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REMARKS ON THE SUM OF ELEMENT ORDERS OF
NON-GROUP SEMIGROUPS

M. GHOLAMI, Y. MAREFAT ∗, H. DOOSTIE AND H. REFAGHAT

Abstract. The invariant ψ(G), the sum of element orders of a
finite group G will be generalized and defined for the finite non-
group semigroups in this paper. We give an appropriate definition
for the order of elements of a semigroup. As well as in the groups
we denote the sum of element orders of a non-group semigroup S,
which may possess the zero element and/ or the identity element,
by ψ(S). The non-group monogenic semigroup will be denoted by
Cn,r where 2 ≤ r ≤ n. In characterizing the semigroups Cn,r we
give a suitable upper bound and a lower bound for ψ(Cn,r), and
then investigate the sum of element orders of the semi-direct prod-
uct and the wreath product of two semigroups of this type. A natu-
ral question concerning this invariant may be posed as ”For a finite
non-group semigroup S and the group G with the same presenta-
tion as the semigroup, is ψ(S) equal to ψ(G) approximately?” We
answer this question in part by giving classes of non-group semi-

groups, involving an odd prime p and satisfying limp→∞
ψ(S)
ψ(G) = 1.

As a result of this study, we attain the sum of element orders of a
wide class of cyclic groups, as well.

1. Introduction

The sum of element orders of a finite group G denoted by ψ(G) is
defined to be ψ(G) =

∑
g∈G o(g). This numerical invariant was studied

for finite groups during the years. As a short chronological report on
the interesting results of ψ(G), one may consult [1, 6, 8, 9, 11, 15],
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for example. Obviously, this definition is not perfectly adequate for a
non-group semigroup (or monoid) because of the lack of inverse ele-
ments and probable existence of zero element, identity element and the
idempotent elements, in general. So, we present the following suitable
definition:

Definition 1.1. For a finite non-group semigroup (or monoid) S, the
order of an element x ∈ S is defined to be:

o(x) =

{
1, if x2 = x,
n, otherwise,

where r and n − r + 1 are the least integers satisfying the relator
xn+1 = xr and called the index and the period of x, respectively.

Throughout this paper, every semigroup is finite and non-group,
which may possess the zero element, the identity element and idem-
potent elements. Our notation is merely standard. As usual, the cyclic
group of order n will be denoted by Cn. We follow [5, 7] for the pre-
liminaries on the semigroup theory and recall the following applicable
definition.

Definition 1.2. For a semigroup S without the identity element, S1 is
the semigroup S∪{1} where 1 is the identity adjoint. Three equivalence
relations L, R and J , called the Green’s relations are defined on S as
aLb ⇔ S1a = S1b, aRb ⇔ aS1 = bS1 and aJ b ⇔ S1aS1 = S1bS1,
respectively. The equivalence classes are indeed, Lx = {y | xLy},
Rx = {y | xRy} and Jx = {y | xJ y}, respectively.

Note that, there are two more Green’s relationsH andD defined with
respect to the above relations. The Green’s equivalence relations are
indeed congruence relations as well. Note that, all of the five Green’s
relations of a finite commutative semigroup coincide. Also, we follow
[10, 14, 2] and recall the notion of a presentation π = 〈X | R〉 of a set
of formal generators X and a set of relators R where 〈X | R〉 is defined
appropriately for finitely generated groups, semigroups and monoids.
As usual, a semigroup S presented by π will be denoted by S = Sg(π)
and a group G presented by π, by G = gp(π). Evidently, G is a
homomorphism image of S. For more information on the presentation
of algebraic structures, one may consider the mentioned articles.

As a preliminary result of the Definition 1.1, we deduce that for a fi-
nite band S, evidently ψ(S) = |S| (a difference between the semigroups
and groups, where for a finite group G the equality ψ(G) = |G| is hold
if and only if G is the trivial group).



