THE GENERALIZED TOTAL GRAPH OF MODULES RESPECT TO PROPER SUBMODULES OVER COMMUTATIVE RINGS

N. K. TOHIDI *, F. ESMAEILI-KHALIL SARAEI AND S. A. JALILI

Abstract

Let M be a module over a commutative ring R and let N be a proper submodule of M. The total graph of M over R with respect to N, denoted by $T\left(\Gamma_{N}(M)\right)$, have been introduced and studied in [2]. In this paper, A generalization of the total graph $T\left(\Gamma_{N}(M)\right)$, denoted by $T\left(\Gamma_{N, I}(M)\right)$ is presented, where I is an ideal of R. It is the graph with all elements of M as vertices, and for distinct $m, n \in M$, the vertices m and n are adjacent if and only if $m+n \in M(N, I)$, where $M(N, I)=\{m \in M: r m \in$ $N+I M$ for some $r \in R-I\}$. The main purpose of this paper is to extend the definitions and properties given in [2] and [12] to a more general case.

1. Introduction

Throughout of this paper R is a commutative ring with nonzero identity and M is a unitary R-module. Recently, there has been considerable attention in the work to associating graphs with algebraic structures (see [1],[5],[7] and [11]). In [6], the notion of the total graph of a commutative ring $T(\Gamma(R))$ was introduced. The vertices of this graph are all elements of R and two vertices $x, y \in R$ are adjacent if and only if $x+y \in Z(R)(Z(R)$ is the set of zero divisors of $R)$. The total torsion element graph of a module M over a commutative ring R denoted by $T(\Gamma(M))$ was introduced by Ebrahimi Atani and Habibi in [12], as the graph with all elements of M as vertices, and two distinct vertices

