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SOME RESULTS ON NOETHERIAN SEMIGROUP

A. A. ESTAJI ∗ AND A. AS. ESTAJI

Abstract. In this paper we study some results on Noetherian
semigroups. We show that if SS is an strongly faithful S-act and
S is a duo weakly Noetherian, then we have the following.
(1) If A is a finitely generated proper ideal in S, then

⋂
n∈N

An =
(0).

(2) If (0) is not a prime ideal of S, then every principal prime
ideal of S is a minimal prime ideal of S.

Also, if a duo semigroup S has acc on prime ideals and each prime
ideal minimal over a proper subideal is finitely generated, then S

is Noetherian.

1. Introduction

The famous Krull intersection theorem shows that, if I is an ideal
of a Noetherian ring R, then an element x of R belongs to

⋂
∞

k=1 I
k if,

and only if, we have x = ax for at least one element a ∈ I. Further,⋂
∞

k=1 I
k is an isolated component of the zero ideal ( Caruth [6], Krull

[14], and Northcott [16], p. 49). The Krull intersection theorem have
been studied by a number of authors, for example [1, 2, 11].

In section 3, we introduce weakly Noetherian for semigroups. In
Theorem 3.5 we prove that if A is a finitely generated ideal in a duo
weakly Noetherian semigroup S, then

⋂
n∈N A

n = {s ∈ S : s = sa for some a ∈ A}
= {s ∈ S : s = as for some a ∈ A}.

MSC(2010): Primary: 20M12; Secondary: 20M30.

Keywords: Weakly Noetherian, Krull intersection theorem, prime ideal, Noetherian space.

Received: 12 February 2014, Accepted: 29 April 2014.

∗Corresponding author .
43



44 ESTAJI

The concept of Noetherian topological spaces arises naturally in
the study of Noetherian rings and it is considerable in some areas
of mathematics. A topological space (X, τ) is called Noetherian if τ
satisfies the ascending chain condition: every strictly ascending chain
U1 ⊆ U2 ⊆ · · · of elements of τ is finite (see [3, 5, 7, 8, 15]).

In section 4, we study properties of Noetherian topological spaces.
Let X = Spec(S) be endowed with the Zariski topology on semigroup
S, then we prove that the following statements are equivalent:

(1) X is Noetherian.
(2) Every subset of X is quasi-compact.
(3) S has acc on intersections of prime ideals.

2. Preliminaries

All semigroups in this article are monoid with zero and S always
denotes a semigroup. A right unitary S-act M , denoted by MS and a
function M × S → M such that if ms denotes the image of (m, s) for
m ∈ M and s ∈ S, then (i) (ms)t = m(st) for m ∈ M and s, t ∈ S;
and (ii) m1 = m for all m ∈ M . An S-subact NS of a right S-act MS

written as NS ≤ MS is a subset N of M such that ns ∈ N for all n ∈ N

and s ∈ S. Thus the subacts of the S-act SS(resp. SS) are right (resp.
left) ideal of S. A subset of S which is both a right and a left ideal of
S is called ideal. An element θ ∈ MS is called fixed element of M if for
all s ∈ S, θs = θ. All MS in this article has an unique fixed element
which is denoted by 0M or abbreviation 0, such that for all m ∈ M and
s ∈ S, 0Ms = 0M and m0 = 0M ; 0M will be called the zero of M . If
I is an ideal of semigroup S, then the Rees factor of S modulo I will
be denoted by S

I
; we recall that the equivalence classes of S

I
are I (the

zero of S
I
) and every single element set {a} with a ∈ S \ I.

Recall that a right ideal P of S is called prime if for a, b ∈ S, the
inclusion aSb ⊆ P implies that either a ∈ P or b ∈ P . Equivalently, P
is prime if and only if for any right ideals A and B of S, the inclusion
AB ⊆ P implies that either A ⊆ P or B ⊆ P .

For any S-subact A of an S-act MS, we define (A : M) = {s ∈ S :
Ms ⊆ A} and denotes (0M : M) by AnnS(M). We refer the reader to
[10, 13] for other terminologies and notations which are not given in
this paper.

3. The Krull intersection theorem for semigroup

The Krull intersection theorem is one of the basic results in the
theory of commutative Noetherian ring. In this section we study the
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Krull intersection theorem for a class of non commutative that is not
necessarily Noetherian semigroups.

But we must begin at the beginning, with the basic definitions.

Definition 3.1. S is called weakly Noetherian, if for an arbitrary ideal
A of S and α ∈ S, there exists n ∈ N such that for every k ≥ n,

(1) {s ∈ S : sαn ∈ A} = {s ∈ S : sαk ∈ A} and
(2) {s ∈ S : αns ∈ A} = {s ∈ S : αks ∈ A}.