SUM OF ELEMENT ORDERS OF NON-GROUP SEMIGROUPS 115

2. The semigroup Cn,r

For an integer n ≥ 2 and any integer 2 ≤ r ≤ n let S = Cn,r = 〈a |
an+1 = ar〉. Obviously, if 2 ≤ r ≤ n, Cn,r is a non-group semigroup.
Indeed, there are n− 1 non-isomorphic monogenic semigroups of order
n ≥ 2 in contrast the fact that, there is a unique cyclic group of a given
order n up to isomorphism. Our main results in this section are:

Theorem 2.1. For every positive integers r and n where n ≥ 11 and
2 ≤ r ≤ n, let S = Cn,r. Then,

(i). 4n ≤ ψ(S) ≤ n2 − n− 2, if n is even,
(ii). 3n ≤ ψ(S) ≤ n2 − 3n− 1, if n is odd.

For the initial values n = 2, 3, . . . , 10 and every r (2 ≤ r ≤ n) we
will give the explicit values of ψ(Cn,r) at the end of this section. We’ll
also specify all of the monogenic semigroups of order at most 10 which
are non-isomorphic but are of the same order and with the same sum
of element orders.

Corollary 2.2. For every odd integer α ≥ 3 let n = 2α. Then,
ψ(Cn,2) = n2 − 2n+ 3 and ψ(Cn−1) = n2 − 3n+ 3.

Some preliminary results are needed to prove the assertions. The
first lemma concerns a property of numbers in which the notation [x]
is used for the integer part of a real number x.

Lemma 2.3. Let n ≥ 3 be an integer. For every integer i, (2 ≤ i ≤ n),
there exits an integer j such that i[n

i
] = n − j. Moreover, any proper

divisor k of n satisfies k ≤ n
2

(or k ≤ n+1
2

) if n is even (or odd).

Proof. By the definition of [x], [n
i
] ≤ n

i
< [n

i
] + 1. Hence, i[n

i
] ≤ n <

i[n
i
] + i, which yields in turn one of the inequalities i[n

i
] ≤ n < i[n

i
] + j

where, j = 0, 1, . . . , i − 1. So, i[n
i
] = n − j. The last part may be

checked easily by a contradiction method. �

The next lemma identifies the idempotent elements of the semigroup
Cn,r for possible values of r and n.

Lemma 2.4. Consider the semigroup Cn,r where n ≥ 8 and 2 ≤ r ≤ n.
Then,

(i). for every r, where 2 ≤ r ≤ [n
2
], an−r+1 is an idempotent element,

(ii). if r = [n
2
] + 1, then ar (or an) is an idempotent element if n is

odd (or even),
(iii). if r = [n

2
] + 2, then an−1 (or an−2) is an idempotent element if

n is odd (or even).
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Proof. The condition in (i) yields that n− 2r ≥ 0, and then by letting
e = an−r+1 we get

e2 = a2(n−r+1) = an+1+(n−2r+1) = ar+(n−2r+1) = e.

The assertions (ii) and (iii) may be verified in a similar way. For
instance, if r = [n

2
] + 1, then for any odd integer n, r = n+1

2
and

a2r = an+1 = ar. �

The following lemma computes ψ(Lar) and is a key lemma in proving
the main results.

Lemma 2.5. For a given integer n ≥ 8 if 2 ≤ r ≤ [n
2
] − 2, then

ψ(Lar) = 1 + 2α, where

α =



n−r
2∑
i=r

o(ai) +
n−r∑

i=n−r+2

o(ai), if n− r is even,

n−r−1
2∑
i=r

o(ai) +
n−r∑

i=n−r+2

o(ai) +
1

2
o(a

n−r+1
2 ), if n− r is odd.

Proof. By Lemma 2.4(i), e = an−r+1 is an idempotent element. Since
Lar is a group, then e is the identity element of this group. We may
easily check that the inverse of any element ai ∈ Lar is equal to:

(ai)−1 =

{
an−r+1−i, if r ≤ i ≤ n− 2r + 1,
a2n−2r+2−i, if n− 2r + 2 ≤ i ≤ n− r.

So,

o(ai) =

{
o(an−r+1−i), if r ≤ i ≤ n− 2r + 1,
o(a2n−2r+2−i), if n− 2r + 2 ≤ i ≤ n− r.