[^0]$x, y \in M$ are adjacent if and only if $x+y \in T(M)(T(M)$ is the set of torsion elements of M). Let N be a proper submodule of an R-module M and the ideal $\{r \in R: r M \subseteq N\}$ will be denoted by $(N: M)$. Also for an element $r \in R$, the submodule $\{m \in M: r m \in N\}$ will be denoted by $\left(N:_{M} r\right)$. In [2], Abbasi and Habibi introduced total graph of M respect to an arbitrary proper submodule N; denoted by $T\left(\Gamma_{N}(M)\right)$. The vertex set of $T\left(\Gamma_{N}(M)\right)$ is M and two distinct vertices $m, n \in M$ are adjacent if and only if $m+n \in M(N)$, where $M(N)=\{m \in M: r m \in N$ for some $r \in R-(N: M)\}$. A proper submodule N of M is said to be a prime submodule if whenever $r m \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $r \in(N: M)$. It is clear to see that if N is a prime submodule of M, then $P=(N: M)$ is a prime ideal of R and N is said to be a P-prime submodule. Now, let I be a proper ideal of R. Then $S(I)$ is the set of all elements of R that are not prime to I; i.e., $S(I)=\{a \in R: r a \in I$ for some $r \in R-I\}$. It is clear that $S(P)=P$ for every prime ideal P of R. We define $M(N, I)=\{m \in M: r m \in N+I M$ for some $r \in R-I\}$. Since $I M+N \subseteq M$, then $M(N, I)$ is not empty. $M(N, I)$ is not necessarily a submodule of M (not always closed under addition, see Example 2.2), but it is clear that if $r \in R$ and $x \in M(N, I)$, then $r x \in M(N, I)$. It is easy to see that $T(M)=M(0,0)$ and $M(N, I)=M(N)$ for every ideal $I \subseteq(N: M)$.
In the present paper, we introduce and investigate the generalized total graph of M respect to a submodule, denoted by $T\left(\Gamma_{N, I}(M)\right)$, as a (undirected) graph with all elements of M as vertices, and for distinct $m, n \in M$, the vertices m and n are adjacent if and only if $m+n \in M(N, I)$. It is easy to check that $T\left(\Gamma_{N}(M)\right)=T\left(\Gamma_{N,(N: M)}(M)\right)$ and $T(\Gamma(M))=T\left(\Gamma_{0,0}(M)\right)$. So by this definition, we can extend the definitions and the results of graphs expressed in [2] and [12].
Let $M\left(\Gamma_{N, I}(M)\right)$ be the (induced) subgraph of $T\left(\Gamma_{N, I}(M)\right)$ with vertex set $M(N, I)$, and let $\bar{M}\left(\Gamma_{N, I}(M)\right)$ be the (induced) subgraph $T\left(\Gamma_{N, I}(M)\right)$ with vertices consisting of $M-M(N, I)$.
The study of $T\left(\Gamma_{N, I}(M)\right)$ breaks naturally into two cases depending on whether or not $M(N, I)$ is a submodule of M. In the second section, we obtain some properties concerning $M(N, I)$. In the third section, we handle the case when $M(N, I)$ is a submodule of M; in forth section, we do the case when $M(N, I)$ is not a submodule of M. For every case, we characterize the girths and diameters of $T\left(\Gamma_{N, I}(M)\right), M\left(\Gamma_{N, I}(M)\right)$ and $\bar{M}\left(\Gamma_{N, I}(M)\right)$.
We begin with some notation and definitions. For a graph Γ, by $E(\Gamma)$ and $V(\Gamma)$, we mean the set of all edges and vertices, respectively. We
recall that a graph is connected if there exists a path connecting any two of it's distinct vertices. At the other extreme, we say that a graph is totally disconnected if no two vertices of this graph are adjacent. The distance between two distinct vertices a and b, denoted by $\mathrm{d}(a, b)$, is the length of a shortest path connecting them (if such a path does not exist, then $d(a, b)=\infty$. We also define $d(a, a)=0$. The diameter of a graph Γ, denoted by $\operatorname{diam}(\Gamma)$, is equal to $\sup \{d(a, b): a, b \in V(\Gamma)\}$. A graph is complete if it is connected with diameter less than or equal to one. The girth of a graph Γ, denoted $\operatorname{gr}(\Gamma)$, is the length of a shortest cycle in Γ, provided Γ contains a cycle; otherwise; $\operatorname{gr}(\Gamma)=\infty$. We denote the complete graph on n vertices by K^{n} and the complete bipartite graph on m and n vertices by $K^{m, n}$ (we allow m and n to be infinite cardinals). We will sometimes call a $K^{1, m}$ a star graph. For a graph Γ, the degree of a vertex v in Γ, denoted $\operatorname{deg}(v)$, is the number of edges of Γ incident with v. For a nonnegative integer k, a graph is called k-regular if every vertex has degree k. We say that two (induced) subgraphs Γ_{1} and Γ_{2} of Γ are disjoint if Γ_{1} and Γ_{2} have no common vertices and no vertices of Γ_{1} is adjacent(in Γ) to some vertex of Γ_{2}.

2. Some Properties of $M(N, I)$

In this section we list some basic properties concerning $M(N, I)$ where N is a proper submodule of an R-module M and I is a proper ideal of R. We show that $M(N, I)$ is a union of prime submodules of M. We have the following remark by [10, 2.2 and 2.7].

Remark 2.1. Let N, L be proper submodules of an R-module M and let I, P be proper ideals of R.
(1) If $N \subseteq I M$, then $M(N, I)=M(0, I)=M(I M)$. In particular, if $N, L \subseteq I M$, then $M(N, I)=M(L, I)$.
(2) If P is a prime ideal of R and $M(N, I) \subseteq M(N, P) \neq M$, then $I \subseteq P$.
(3) If P is a prime ideal of R, then N is a P-prime submodule of M if and only if $M=M(N, P)$.
(4) If P is a prime ideal of R and $M(N, P) \neq M$, then $M(N, P)$ is a P-prime submodule of M and is the intersection of all P-prime submodules of M containing N.

The following examples show that if N is a proper submodule of an R-module M and I is a proper ideal of R, then $M(N, I)$ is not necessarily a proper submodule of M.