Let N
∞ = N ∪ {∞}, where for each n ∈ N, n < ∞. We define for

each x, y ∈ N
∞,

xy = min{x, y},

then N
∞ is a monoid with zero and for each x ∈ N

∞, x∞ = x and
x1 = 1, i.e., 1 is zero element. If I is an ideal of N∞, then I = N

∞,
I = N, or there exists n ∈ N such that I = {1, 2, . . . , n}. Thus N

∞ is
not Noetherian, but since for each α ∈ N

∞ and n,m ∈ N, αn = αm,
we conclude that N∞ is weakly Noetherian.

Definition 3.2. A semigroup S is called duo, if every one sided ideal
is two sided ideal, that is for every x ∈ S, xS = Sx.

It is clear that every duo Noetherian is weakly Noetherian. Also if
for each e ∈ S, e2 = e then S is weakly Noetherian semigroup, but it
is not necessarily Noetherian semigroup.

Lemma 3.3. Let S be a duo weakly Noetherian and x ∈ S. Suppose
that B is an ideal in S and for n ∈ N,

An = {s ∈ S : xnsxn ∈ B}.

If
A′

n = {s′ ∈ S : sxn = xns′ for some s ∈ An},

then:

(1) A′
n is an ideal in S.

(2) A′
n = {s′ ∈ S : x2ns′ ∈ B} and Ann S

B
({x2n}) = A′

n

B
.

(3) There exists n ∈ N such that for all m ≥ n, A′
n = A′

m and
An = Am.

Proof. (1) It is clear.
(2) Let

A′′

n = {s′ ∈ S : x2ns′ ∈ B}.

If s′ ∈ A′′
n, then since Sxn = xnS, there exists s ∈ S such that sxn =

xns′ and x2ns′ ∈ B. It follows that xnsxn = x2ns′ ∈ B and sxn = xns′,
i.e., s′ ∈ A′

n. Now we assume that s′ ∈ A′
n. Then there exists s ∈ An
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such that sxn = xns′. Hence xnsxn = x2ns′ ∈ B, i.e., s′ ∈ A′′
n. Thus

A′
n = A′′

n.
(3) Since S is a weakly Noetherian, there exists n ∈ N such that

for all m ≥ n, A′
n = A′

m. Let r ∈ N and s ∈ An+r \ An. Since S is
a duo, there exists s′ ∈ S such that sxn+r = xn+rs′. It follows that
xn+rsxn+r = x2(n+r)s′ ∈ B, that is s′ ∈ A′

n+r = A′
n. Hence there exists

γ ∈ An such that γxn = xns′. Thus we have

xn(sxr)xn = x2n+rs′ = xnxrγxn ∈ B,

that is sxr ∈ An. Thus

An+r ⊆ {s ∈ S : sxr ∈ An}.

It is clear that
An+r = {s ∈ S : sxr ∈ An}.

Since S is a weakly Noetherian, there exists r ∈ N such that for all
s ≥ r, An+r = An+s. Let n0 = n + r, then for all m ≥ n0, A

′
n0

= A′
m

and An0
= Am. �

Lemma 3.4. If A is a finitely generated ideal in a duo weakly Noe-
therian S, then for every ideal B of S there exists an integer n such
that An ∩ B ⊆ AB ∩BA.

Proof. Put

F = {C : C is an ideal of S and C ∩ B ⊆ AB ∩ BA}.

(0) ∈ F and by Zorn’s Lemma, F has a maximal element M . It is
clear that M ∩B = AB ∩BA. Now we show that some power of every
element of A is contained in M and since A is a finitely generated, we
conclude that there exists an integer n such that An ⊂ M , it follows
that

An ∩B ⊆ M ∩ B ⊆ AB ∩ BA.

Let x ∈ A and
An = {s ∈ S : xnsxn ∈ M}.

By Lemma 3.3, there exists n ∈ N such that for all m ≥ n, An = Am.
Put M ′ = (xnSxn) ∪M . Let y ∈ M ′ ∩B, then there exists s ∈ S such
that y = xnsxn ∈ B. Hence

xyx = xn+1sxn+1 ∈ AB ∩ BA ⊆ M,

that is s ∈ An+1 = An. Hence y = xnsxn ∈ M ∩ B and since

AB ∩BA ⊆ M ′ ∩B,

we conclude that
M ′ ∩ B = AB ∩BA,

it follows that M ⊆ M ′ ∈ F . Hence M = M ′, that is x2n ∈ M . �
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Theorem 3.5. (Krull intersection theorem.) If A is a finitely gener-
ated ideal in a duo weakly Noetherian S, then⋂

n∈NA
n = {s ∈ S : s = sa for some a ∈ A}

= {s ∈ S : s = as for some a ∈ A}.