We consider two cases in partitioning Lar .
Case 1: (n− r is even). Lar = A1 ∪ A′1 ∪ A2 ∪ {an−r−1} ∪ A′2, where

A1 = {ai | r ≤ i ≤ n− r
2
}, A′1 = {ai | n− r + 2

2
≤ i ≤ n− 2r + 1},

A2 = {ai | n− 2r + 2 ≤ i ≤ n− r}, A′2 = {ai | n− r + 2 ≤ i ≤ n}.
Case 2: (n− r is odd). Lar = A3∪{a

n−r+1
2 }∪A′3∪A2∪{an−r−1}∪A′2,

where

A3 = {ai | r ≤ i ≤ n−r−1
2
}, A′3 = {ai | n−r+3

2
≤ i ≤ n− 2r + 1}.

Consequently,
∑
x∈Ai

o(x) =
∑
x∈A′i

o(x), for i = 1, 2, 3. Since o(e) = 1, the

results follow at once. �
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A semigroup S is said to be nilpotent if |Sm| = 1, for some integer
m ≥ 2, where Si = {s1.s2 . . . si | s1, s2, . . . , si ∈ S}. The least integer
m is called the nilpotency rank of S. The following lemma studies the
behavour of the elements of a non-group nilpotent semigroup.

Lemma 2.6. The semigroup Cn,n = 〈a | an+1 = an〉 satisfies the
following properties, for every integer n ≥ 8.

(i). Cn,n is a non-group nilpotent semigroup with the zero element
an.

(ii). For every i where 2 ≤ i ≤ n−1, o(ai) = [n
i
] (or o(ai) = [n

i
] + 1)

if i | n (or i - n).
(iii). For even n, o(a2) = n

2
and for every i where n

2
≤ i ≤ n − 1,

o(ai) = 2. Moreover, o(ai) > n
i
− 1 if 3 ≤ i ≤ n

2
− 1.

(iv). For odd n, o(a2) = n+1
2

and for every i where n+1
2
≤ i ≤ n− 1,

o(ai) = 2. Moreover, o(ai) > n
i
− 1 if 3 ≤ i ≤ n−1

2
.

Proof. Let S = Cn,n. Since an+1 = an, we get S ⊃ S2 ⊃ · · · ⊃ Sn−1 ⊃
Sn = {an}. The element an is the zero element of S, for the relator
akan = anak = an+k = an holds for every positive integer k. To prove
(ii), if i | n then the relator

(ai)[
n
i
]+1 = ai(

n
i
+1) = an+i = an = ai(

n
i
) = (ai)[

n
i
]

proves that o(ai) = [n
i
]. For the values of i satisfying i - n proof is

similar. The assertions (iii) and (iv) may be verified immediately by
using (ii), the Lemma 2.4 and considering the well-known properties
of the integer part function [x]. �

Lemma 2.7. For every integer n ≥ 8,

ψ(Cn,2) =


5n− 3 + 2×

n−2
2∑
i=3

o(ai), if n is even,

4n+ 2×
n−3
2∑
i=3

o(ai), if n is odd.

Proof. The relator an+1 = a2 yields the relator akn = ak, for every
positive integer k > 1. Hence, o(an−2) = n− 1 and o(an−1) = 1 hold in
both cases. Suppose that n is even. Since a2n = a2, then o(a2) = n− 1
in this case. We now use the Lemma 2.6 and substitute for o(a), o(a2),
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o(an−2) and o(an−1). Then,

ψ(Cn,2) = o(a) + 2o(a2) + 2o(an−2) + o(an−1) + 2

n−2
2∑
i=3

o(ai)

= n+ 4(n− 1) + 1 + 2

n−2
2∑
i=3

o(ai)

= 5n− 3 + 2

n−2
2∑
i=3

o(ai).

For odd values of n we get that o(a2) = n−1
2

and o(a
n−1
2 ) = 2. As in

the first case, the Lemma 2.6 gives us:

ψ(Cn,2) = o(a) + 2o(an−2) + 2× o(an−1) + o(a
n−1
2 ) + 2

n−3
2∑
i=2

o(ai)

= n+ 2(n− 1) + 1 + 2 + 2(
n− 1

2
) + 2

n−3
2∑
i=3

o(ai)

= 4n+ 2

n−3
2∑
i=3

o(ai).