Example 2.2. Let $R=\mathbb{Z}, M=\mathbb{Z} \times \mathbb{Z}, N=4 Z \times 7 Z$ and $I=28 \mathbb{Z}$. It is clear that $M(N, I)$ is not a submodule of M, since $(1,0),(0,1) \in$ $M(N, I)$ but $(1,1) \notin M(N, I)$.
Example 2.3. Let $R=Z_{12}, M=Z_{6}$.
(a) If $N=\overline{2} Z_{6}$ and $I=\overline{3} Z_{12}$. Then $M(N, I)=I M+N=M$.
(b) If $N=\overline{3} Z_{6}$ and $I=\overline{6} Z_{12}$. Then $I M=0$ and since $\overline{3} \overline{1} \in N$ and $\overline{3} \notin I$, so $\overline{1} \in M(N, I)$. Thus $M(N, I)=M$.

Proposition 2.4. Let N be a proper submodule of an R-module M and let I be a proper ideal of R. If $M(N, I)$ is a proper submodule of M, then $M(N, I)$ is an $S(I)$-prime submodule of M. Moreover, $r \in S(I)$ if and only if $r m \in M(N, I)$ for every $m \in M$.

Proof. We first show that $(M(N, I): M)=S(I)$. Let $r \in(M(N, I)$: $M)$. Then $r M \subseteq M(N, I)$. Suppose that $m \in M-M(N, I)$, so $r m \in M(N, I)$ and $s r m \in N+I M$ for some $s \in R-I$. Thus $r s \notin R-I$ since $m \notin M(N, I)$. Therefore $r s \in I$ and so $r \in S(I)$. Conversely, assume that $t \in S(I)$. So $t r \in I$ for some $r \in R-I$. If $m \in M$, then $r(t m)=(r t) m \in I M \subseteq I M+N$. This implies that $t m \in M(N, I)$ for every $m \in M$. Thus $t \in(M(N, I): M)$.
Now, let $r m \in M(N, I)$ for some $r \in R$ and $m \in M$ such that $m \notin$ $M(N, I)$. The above argument shows that $t r \in I$ for some $t \in R-I$. Therefore $r \in S(I)=(M(N, I): M)$. The "moreover" statement follows directly from the above arguments.

Recall that if $M \neq T(M)$, then $T(M)$ is a union of prime submodules ([4, 3.3]). Now, we have the following theorem by the similar method in $[4,3.3]$.

Theorem 2.5. Let N be a proper submodule of an R-module M and let I be a proper ideal of R with $M \neq M(N, I)$. Then $M(N, I)$ is a union of prime submodules of M.

Proof. Let $x \in M(N, I)$. Set $S_{x}=\{L: L$ is a submodule of $M, x \in$ $L \subseteq M(N, I)$, and $L=\bigcup\left(I M+N:_{M} r_{\lambda}\right)$ for some $\left.\left\{r_{\lambda}\right\} \subseteq R\right\}$. Assume that $r x \in I M+N$ for some $r \in R-I$. So $x \in\left(I M+N:_{M} r\right)$, then $S_{x} \neq \emptyset$. Partially order S_{x} by inclusion. By Zorn's Lemma, S_{x} has a maximal element L_{x}. It suffices to show that L_{x} is a prime submodule.
Let $L_{x}=\bigcup_{\lambda \in \Lambda}\left(I M+N:_{M} r_{\lambda}\right)$ and let $r m \in L_{x}$ with $m \notin L_{x}$. If $r r_{\lambda} \in R-I$ for every $\lambda \in \Lambda$, then $\left(I M+N:_{M} r_{\lambda}\right) \subseteq\left(I M+N:_{M} r r_{\lambda}\right)$. Hence $L_{x} \subseteq L_{x}^{\prime}=\bigcup_{\lambda \in \Lambda}\left(I M+N:_{M} r r_{\lambda}\right)$. Now, let $m_{1}, m_{2} \in L_{x}^{\prime}$. Then $m_{i} \in\left(I M+N:_{M} r r_{\lambda_{i}}\right)$ for $i=1,2$. So $r m_{i} \in\left(I M+N:_{M} r_{\lambda_{i}}\right) \subseteq L_{x}$ and hence $r m_{1}+r m_{2} \in L_{x}$. Thus $r m_{1}+r m_{2} \in\left(I M+N:_{M} r_{\eta}\right)$
for some $\eta \in \Lambda$; so $m_{1}+m_{2} \in\left(I M+N:_{M} r r_{\eta}\right) \subseteq L_{x}^{\prime}$. It is clear that L_{x}^{\prime} is closed under scalar product, so L_{x}^{\prime} is a submodule of M with $L_{x}^{\prime} \subseteq M(N, I)$. Thus by maximality of $L_{x}, L_{x}=L_{x}^{\prime}$. Since $r m \in L_{x}$, so $r m \in\left(I M+N:_{M} r_{\alpha}\right)$ for some $\alpha \in \Lambda$. Hence $m \in$ $\left(I M+N:_{M} r r_{\alpha}\right) \subseteq L_{x}^{\prime}=L_{x}$; a contradiction. So $r r_{\lambda} \in I$ for some $\lambda \in \Lambda$. Then $r r_{\lambda} M \subseteq I M$ and hence $r M \subseteq\left(I M+N:_{M} r_{\lambda}\right) \subseteq L_{x}$. So $M(N, I)=\bigcup_{x \in M(N, I)} L_{x}$ is a union of prime submodules.

