoken-digit-dataset
4https://old.datahub.io/dataset/feret-database
5http://cbcsl.ece.ohio-state.edu/ARdatabaseNew.html
6http://www.eng.usf.edu/cvprg/Gait-Data.html
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Table 2: Performances on DIV dataset (9 categories).

Objective Methods ACC (%) Times (sec) DIM

trace ratio

Fisherfaces 83.08(±0.026) 0.33 (±0.013) 9
*c-TDA 90.58 (±0.02) 0.45 (±0.018) 18
*t-TDA 89.75 (±0.02) 0.46 (±0.026) 18
DATER 87.98 (±0.02) 0.33 (±0.016) 928
CMDA 89.43(±0.023) 0.42 (±0.058) 493
UMDA 74.95 (±0.04) 11.44 (±0.08) 28

ratio trace
*c-TDA 89.33(±0.017) 1.79 (±1.9) 823
*t-TDA 88.91 (±0.02) 1.50(±0.39) 815
DGTDA 89.13(±0.017) 0.34 (±0.097) 968
HODA 87.46(±0.022) 0.64 (±0.07) 956

Table 3: Performances on WDCM dataset (4 categories).

Objective Methods ACC (%) Times (sec) DIM

trace ratio

Fisherfaces 91.6(±0.019) 0.478 (±0.05) 3
*c-TDA 95.05 (±0.01) 0.45 (±0.010) 384
*t-TDA 95.51 (±0.01) 0.61 (±0.01) 564
DATER 94.21(±0.016) 2.28 (±0.017) 150
CMDA 96.65(±0.01) 2.11 (±0.054) 305
UMDA 91.95 (±0.025) 118.08 (±3.52) 28

ratio trace
*c-TDA 93.78(±0.04) 0.75 (±0.08) 964
*t-TDA 94.41 (±0.02) 1.01(±0.15) 1000
DGTDA 94.35(±0.017) 2.60 (±0.09) 350
HODA 94.45(±0.044) 4.42 (±0.77) 783

5.2 Competitors

We compare our approach with five supervised learning algorithms: PCA+LDA (Fisherfaces) [2], Dis-
criminant analysis with tensor representation (DATER) [31, 32], Constrained Multilinear Discriminant
Analysis (CMDA) [20], Direct General Tensor Discriminant Analysis (DGTDA) [20], Higher Order
Discriminant Analysis (HODA) [26], Uncorrelated Multilinear Discriminant Analysis with regulariza-
tion (UMLDA) [21]. Our approach will be tested with two tensor-tensor products: t-product and the
c-product. When using the t-product, our approach will be referred as ∗t-TDA and ∗c-TDA for the c-
product.

Fisherfaces’ implementation is based on the ratio trace criteria and uses a vector to vector projection.
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Table 4: Performances on FERET dataset (80 categories).

Objective Methods ACC (%) Times (sec) DIM

trace ratio

Fisherfaces 88.71(±0.02) 0.61 (±0.02) 79
*c-TDA 87.93 (±0.02) 1.51 (±0.02) 68
*t-TDA 87.78 (±0.02) 1.54 (±0.016) 68
DATER 81.23 (±0.03) 1.11 (±0.19) 45
CMDA 75.46(±0.02) 1.32 (±0.02) 559
UMDA 78.2 (±0.03) 5.85 (±0.27) 28

ratio trace
*c-TDA 63.75(±0.03) 6.08 (±1.24) 675
*t-TDA 64.01 (±0.03) 5.50(±1.44) 527
DGTDA 64.46(±0.04) 0.487 (±0.02) 607
HODA 67.96(±0.02) 1.38(±0.61) 29

Table 5: Performances on AR dataset (100 categories).

Objective Methods ACC (%) Times (sec) DIM

trace ratio

Fisherfaces 92.25(±0.014) 0.51 (±0.021) 99
*c-TDA 94.36 (±0.02) 1.49 (±0.04) 294
*t-TDA 95.58 (±0.01) 2.92 (±0.08) 240
DATER 68.9 (±0.03) 4.44 (±0.16) 101
CMDA 72.23(±0.03) 5.13 (±0.17) 164
UMDA 68.2 (±0.035) 13.46 (±0.73) 23

ratio trace
*c-TDA 33.86(±0.03) 2.31 (±0.05) 956
*t-TDA 34.48 (±0.03) 4.21(±0.36) 438
DGTDA 33.83(±0.02) 1.47 (±0.077) 892
HODA 34.88(±0.04) 1.54 (±0.076) 984

In order to avoid the singularity problem of the within-class scatter matrix, PCA is beforehand computed
reducing thus the dimension of the feature space. To set the output dimension, a classical heuristic is to
retain the k eigenvectors that capture a certain percentage of the total variance. In all the experiments,
we will consider at least 95% of the total variance. DATER, CMDA, DGTDA, HODA and UMLDA are
multidimensional variants of LDA. The first four methods use a tensor to tensor projection while the last
one uses a tensor to vector projection. DATER, CMDA, UMLDA and Algorithm 4 are formulated as a
trace ratio problem while DGTDA, HODA and Algorithm 3 solve the ratio trace problem.