�

Proof of Theorem 2.1. The semigroup S may be decomposed as
{a}∪ {a2}∪ · · · ∪ {ar−1}∪ {ar, . . . , an}. So, the left Green’s classes are
La, La2 , . . . , Lar−1 , Lar where, La = {a, a2, . . . , an} and

Lai = {ai, ai+1, . . . , an}, (2 ≤ i ≤ r − 1),
Lar = Lar+1 = · · · = Lan = {ar, . . . , an}.

Consequently, La ⊃ La2 ⊃ · · · ⊃ Lan−1 ⊃ Lan . Hence, ψ(Cn,n) ≤
ψ(S) ≤ ψ(Cn,2).

To complete the proof we use the Lemmas 2.6 and 2.7. First of all
note that the relator akn = ak holds in the semigroup Cn,n for every
positive integer k ≥ 2 and then, for each n (odd or even) o(a) = n and
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o(an) = 1. If n is even the Lemma 2.6(iii) gives us:

ψ(Cn,n) = 1 +
n

2
+

n
2
−1∑
i=3

o(ai) +
n−1∑
i=n

2

o(ai) + n,

=
3n+ 2

2
+

n
2
−1∑
i=3

o(ai) +
n−1∑
i=n

2

2,

=
5n+ 2

2
+ 2

n

2
+

n
2
−1∑
i=3

o(ai),

=
7n+ 2

2
+

n
2
−1∑
i=3

o(ai).

Since,

n
2
−1∑
i=3

o(ai) > (
n

3
− 1) + (

n

4
− 1) + · · ·+ (

n
n
2
− 1
− 1) > (

n

2
− 3)(

n
n
2
− 1
− 1)

then ψ(Cn,n) > 4(n2−2n−2)
n−2 which in turn yields

ψ(Cn,n) ≥ [
4(n2 − 2n− 2)

n− 2
] + 1 = [4n− 8

n− 2
] + 1 = 4n− 1 + 1 = 4n.

Similarly, the Lemma 2.6(iv) yields the following result in the case
when n is an odd integer.

ψ(Cn,n) = 1 +
n+ 1

2
+

n−1
2∑
i=3

o(ai) +
n−1∑
i=n+1

2

o(ai) + n,

=
3n+ 3

2
+

n−1
2∑
i=3

o(ai) +
n−1∑
i=n+1

2

2,

=
5n+ 1

2
+

n−1
2∑
i=3

o(ai).

As well as in the last case,

n−1
2∑
i=3

o(ai) > (
n− 5

2
)(

n
n−1
2

− 1)
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Hence, ψ(Cn,n) > 3n2−4n−3
n−1 . So,

ψ(Cn,n) ≥ [
3n2 − 4n− 3

n− 1
] + 1 = [3n− 4

n− 1
] + 1 = 3n− 1 + 1 = 3n.

On the other hand, since o(ai) < n then the Lemma 2.7 gives us:

ψ(Cn,2) =



5n− 3 + 2

n−2
2∑
i=3

o(ai) < 5n− 3 + 2n(
n− 2

2
− 2), if n is even

4n+ 2

n−3
2∑
i=3

o(ai) < 4n+ 2n(
n− 3

2
− 2), if n is odd.

Consequently,

ψ(Cn,2) <

{
n2 − n− 3, if n is even
n2 − 3n, if n is odd,

and the proof is completed. �

Proof of Corollary 2.2. We have ψ(Cn,2) = 5n− 3 + 2

n−2
2∑
i=3

o(ai), by

Lemma 2.7. On the other hand,

(ai)n = ai(n+1−1) = ai(n+1)−i = a2i−i = ai.

So, o(ai) = n− 1, for each 3 ≤ i ≤ n−2
2

. This yields in turn

ψ(Cn,2) = 5n− 3 + (n− 1)(n− 6) = n2 − 2n+ 3.