Proposition 2.6. Let N be a proper submodule of an R-module M and let I be a proper ideal of R with $M \neq M(N, I)$ and $M \neq T(M)$. If R is not an integral domain and $L_{1} \cap L_{2}=0$ for some prime submodules $L_{1}, L_{2} \subseteq M(N, I)$, then either $P \cap L_{1} \neq 0$ or $P \cap L_{2} \neq 0$ for every prime submodule P of M.

Proof. Let L_{1} be a $P_{1^{-}}$prime submodule and L_{2} be a $P_{2^{-}}$prime submodule of M. So $P_{1}, P_{2} \neq 0$, since R is not an integral domain. Therefore $P_{1} P_{2} M \subseteq P_{1} M \cap P_{2} M \subseteq L_{1} \cap L_{2}=0$. Thus $P_{1} P_{2} M=0 \subseteq P$. This implies that either $P_{1} M \subseteq P$ or $P_{2} M \subseteq P$, since P is a prime submodule of M. Hence either $0 \neq P_{1} M \subseteq P \cap L_{1}$ or $0 \neq P_{2} M \subseteq P \cap L_{2}$, since $M \neq T(M)$.

Proposition 2.7. Let N be a proper submodule of an R-module M and let P be a prime ideal of R such that $M(N, P) \neq M$. Then for every multiplicatively closed subset S of R with $S \cap P \neq \emptyset, S^{-1}(M(N, P))=$ $S^{-1} M\left(S^{-1} N, S^{-1} P\right)$.

Proof. Assume that $m / s \in S^{-1} M\left(S^{-1} N, S^{-1} P\right)$ for some $m \in M$ and $s \in S$. So there exists $r / t \in S^{-1} R-S^{-1} P$ such that $r m / s t \in$ $\left(S^{-1} P\right)\left(S^{-1} M\right)+S^{-1} N=S^{-1}(P M+N)$. Thus $r m / s t=x / s^{\prime}$ for some $x \in P M+N$ and $s^{\prime} \in S$. Hence $s^{\prime \prime} s^{\prime} r m=s^{\prime \prime}$ stx for some $s^{\prime \prime} \in S$. Since P is a prime ideal of R, so $s^{\prime \prime} s^{\prime} \notin P$, then $r m \in M(N, P)$ by definition. So $m \in M(N, P)$ since $r \notin P$ and $M(N, P)$ is a P-prime submodule of M by [10, 2.2]. Conversely, let $m / s \in S^{-1}(M(N, P))$ for some $m \in M(N, P)$ and $s \in S$. Thus $t m \in P M+N$ for some $t \in R-P$. Then $t / 1 \in S^{-1} R-S^{-1} P$ and $(t / 1)(\mathrm{m} / \mathrm{s})=t \mathrm{~m} / \mathrm{s} \in S^{-1}(P M+N)=$ $\left(S^{-1} P\right)\left(S^{-1} M\right)+S^{-1} N$. Hence $m / s \in S^{-1} M\left(S^{-1} N, S^{-1} P\right)$.