When the optimization problem is formulated as the trace ratio problem, a regularization parameter is
used to avoid the SSS problem (singularity problem of scatter matrices). The regularization parameter is
defined in the range 10−[0:7] and the best value is estimated by k-fold cross validation while the dimension
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Table 6: Performances on the Gait sequence (72 categories).

Objective Methods rank 1 rank 5
A B C A B C

trace ratio

Fisherfaces 43.6 43.9 31.7 71.8 63.4 51.20
*c-TDA 90.1 84.9 65.8 100 92.7 85.4
*t-TDA 94.4 80.5 65.8 100 92.7 87.8
DATER 69.0 70.7 48.8 93.0 82.9 68.3
CMDA 80.2 73.7 53.6 95.8 80.5 70.7
UMDA 77.5 68.3 41.5 94.4 80.5 73.2

ratio trace
*c-TDA 65.2 69.3 46.1 92.4 80.5 67.2
*t-TDA 67.8 72.3 47.2 94.2 81.2 69.5
DGTDA 63.4 73.2 44.0 90.1 82.9 68.3
HODA 70.4 70.7 48.8 92.9 80.5 68.3

of the projective subspace is given by the rank of the between-scatter matrix SB. When the optimization
problem is formulated as the ratio trace problem, the dimension of the projective subspace is unknown
and it is also determined by k-fold cross validation. In our study, k is set to 10 and the average accuracy
(30 repetitions) is used as classification performance.

Tables 2–5 summarize the performances of the different methods when applied to DIV, WDCM,
FERET and AR data sets, respectively. These tables show the values of the average accuracy (ACC)
recorded by the methods (third column), the average training times (fourth column) and the maximal
output dimensions (fifth column). First, from a general view, we observe that the proposed ∗L-TLDA
provide similar results whether it is based on the c-product or the t-product. Secondly, when formulated
as the trace ratio problem, the proposed method clearly records better classification results with the other
tensor decomposition methods based on the same objective such as DATER, CMDA and UMDA. It also
outperforms the version based on the ratio trace objective and very clearly when the number of categories
increases as in the AR data base (Table 5) and the FERET data base (Table 4). This result is also valid
for the other competitors based on the ratio trace objective such as DGTDA and HODA.

Moreover, we observe that ∗L-TLDA (trace ratio criterion) records competitive training times with
the other studied methods. By using a tensor to vector projection strategy, UMLDA shows the highest
complexity making this method very time consuming.

In a second experiment, we study the performance of the proposed algorithm on the Gait sequence.
The identification performance is measured by the Cumulative Match Characteristic (CMC) as defined
in [5] which plots identification rates within a given rank k. More precisely, rank k results report the
percentage of probe subjects whose the true match in the gallery set was in the top k matches. The rank
1 and the rank 5 gait recognition results using the modified angle distance (MAD) [19] are presented in
Table 6. As previously, ∗L-TLDA formulated with the trace ratio criterion shows the best recognition
rates on all the probe sets. When the ratio trace criterion is optimized, the results are markedly lower.
This result confirms those of Tables 2–5. We can notice that Fisherfaces records the lowest recognition
rates making it clear that a matricial treatment of this kind of data set is not well suited.
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6 Conclusion

In this work, we proposed a new Tensor Linear Discriminant Analysis based on the concept of trans-
form domain as defined in [13]. Considering any fixed, invertible linear transformation L, our ∗LTDA
procedure is based on the computation of a new ∗L-family product such as the t-product or the c-product.
In this context, we showed that the solution of our MDA can be obtained in a fully tensor form instead
of a sequence of projective matrices, solutions of existing MDA methods. Another key aspect is that
the obtained solution is the result of independent optimization problems easier to solve and more robust
compared to existing MDA methods that are based on alternating optimization heuristics. The exper-
imental evaluation based on these two products show similar classification performances with a slight
advantage of the c-product in terms of training time. The experimental evaluations show that the choice
of the optimization criterion, i.e., the trace ratio or the ratio trace, influences significantly the classifica-
tion performances of our method. The conclusions of our experimental evaluation ∗LTDA, based on the
trace ratio criterion performs very well and outperforms most of the existing MDA methods.

Several issues remain to be investigated. First, the proposed MDA is based on the building of three-
order tensors and its extension to higher-order tensors could be the subject of future work. Second, the
concept of rank being clearly defined in traditional Linear Discriminant Analysis, it will be interesting
to address this issue shortly in the framework of ∗LTDA in order to bound the dimensionality of the
solution.
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