Finally, ψ(Cn−1) = n2−3n+3 is a result of Cn,2 = {a}∪Cn−1, because
of o(a) = n. �

As a complement of the Theorem 2.1 the sum of element orders of
all monogenic semigroups of order less than 11 are computed here by
an almost tedious hand calculation and using GAP [16]. The results
are gathered in the following table. As indicated in this table there are
six pairs of monogenic semigroups such that the semigroups of each
pair are non-isomorphic with the same order and of the same sum of
element order. Indeed, ψ(C3,2) = ψ(C3,3) = 6, ψ(C4,3) = ψ(C4,4) = 9,
ψ(C5,2) = ψ(C5,3) = 16, ψ(C5,4) = ψ(C5,5) = 13, ψ(C7,6) = ψ(C7,7) =
21, ψ(C8,5) = ψ(C8,6) = 30.
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Table 1.

(n, r) ψ(Cn,r) (n, r) ψ(Cn,r) (n, r) ψ(Cn,r)

(2, 2) 3 (7, 2) 28 (9, 4) 37
(3, 2)∗ 6 (7, 3) 34 (9, 5) 49
(3, 3)∗ 6 (7, 4) 26 (9, 6) 36
(4, 2) 11 (7, 5) 25 (9, 7) 35
(4, 3)∗ 9 (7, 6)∗ 21 (9, 8) 30
(4, 4)∗ 9 (7, 7)∗ 21 (9, 9) 29
(5, 2)∗ 16 (8, 2) 51 (10, 2) 71
(5, 3)∗ 16 (8, 3) 31 (10, 3) 58
(5, 4)∗ 13 (8, 4) 41 (10, 4) 69
(5, 5)∗ 13 (8, 5)∗ 30 (10, 5) 43
(6, 2) 27 (8, 6)∗ 30 (10, 6) 52
(6, 3) 20 (8, 7) 26 (10, 7) 42
(6, 4) 19 (8, 8) 24 (10, 8) 40
(6, 5) 17 (9, 2) 52 (10, 9) 35
(6, 6) 16 (9, 3) 60 (10, 10) 33

3. Semidirect product and wreath product

The direct product of two semigroups, denoted by S × T is the set
S×T with the binary operation (s1, t1)(s2, t2) = (s1s2, t1t2). Evidently,
S × T = T × S dose not hold in general and the semigroup S × T is
commutative if and only if both of the semigroups are commutative.

We follow [3, 5] and adopt the definitions of semidirect product and
the wreath product for a non-group semigroup S = Cn1,r1 = 〈a〉 by a
non-group monogenic semigroup T = Cn2,r2 = 〈b〉, where 2 ≤ ri ≤ ni
(i = 1, 2).

Define the semigroup homomorphism ϕ : T → End(S) by ϕbj(a
i) =

aijα, where α = n1−r1+1. Then, the multiplication in the set S×T will
be defined by (ai, bj)(ai

′
, bj
′
) = (ai+ijα, bj+j

′
), for every ai ∈ S and bj ∈

T . The non-commutative semigroup defined by this multiplication is
called the semidirect product of S by T . Since aα is an idempotent of S,
the multiplication may be simplified as (ai, bj)(ai

′
, bj
′
) = (ai+α, bj+j

′
).

The standard wreath product (or simply, the wreath product) of S by T ,
denoted by S oT is defined to be the semi-direct product S1oT , where
S1 = S × S × · · · × S︸ ︷︷ ︸

|T |−copies

. The wreath product is also a non-commutative

semigroup and the multiplication in S o T may be defined by

(s, bj)(s′, bj
′
) = (ai1+ji

′
1α, ai2+ji

′
2α, . . . , ain2+ji

′
n2
α, bj+j

′
),
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where s = (ai1 , ai2 , . . . , ain2 ) and s′ = (ai
′
1 , ai

′
2 , . . . , ai

′
n2 ) belong to S1

and bj, bj
′ ∈ T . The simplified and applicable form of this multiplica-

tion is indeed,

(s, bj)(s′, bj
′
) = (ai1+α, ai2+α, . . . , ain2+α, bj+j

′
).

The following theorem is our first result in this section concerning these
products.

Theorem 3.1. Let S = Cn1,r1 = 〈a〉 and T = Cn2,r2 = 〈b〉 where
2 ≤ ri ≤ ni. Then,

(i). ψ(S o T ) = n1 × (1 + ψ(T )).
(ii). ψ(S o T ) = nn2

1 × (1 + ψ(T )).