Proof. If s = sa or s = bs for some a, b ∈ A and s ∈ S, then for every
integer n, s = san ∈ A or s = bns ∈ A, it follows that s ∈

⋂
n∈NA

n.
Conversely, let s ∈

⋂
n∈NA

n, then by Lemma 3.4, there exists m ∈ N

such that
Am ∩ sS ⊆ sSA ∩AsS = sA ∩ As.

Since s ∈ Am ∩ sS, we have s = sa and s = bs for some a, b ∈ A. �

Definition 3.6. We call MS a strongly faithful S-act if for s, t ∈ S the
equality as = at for some 0M 6= a ∈ M implies that s = t (see [13]).

Corollary 3.7. Let SS be an strongly faithful S-act and S be a duo
weakly Noetherian. If A is a finitely generated proper ideal in S, then

⋂

n∈N

An = (0).

Proof. Let 0 6= s ∈
⋂

n∈N A
n. Then by Theorem 3.5, there exists a ∈ A

such that s = sa. Since SS is an strongly faithful S-act, then 1 = a ∈ A

which is a contradiction with A 6= I. �

Corollary 3.8. Let SS be an strongly faithful S-act and S be a duo
weakly Noetherian. If (0) is not a prime ideal of S, then every principal
prime ideal of S is a minimal prime ideal of S.

Proof. Let P = pS is a prime ideal of S. Suppose that P is not a
minimal prime ideal of S and look for a contradiction. Thus there
exists Q ∈ Spec(S) such that Q ⊂ P . Note p 6∈ Q, or else P =
pS ⊆ Q, which is not possible. Let a ∈ Q. Suppose, inductively, that
n ∈ N and we have shown that a ∈ P n. Now, since P n = pnS, we
conclude that there exists s ∈ S such that a = pns, it follows that
pnSs ⊆ Q. Since Q ∈ Spec(S) and p 6∈ Q, then s ∈ Q ⊂ P , so that
a = pns ∈ P n+1. This completes the inductive step. By Corollary 3.7,
we have Q ⊆

⋂
n∈N P

n = (0), and so Q = (0). This contradicts the fact
that (0) is not a prime ideal of S. �

Corollary 3.9. Let SS be an strongly faithful S-act and S be a duo
weakly Noetherian. If maximal ideal M in S is a principal ideal in S,
then

(1) Every nonzero proper ideal of S is a power of M .
(2) M is the only nonzero prime ideal of S.
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Proof. 1) By Corollary 3.7, we have
⋂

n∈NM
n = (0). Hence for nonzero

ideal A of S, there exists an integer m such that A ⊆ Mm and A 6⊆
Mm+1. Now, let M = xS and a ∈ A. Since a ∈ xmS and a 6∈ xm+1S,
we conclude that there exists s ∈ S \M such that a = xms. Therefore,
s is a unit and xm ∈ A implies that A = xmS.

2) This is clear. �

4. Noetherian space

Recall that the spectrum Spec(S) of a semigroup S consists of all
prime right ideals of S. For a subset E of S we define V (E) to be the set
of all prime right ideals of S containing E. Of course, V (0) = Spec(S)
and V (S) = ∅. It is clear that if I is the right ideal generated by E,
then V (I) = V (E). Note that for any family of subsets {Eλ}λ∈Λ of S,

⋂

λ∈Λ

V (Eλ) = V (
⋃

λ∈Λ

Eλ) ⊆ Spec(S)

and also
V (I ∩ J) = V (IJ) = V (I) ∪ V (J)

for any right ideals I and J of S. These result show that the sets V (E)
satisfy the axioms for closed sets in a topological space. The resulting
topology is called the Zariski topology. Let X = Spec(S) be endowed
with the Zariski topology. Thus for every closed subset F of X , there
exists a right ideal I of S such that F = V (I).

We define a topological space X to be irreducible if there does not
exist two proper closed subsets X1 and X2 such that X = X1 ∪ X2,
Also, we call a topological space Noetherian if every descending chain of
closed subsets becomes constant. We will sometimes call this property
the descending chain condition for closed subspaces of X .

Proposition 4.1. If a semigroup S has acc on prime right ideals, then
it has acc on ideals I of form Ik =

⋂
P∈F

P kP , where F is a finite set
of noncomparable prime ideals and kP is a positive integer.