3. The case when $M(N, I)$ is a submodule of M

In this section, we study the case when $M(N, I)$ a submodule of M (i.e when $M(N, I)$ is closed under addition). It is clear that if $M(N, I)=M$, then $T\left(\Gamma_{N, I}(M)\right)$ is a complete graph. Thus, in this section we suppose that $M(N, I) \neq M$. So if $M(N, I)$ is a submodule of M, then $M(N, I)$ is actually a prime submodule of M by Proposition
2.4. We denote $M\left(\Gamma_{N, I}(M)\right)$ and $\bar{M}\left(\Gamma_{N, I}(M)\right)$ the (induced) subgraphs of $T\left(\Gamma_{N, I}(M)\right)$ with vertices in $M(N, I)$ and $M-M(N, I)$ respectively.

Theorem 3.1. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M. Then:
(1) $M\left(\Gamma_{N, I}(M)\right)$ is a complete (induced) subgraph of $T\left(\Gamma_{N, I}(M)\right)$ and it is disjoint from $\bar{M}\left(\Gamma_{N, I}(M)\right)$.
(2) If $0 \neq I M+N \varsubsetneqq M(N, I)$, then $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=3$.

Proof. (1) It is clear by definition that for all $m, n \in M(N, I)$, we have $m+n \in M(N, I)$; since $M(N, I)$ is a submodule of M. Thus $M\left(\Gamma_{N, I}(M)\right)$ is a complete (induced) subgraph of $T\left(\Gamma_{N, I}(M)\right)$. Now, suppose that $x \in M(N, I)$ and $y \in M-M(N, I)$. If x and y are adjacent, then $x+y \in M(N, I)$ which is a contradiction.
(2) Let $0 \neq x \in I M+N$ and $y \in M(N, I)-(I M+N)$. Then $0-x-y-0$ is a 3 -cycle in $M\left(\Gamma_{N, I}(M)\right)$.

Theorem 3.2. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M.
(1) Assume that G is an induced subgraph of $\bar{M}\left(\Gamma_{N, I}(M)\right)$ and let m and m^{\prime} be distinct vertices of G which are connected by a path in G. Then there exists a path in G of length at most 2 between m and m^{\prime}. In particular, if $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is connected, then $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \leq 2$. (2) Let m and m^{\prime} be distinct elements of $\bar{M}\left(\Gamma_{N, I}(M)\right)$ that are connected by a path. If m and m^{\prime} are not adjacent, then $m-(-m)-m^{\prime}$ and $m-\left(-m^{\prime}\right)-m^{\prime}$ are paths of length 2 between m and m^{\prime} in $\bar{M}\left(\Gamma_{N, I}(M)\right)$.

Proof. (1) It suffices to show that if m_{1}, m_{2}, m_{3} and m_{4} are distinct vertices of subgraph G and there is a path $m_{1}-m_{2}-m_{3}-m_{4}$ from m_{1} to m_{4}, then m_{1} and m_{4} are adjacent. So $m_{1}+m_{2}, m_{2}+m_{3}, m_{3}+m_{4} \in$ $M(N, I)$ gives $m_{1}+m_{4}=\left(m_{1}+m_{2}\right)-\left(m_{2}+m_{3}\right)+\left(m_{3}+m_{4}\right) \in M(N, I) ;$ since $M(N, I)$ is a submodule of M. Thus m_{1} and m_{4} are adjacent. So if $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is connected, then $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \leq 2$.
(2) Since $m+m^{\prime} \notin M(N, I)$, then there exists $x \in M-M(N, I)$ such that $m-x-m^{\prime}$ is a path of length 2 by part (1) above. Thus $m+x, x+m^{\prime} \in M(N, I)$. Thus $m-m^{\prime}=(m+x)-\left(x+m^{\prime}\right) \in M(N, I)$. Also $m \neq-m$ and $m^{\prime} \neq-m$; since $m, m+m^{\prime} \notin M(N, I)$. Thus $m-(-m)-m^{\prime}$ and $m-\left(-m^{\prime}\right)-m^{\prime}$ are paths of length 2 between m and m^{\prime} in $\bar{M}\left(\Gamma_{N, I}(M)\right)$.