Proof. To prove (i) let x = (ai, bj) ∈ S o T . By an induction method
we may prove that xk = (ai+α, bkj), for every positive integer k. Let
` = o(x) which should be the least positive integer satisfying x`+1 = xs,
for some positive integer s ≤ n2. This yields in turn the relator b(`+1)j =
bsj. There are two possible cases j = n2 − r2 + 1 and j 6= n2 − r2 + 1
to consider. In the first case, x3 = x2 holds for every x = (ai, bn2−r2+1)
and then o(x) = 2. However, in the second case suppose that o(bj = `.
Then, ` is the least positive integer such that for some positive integer
s ≤ ` the relator b`+1 = bs holds. Consequently, x`+1 = (ai+α, b(`+1)j) =
(ai+α, bs) = xs. So, o(x) = o(bj), for every i ∈ {1, 2, . . . , n1} and every
j 6= n2 − r2 + 1. So,

ψ(Cn1,r1 o Cn2,r2) =

n1∑
i=1

n2∑
i=2

o(ai, bj)

=

n1∑
i=1

(
n2∑

j=1,j 6=n2−r2+1

o(bj)

)
+

n1∑
i=1

2

=

n1∑
i=1

(ψ(Cn2,r2)− 1) + 2n1

= n1.(1 + ψ(Cn2,r2)).

To prove (ii) let x = (t, bj) ∈ T o S, where t = (ai1 , ai2 , . . . , ain2 ) and
1 ≤ i1, i2, . . . , in2 ≤ n1. Let T1 = T × T × · · · × T (direct product of
n2-copies). Then, for every positive integer k the relator,

xk = (ai1+α, ai2+α, . . . , ain2+α, bkj),

may be proved by an induction method on k. As it is the case in (i),
we conclude x3 = x2, for every x = (t, bn2−r2+1). Hence, o(x) = 2 and
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then,

ψ(Cn1,r1 o Cn2,r2) =
∑

t∈T1,1≤j≤n2

o(t, bj)

=

n1∑
i1=1

n1∑
i2=1

· · ·
n1∑

in2=1

(
n2∑

j=1,j 6=n2−r2+1

o(bj) + 2

)

=

n1∑
i1=1

n1∑
i2=1

· · ·
n1∑

in2=1

(−1 + ψ(Cn2,r2)) + 2× nn2
1

= nn2
1 × (1 + ψ(Cn2,r2)).

�

The following theorem examines the sum of element orders of a direct
product of non-group monogenic semigroups.

Theorem 3.2. Let p be an odd prime p and 1 < r ≤ p − 1. Then,
ψ(Cp,r × Cp,r) = p3 − p+ 1.

Proof. Let S = Cp,r × Cp,r. For every r > 1 we have to give a minimal
generating set for S to calculate the orders of elements. Let X =
{x,Ai, Bi | 2 ≤ i ≤ p}, where x = (a, b), Ai = (ai, b) and Bi =
(a, bi). We may easily verify that any element y = (ai, bj) ∈ S may be
presented as

y =

 xi, i = j,
xi−1Bj−1, i < j,
xi−1Aj−1, j < i.

Obviously, xp is an idempotent element and then o(y) = 1, if i = j = p.
However, by the relators ap+1 = a and bp+1 = b, we conclude that
yp+1 = yp, for all other values of i and j. This in turn proves that
o(y) = p and ψ(S) = 1 + p(p2 − 1) = p3 − p+ 1, as required. �

4. Presentation involvement

A finite semigroup presentation π = 〈X | R〉 can also be considered
as a group presentation. It is a well-known fact that if either Sg(π)
or gp(π) is finite then the group gp(π) is a homomorphic image of
Sg(π) under the natural homomorphism Sg(π) → gp(π), where X
and R are non-empty. This homomorphism is used to identify the
structures of almost all of the semigroups studied in [3, 4, 13] showing
that Sg(π) contains a certain number of copies of the group gp(π) and
then ψ(Sg(π)) is a multiple of ψ(gp(π)). However, this is not the case
in general. In this section we study two infinite classes of semigroup,
where Sg(π) is not a multiple of gp(π). Indeed, we give explicit values
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for the sum of element orders to show that ψ(Sg(π)) and ψ(gp(π)) are
approximately equal.