Proof. Let
I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

be an infinite ascending chain of ideals, each of which is of the form
In =

⋂
P∈Fn

P nP , where F is a finite set of noncomparable prime ideals
and nP is a positive integer. If it happens that

Fr1 = Fr2 = · · · = Frn = · · · ,

where r1 < r2 < · · · < rn < · · · is an infinite sequence, it is clear that
we are through. Now we can assume Fn+1 \ Fn 6= ∅, for all n ∈ N

and complete the proof by obtaining a contradiction. We note that
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Fi ∩Fr ⊆ Fi−1 ∩Fr for all r and r ≤ i− 1, for if not then there exists
Pi ∈ Fi ∩ Fr such that Pi 6∈ Fi−1. Hence there exists Pi−1 ∈ Fi−1

such that Pi−1 ⊆ Pi and since r ≤ i − 1, there exists Pr ∈ Fr such
that Pr ⊆ Pi−1 ⊆ Pi. But Pr and Pi are both in Fr and can not
be noncomparable. This shows that without loss of generality we can
assume that Fi ∩ Fr = Fi−1 ∩ Fr for all r and r ≤ i − 1. If for some
integer m > 0, P ∈ Fm \ Fm−1, then P 6∈

⋃m−1
i=1 Fi, for otherwise

P ∈ Fr, for some r ≤ m − 1 and Fm ∩ Fr = Fm−1 ∩ Fr implies that
P ∈ Fm−1, which is impossible.

Now given any integerm > 0, let Pm ∈ Fm\Fm−1. Hence there exists

Pm−1 ∈ Fm−1 such that Pm−1 ⊂ Pm and Pm−1 6∈
⋃m−2

i=1 Fi, for otherwise
Pm−1 ∈ Fm−1 ∩Fk for some k ≤ m− 2 implies that Pm−1 ∈ Fm, which
is impossible. Repeating this process we get

P1 ⊂ P2 ⊂ · · · ⊂ Pm

a chain of prime right ideals and each Pi belongs to Fi. Putting

Fn
1 = {P1 : there exists a chain P1 ⊂ · · · ⊂ Pn,

where Pi ∈ Fi, i = 1, . . . , n}.

We have already shown that Fn
1 6= ∅ for all n. Moreover, Fn

1 is finite
and Fm

1 ⊆ Fn
1 for n ≤ m. Therefore the chain

F1
1 ⊇ F2

1 ⊇ · · · ⊇ Fn
1 ⊇ · · ·

is stationary and we can choose Q1 ∈
⋂

n∈NF
n
1 . Now for each n ≥ 2,

let

Fn
1 = {P2 : there exists a chain Q1 ⊂ P2 ⊂ · · · ⊂ Pn,

where Pi ∈ Fi, i = 2, . . . , n}.

It is clear that Fn
2 6= ∅ for all n ≥ 2 and we can choose Q2 ∈

⋂
∞

n=2F
n
2 .

Hence proceeding inductively we get a chain

Q1 ⊂ Q2 ⊂ · · · ⊂ Qn ⊂ · · ·

which is the desired contradiction. �

LetX = Spec(R) be endowed with the Zariski topology. Karamzadeh
[12] shows that, X is Noetherian (acc on open subsets) if and only if R
has acc on intersections of prime ideals, if and only if every subset of X
is quasi-compact (a subset in a topological space is called quasicompact
if any open cover of it has a finite subcover). Also, Behboodi [4] has
generalized this result for multiplication modules. We prove this result
for semigroups.

Proposition 4.2. Let X = Spec(S) be endowed with the Zariski topol-
ogy on semigroup S, then the following statements are equivalent:
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(1) X is Noetherian.
(2) Every subset of X is quasi-compact.
(3) S has acc on intersections of prime ideals.

Proof. (1) ⇒ (2). Let A ⊆
⋃

λ∈Λ Oλ, where Oλ is an open subset of X ,
for all λ ∈ Λ and A is a subset of X . If {Oλ}λ∈Λ has not finite subcover
of A, then for n ∈ N, there exists λn ∈ Λ such that

Oλ1
⊂ Oλ1

∪ Oλ2
⊂ · · · ⊂

n⋃

i=1

Oλi
⊂ · · ·

and A 6⊆
⋃n

i=1Oλi
for all n ∈ N and which is a contradiction.

(2) ⇒ (3). Let

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · ·

be an infinite ascending chain of rights ideals, each of which is of the
form In =

⋂
Fn, where Fn ⊆ X . Then

X \ V (I1) ⊆ X \ V (I2) ⊆ · · · ⊆ X \ V (In) ⊆ · · · .