Theorem 3.3. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M. Then the following statements are equivalent:
(1) $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is connected.
(2) Either $m+m^{\prime} \in M(N, I)$ or $m-m^{\prime} \in M(N, I)$ for all $m, m^{\prime} \in$ $M-M(N, I)$.
(3) Either $m+m^{\prime} \in M(N, I)$ or $m+2 m^{\prime} \in M(N, I)$ for all $m, m^{\prime} \in$ $M-M(N, I)$.
In particular, either $2 m \in M(N, I)$ or $3 m \in M(N, I)$ (but not both) for all $m \in M-M(N, I)$.

Proof. (1) \Rightarrow (2) Assume that there exist $m, m^{\prime} \in M-M(N, I)$ such that $m+m^{\prime} \notin M(N, I)$. If $m=m^{\prime}$, then $m-m^{\prime} \in M(N, I)$. Otherwise $m-\left(-m^{\prime}\right)-m^{\prime}$ is a path from m to m^{\prime} by Theorem 3.2 (2), and hence $m-m^{\prime} \in M(N, I)$.
(2) \Rightarrow (3) Assume that $m+m^{\prime} \notin M(N, I)$ for some $m, m^{\prime} \in M-$ $M(N, I)$. Since $\left(m+m^{\prime}\right)-m^{\prime}=m \notin M(N, I)$, so $m+2 m^{\prime}=(m+$ $\left.m^{\prime}\right)+m^{\prime} \in M(N, I)$ by assumption. In particular, if $m \in M-M(N, I)$ then either $2 m \in M(N, I)$ or $3 m \in M(N, I)$.
(3) \Rightarrow (1) Let $m, m^{\prime} \in M-M(N, I)$ be distinct elements of M such that $m+m^{\prime} \notin M(N, I)$. Then $m+2 m^{\prime} \in M(N, I)$ by assumption, so $2 m^{\prime} \notin M(N, I)$ since $M(N, I)$ is a submodule of M. Hence $3 m^{\prime} \in$ $M(N, I)$ by hypothesis. Since $m+m^{\prime} \notin M(N, I)$ and $3 m^{\prime} \in M(N, I)$, we conclude that $m \neq 2 m^{\prime}$, and so $m-2 m^{\prime}-m^{\prime}$ is a path from m to m^{\prime} in $\bar{M}\left(\Gamma_{N, I}(M)\right)$ as required.

Theorem 3.4. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M. If $|M(N, I)|=\alpha$ and $|M / M(N, I)|=\beta$ (we allow α and β to be infinite), then:
(1) If $2 \in S(I)$, then $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a disjoint union of $\beta-1$ copies of K^{α}.
(2) If $2 \notin S(I)$, then $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a disjoint union of $(\beta-1) / 2$ copies of $K^{\alpha, \alpha}$.

Proof. (1) Suppose that $2 \in S(I)$ and $x \in M-M(N, I)$. So $2 x \in$ $M(N, I)$ by Proposition 2.4. Since $\left(x+m_{1}\right)+\left(x+m_{2}\right)=2 x+\left(m_{1}+\right.$ $\left.m_{2}\right) \in M(N, I)$ for all $m_{1}, m_{2} \in M(N, I)$, so each coset $x+M(N, I)$ induces a complete subgraph of $\bar{M}\left(\Gamma_{N, I}(M)\right)$. Now, we show that distinct cosets form disjoint subgraphs of $\bar{M}\left(\Gamma_{N, I}(M)\right)$. If $x+m_{1}$ and $y+m_{2}$ are adjacent for some $m_{1}, m_{2} \in M-M(N, I)$ and $x, y \in M(N, I)$, then $m_{1}+m_{2}=\left(x+m_{1}\right)+\left(y+m_{2}\right)-(x+y) \in M(N, I)$ and hence $m_{1}-m_{2}=\left(m_{1}+m_{2}\right)-2 m_{1} \in M(N, I)$, by Proposition 2.4 and since $M(N, I)$ is a submodule of M. So $m_{1}+M(N, I)=m_{2}+M(N, I)$ a contradiction. Thus $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a union of $\beta-1$ disjoint (induced) subgraphs $m+M(N, I)$, each of which is a K^{α}, where $\alpha=|M(N, I)|=$
$|m+M(N, I)|$.
(2) Let $m \in M-M(N, I)$ and $2 \notin S(I)$. Then no two distinct elements in $m+M(N, I)$ are adjacent. Otherwise, $(m+x)+(m+y) \in M(N, I)$ for some $x, y \in M(N, I)$. This implies that $2 m \in M(N, I)$. So $2 \in S(I)$ by Proposition 2.4, a contradiction. Also, the two cosets $m+M(N, I)$ and $-m+M(N, I)$ are adjacent. So $(m+M(N, I)) \cup(-m+M(N, I))$ is a complete bipartite subgraph of $\bar{M}\left(\Gamma_{N, I}(M)\right)$. If $x+m_{1}$ is adjacent to $y+m_{2}$ for some $x, y \in M-M(N, I)$ and $m_{1}, m_{2} \in M(N, I)$, then $x+y \in M(N, I)$ and so $x+M(N, I)=-y+M(N, I)$. Thus $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a union of $(\beta-1) / 2$ disjoint (induced) subgraphs $(m+$ $M(N, I)) \cup(-m+M(N, I))$, each of which is a $K^{\alpha, \alpha}$, where $\alpha=$ $|M(N, I)|=|m+M(N, I)|$.