Theorem 3.2 stands for r1, r2 ≥ 2 and in not the case when r1 = r2 =
1. Our studied non-commutative semigroups are here T1 = Cp2,1oCp,1
and T2 = Cp,1 oCp,1, for a given odd prime p. The semigroup Cp2,1 = 〈a〉
accepts the automorphism θ1 : a→ ap+1 of order p. Also, Cp,1×Cp,1 =
〈a1〉×〈a2〉 accepts the automorphism θ2 : (a1, a2)→ (a21, a

2
2). So, we get

the following presentations by using the definitions of the semi-direct
product and the wreath product of semigroups.

T1 = Sg(π1), π1 = 〈a, b | ap2+1 = a, bp+1 = b, ab = bap+1〉, and
T2 = Sg(π2),

π2 = 〈a, b, c | ap+1 = a, bp+1 = b, cp+1 = c, ab = bac, ac = ca, bc = cb〉.

Suppose that Gi = gp(πi), (i = 1, 2). The group Gi is indeed a homo-
morphic image of Ti under the natural homomorphism (i = 1, 2). Both
of the groups G1 and G2 are extra special p-groups of order p3, and are
of exponents p2 and p, respectively. In the following remarks we aim

to compare ψ(Ti) and ψ(Gi) to show that limp→∞
ψ(Ti)
ψ(Gi)

= 1.

Remark 4.1. For every odd prime p, |T1| = p3+p2+p and ψ(T1) = p5+
2p2−3p+3. Moreover, for sufficiently large values of p, ψ(T1) = ψ(G1).

Proof. By using the relator ab = bap+1 of T1, this semigroup will be
partitioned into the union of the left Green’s classes

La ∪ Lb ∪ Lbap2 ,

where |La| = p2, |Lb| = p and |Lbap2 | = p3. Hence, |T1| = p3 + p2 + p.
Again by using the relators of T1, we conclude that the elements ap

and bp are central elements and T1 contains exactly three idempotent
elements ap

2
, bp and ap

2
bp. Moreover,

(1). aibj = bjai(1+jp),

(2). (bjai)k = bkjai(k+jp
k(k−1)

2
),

for every i and j where 1 ≤ i ≤ p2 − 1 and 1 ≤ j ≤ p. These may be
proved by an induction method. These relators help us to prove,

o(x) =

 1, x is an idempotent,
p2, x ∈ {ai, bjai | p - i},
p, otherwise,

for every element x ∈ T1. Indeed,
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For every x = bjai or x = ai, where 1 ≤ j ≤ p − 1, 1 ≤ i ≤ p2 − 1
and p - i the integers i and p2 are co-prime to each other. Then,

(bpai)p
2+1 = bpai(p

2+1) = bpai ⇒ o(bpai) = p2,

(bjai)p
2+1 = bjp

2+jai(p
2+1)+jp

p2(p2+1)
2

) = bjai ⇒ o(bjai) = p2,

(ai)p
2+1 = ai ⇒ o(ai) = p2.

Hence, there are (p2−p)+(p−1)(p2−p)+(p2−p) = p3−p elements of
order p2. Also, there are three elements of order 1 and other elements
of T1 which may be classified as:

{bj | 1 ≤ j ≤ p− 1},
{akp | 1 ≤ k ≤ p− 1},
{bjakp | 1 ≤ k ≤ p− 1, 1 ≤ j ≤ p},
{bjap2 | 1 ≤ j ≤ p− 1},

which are of order p (proving xp+1 = x is easy by using the relators
(1) and (2).) So, T1 contains exactly p2 + 2p − 3 elements of order p.
Consequently, ψ(T1) = 3+(p3−p)p2+(p2+2p−3)p = p5+2p2−3p+3,
as required. To complete the proof we classify the elements of the group

G1 and easily we get ψ(G1) = p5− p4 + p3− p+ 1. So, limp→∞
ψ(T1)
ψ(G1)

=

1 �

Remark 4.2. For every odd prime p, |T2| = p3 + 3p2 + 3p and ψ(T2) =
p4 + 3p3 + 4p2 − 7p + 7. Moreover, for sufficiently large values of p,
ψ(T2) = ψ(G2).