Let A =
⋃

n∈N(X \V (In)). Then by hypothesis, there exists i1, . . . , ir ∈
N such that

A =
r⋃

j=1

(X \ V (Iij)) = X \ V (Im),

where m = max{i1, . . . , ir}. It follows that V (Im) = V (Ik) for all
k ≥ m. Hence

Im =
⋂

V (Im) =
⋂

V (Ik) = Ik

for all k ≥ m, i.e., as desired.
(3) ⇒ (1). Let

F1 ⊇ F2 ⊇ · · · ⊇ Fn ⊇ · · ·

be an infinite descending chain of closed subset of X . Then for each
n ∈ N, there exists a right ideal In of S such that Fn = V (In). It is
clear that ⋂

F1 ⊆
⋂

F2 ⊆ · · · ⊆
⋂

Fn ⊆ · · ·

and by hypothesis, there exists m ∈ N such that

Im =
⋂

Fm =
⋂

Fk = Ik

for all k ≥ m. Hence Fm = Fk for all k ≥ m. �

Corollary 4.3. If a semigroup S has acc on prime right ideals and
has only finitely many prime right ideals minimal over any right ideal,
then every prime right ideal is minimal over some finitely generated
right subideal.
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Proof. Let I be a right ideal in S and P(I) be the intersection of all
prime right ideals containing I. It is sufficient to show that P(I) =
P(

⋃n

i=1 xiS). It is clear that V (I) =
⋂

x∈I V (xS) and X \ V (I) =⋃
x∈I(X\V (xS)). Since S has only finitely many prime right ideals min-

imal over any right ideal, then every intersection prime right ideals is an
intersection finitely many prime right ideals. Hence by Proposition 4.1
and 4.2, X \V (I) is quasi-compact. Thus there exists x1, x2, . . . , xn ∈ I

such that

X \ V (I) =

n⋃

i=1

(X \ V (xiS)).

Hence

V (I) =

n⋂

i=1

V (xiS).

Thus we have

P(I) = P(
n⋃

i=1

xiS).

�

Proposition 4.4. Let S be a duo semigroup and I be a proper ideal in
S. If every prime right ideal minimal over I is finitely generated, then
there are only finitely many prime right ideal minimal over I.

Proof. We put

F = {P1P2 · · ·Pn : n ∈ N and each Pi is prime

right ideal minimal over I}.

If there exists P1P2 · · ·Pn ∈ F such that P1P2 · · ·Pn ⊆ I, then for every
prime right ideal minimal P over I, we have P1P2 · · ·Pn ⊆ I ⊆ P . It
follows that there exists 1 ≤ i ≤ n such that I ⊆ Pi ⊆ P . Hence
Pi = P . Thus {P1, . . . , Pn} is the set of all prime right ideals minimal
over I. Now we may assume that for every A ∈ F , A 6⊆ I. We put

B = {B : for each A ∈ F , A 6⊆ B and B is an ideal of S with I ⊆ B}.

Since S is a duo semigroup, then every element F is finitely generated.
It follows that by Zorn’s Lemma, B has a maximal element P . We also
note that P is prime, for if not, then there exists two ideals A and B

such that AB ⊆ P , A 6⊆ P , and B 6⊆ P . Since P is a maximal element
B, then there exists ideals P1, . . . , Pn, Q1, . . . , Qm, which are prime right
ideal minimal over I and P1 . . . Pn ⊆ P ∪A and Q1 . . . Qm ⊆ P ∪B. It
follows that

P1 . . . PnQ1 . . . Qm ⊆ (P ∪ A)(P ∪ B) ⊆ P 2 ∪ PB ∪AP ∪ AB ⊆ P
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which is a contradiction. Since the intersection of every chain of right
prime ideals is prime right ideal, then by Zorn’s Lemma, P contains a
prime ideal Q minimal over I. Thus Q ∈ F , a contradiction. �

Corollary 4.5. If a duo semigroup S has acc on prime ideals and each
prime ideal minimal over a proper subideal is finitely generated, then
S is Noetherian.

Proof. According to Theorem 6 in [9], it is enough to prove that every
prime right ideal is finitely generated. If every right ideal in S is prime,
then we are through. Hence, let I be a nonprime right ideal in S. Then
by our assumption, each prime ideal P minimal over I is finitely gener-
ated, for I ⊂ P is a proper subideal of P . Now in view of Proposition
4.4, there are only finitely many prime ideals minimal over I. Let Q be
prime right ideal Q of S. Then by Corollary 4.3, there exists a finitely
generated ideal I such that Q is minimal over subideal I. Hence, if I is
a proper subideal of Q, then by our assumption, Q is finitely generated
and if A = Q, then trivially Q is finitely generated. �
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