Example 3.5. Let $R=Z_{18}, M=R$.
(a) If $N=\overline{6} Z_{18}$ and $I=\overline{2} Z_{18}$, then $M(N, I)=I M+N=2 Z_{18}$ and $2 \in S(I)=I$ implies that $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is the complete graph K^{9}. ($\alpha=9, \beta=2$)
(b) If $N=\overline{6} Z_{18}$ and $I=\overline{3} Z_{18}$, then $M(N, I)=I M+N=\overline{3} Z_{18}$ and $2 \notin S(I)=I$ implies that $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is the complete bipartite graph $K^{6,6} .(\alpha=6, \beta=3)$

Theorem 3.6. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M. Then
(1) $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is complete if and only if $|M / M(N, I)|=2$ or $|M|=$ $|M / M(N, I)|=3$.
(2) $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is connected if and only if $|M / M(N, I)|=2$ or $|M / M(N, I)|=3$.
(3) $\bar{M}\left(\Gamma_{N, I}(M)\right)$ (and hence $T\left(\Gamma_{N, I}(M)\right)$ and $M\left(\Gamma_{N, I}(M)\right)$) are totally disconnected if and only if $M(N, I)=\{0\}$ and $2 \in S(I)$.

Proof. Let $|M(N, I)|=\alpha$ and $|M / M(N, I)|=\beta$.
(1) Let $\bar{M}\left(\Gamma_{N, I}(M)\right)$ be a complete graph. Then $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a single graph K^{α} or $K^{1,1}$ by Theorem 3.4. If $2 \in S(I)$, then $\beta-1=1$. Thus $\beta=2$ and hence $|M / M(N, I)|=2$. If $2 \notin S(I)$, then $\alpha=1$ and $(\beta-1) / 2=1$. Thus $M(N, I)=N+I M=\{0\}$ and $\beta=3$; hence $|M|=|M / M(N, I)|=3$. Conversely, first suppose that $M / M(N, I)=$ $\{M(N, I), x+M(N, I)\}$, where $x \notin M(N, I)$. Then $x+M(N, I)=$ $-x+M(N, I)$ gives $2 x \in M(N, I)$. Hence there exists $r \in R-I$ such that $(2 r) m \in I M+N$. Since $m \notin M(N, I)$, then $2 r \in I$ and hence $2 \in S(I)$. So, $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a single graph K^{α}. Assume that $|M|=$ $|M / M(N, I)|=3$; If $2 \in S(I)$, then $2 \in S(I)=(M(N, I): M)$ by Proposition 2.4. This implies that $2 \in(0: M)$ which is a contradiction
since M is a cyclic group of order 3 .
(2) Let $\bar{M}\left(\Gamma_{N, I}(M)\right)$ be a connected graph. Then $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a single K^{α} or $K^{\alpha, \alpha}$ by Theorem 3.4. If $2 \in S(I)$, then $\beta-1=1$. So $|M / M(N, I)|=\beta=2$. If $2 \notin S(I)$, then $(\beta-1) / 2=1$ gives $\beta=3$, so $|M / M(N, I)|=\beta=3$. Conversely, by part (1) above, we may assume that $|M / M(N, I)|=3$. If $2 \in S(I)$, then $2 \in(M(N, I): M)$ by Proposition 2.4. Now, suppose that $M / M(N, I)=\{M(N, I), x+$ $M(N, I), y+M(N, I)\}$, where $x, y \in M-M(N, I)$. Since $M / M(N, I)$ is a cyclic group of order 3 , we have $(x+M(N, I))+(x+M(N, I))=y+$ $M(N, I)$. Thus $2 x-y \in M(N, I)$; hence $y \in M(N, I)(2 x \in M(N, I))$, a contradiction. So $2 \notin S(I)$ and $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a single graph $K^{\alpha, \alpha}$ by Theorem 3.4.
(3) $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is totally disconnected if and only if it is a disjoint union of K^{1} 's. By Theorem 3.4, $2 \in S(I)$ and $|M(N, I)|=1$.