Proof. As well as in the Remark 4.1, T1 may be partitioned as

La ∪ Lb ∪ Lc ∪ Lbac ∪ Lapc ∪ Lbpc ∪pi=1 Lbai

for T2. Evidently, |La| = |Lb| = |Lc| = p, |Lbac| = p3 and the other
classes are of the cardinality p2. So, |T2| = p3 + 3p2 + 3p.

For the second semigroup consider the partition T2 = A1∪A2∪A3∪
A4 ∪ A5 ∪ A6 ∪ A7 such that

A1 = {ap, bp, cp, bpapcp, apcp, bpcp}, A2 = {bpap},
A3 = {biaj | 1 ≤ i, j ≤ p} \ {bpap}, A4 = {ai, bi, ci|1 ≤ i ≤ p− 1},
A5 = {biajck | 1 ≤ i, j, k ≤ p} \ {bpapcp}, A6 = {aicj | 1 ≤ i, j ≤ p} \ {apcp},
A7 = {bicj | 1 ≤ i, j ≤ p} \ {bpcp}.

Now, we may prove:

o(x) =


1, x ∈ A1,
2, x ∈ A2,
p+ 1, x ∈ A3,
p, x ∈ A4 ∪ A5 ∪ A6 ∪ A7.
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Since, each element of A1 is an idempotent, then by using ab = bac we
get akbk = bkakck

2
, for every positive integer k. This yields in turn

apbp = bpapcp
2

= bpapcp
2−1+1 = bpapc(p+1)(p−1)+1 = bpapc(p−1)+1 = bpapcp

and (bpap)3 = (bpap)2, showing that o(bpap) = 2. Again by using akbk =

bkakck
2

we may verify the relators:

(3). aibj = bjaicij,
(4). (bjai)m = bmjamicmij,
(5). (bjaick)m = bmjamicm(ij+k),

for every positive integers i, j, k and m. Using the relators (3), (4) and
(5) yield, xp+2 = x2 (or xp+1 = x) if x ∈ A3 (or x ∈ A4∪A5∪A6∪A7).
Hence,

ψ(T2) = 6+2+(p2−1)(p+1)+[3(p−1)+(p3−1)+2(p2−1)]p = p4+3p3+4p2−7p+7.

We classify the elements of G2 and get ψ(T2) = p4 − p+ 1, as it is the
case in the previous example. So,

lim
p→∞

ψ(T2)

ψ(G2)
= 1.

�

5. Conclusion

Our final computational result in this paper is the following remark
as an application of the Corollary 2.2. Looking for the cyclic groups
Cm satisfying ψ(Cm) = m2−m+ 1 is of interest specially when m is a
non-prime integer. The following remark gives us a large class of such
groups.

Remark 5.1. For every odd prime p and any odd integer t ≥ 1 consider
the non-prime integer m = 2pt − 1. Then, ψ(Cm) = m2 −m+ 1.

Proof. Let n = 2pt. As a quick result of the Corollary 2.2 we get

ψ(Cm) = ψ(Cn−1) = n2−3n+3 = (m+1)2−3(m+1)+3 = m2−m+1,

where, m = n− 1. �

Certain examples of this remark are gathered in the following tables.
In the first table we let t = 1 and consider all of the primes less that
50 to get non-prime values of m. In the second table we let p = 3 and
t = 3, 5, 7 and get evident examples.
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Table 2.

p m = 2p − 1 ψ(Cm)

11 23× 89 4188163 = m2 −m+ 1
23 47× 178481 70368719011843 = m2 −m+ 1
29 233× 1103× 2089 288230374541099011 = m2 −m+ 1
37 223× 616318177 18889465931066263994371 = m2 −m+ 1
41 13367× 164511353 4835703278451919629058051 = m2 −m+ 1
43 431× 9719× 2099863 77371252455309878902128643 = m2 −m+ 1
47 2351× 4513× 13264529 19807040628565662185920921603 = m2 −m+ 1

Table 3.

t m = 23t − 1 ψ(Cm)

3 7× 73 260611 = m2 −m+ 1
5 7× 31× 151 1073643523 = m2 −m+ 1
7 72 × 127× 337 4398040219651 = m2 −m+ 1
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