Theorem 3.7. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M. Then $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=0,1,2$ or ∞. In particular, if $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is connected, then $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \leq 2$.
Proof. Assume that $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a connected subgraph of $T\left(\Gamma_{N, I}(M)\right)$. Then $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is a singleton, a complete graph, or a complete bipartite graph by Theorem 3.4. Thus $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \leq 2$.

Now, we have the following theorem that gives a more explicit description of the diameter of $\bar{M}\left(\Gamma_{N, I}(M)\right)$ by Theorem 3.4 and Theorem 3.6.

Theorem 3.8. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M.
(1) $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=0$ if and only if $M(N, I)=\{0\}$ and $|M|=2$.
(2) $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=1$ if and only if either $M(N, I) \neq\{0\}$ and $|M / M(N, I)|=2$ or $M(N, I)=\{0\}$ and $|M|=3$.
(3) $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=2$ if and only if $M(N, I) \neq\{0\}$ and $|M / M(N, I)|=3$.
(4) Otherwise, $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=\infty$.

Proposition 3.9. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M. Then $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=3,4$ or ∞. In particular, $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \leq$ 4 if $\bar{M}\left(\Gamma_{N, I}(M)\right)$ contains a cycle.
Proof. Let $\bar{M}\left(\Gamma_{N, I}(M)\right)$ contains a cycle. Since $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is disjoint union of either complete or complete bipartite graphs by Theorem 3.4,
thus it contains either a 3 -cycle or 4 -cycle. So $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \leq$ 4.

Theorem 3.10. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is a submodule of M.
(1) (a) $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=3$ if and only if $2 \in S(I)$ and $|M(N, I)| \geq 3$.
(b) $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=4$ if and only if $2 \notin S(I)$ and $|M(N, I)| \geq 2$.
(c) Otherwise, $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right)=\infty$.
(2) (a) $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=3$ if and only if $|M(N, I)| \geq 3$.
(b) $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=4$ if and only if $2 \notin S(I)$ and $|M(N, I)|=2$.
(c) Otherwise $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=\infty$.

Proof. Apply Theorem 3.4, Proposition 3.9 and Theorem 3.1.

4. The case when $M(N, I)$ is not a submodule of M

The aim of this section is to determine when $T\left(\Gamma_{N, I}(M)\right)$ is connected and we compute $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right)$. We first show that the subgraphs $M\left(\Gamma_{N, I}(M)\right)$ and $\bar{M}\left(\Gamma_{N, I}(M)\right)$ are not disjoint, when $M(N, I)$ is not a submodule of M.

Theorem 4.1. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is not a submodule of M. Then
(1) $M\left(\Gamma_{N, I}(M)\right)$ is connected with $\operatorname{diam}\left(M\left(\Gamma_{N}(M)\right)\right)=2$.
(2) Some vertex of $M\left(\Gamma_{N, I}(M)\right)$ is adjacent to a vertex of $\bar{M}\left(\Gamma_{N, I}(M)\right)$. In particular, the subgraphs $M\left(\Gamma_{N, I}(M)\right)$ and $\bar{M}\left(\Gamma_{N, I}(M)\right)$ are not disjoint.
(3) If $\bar{M}\left(\Gamma_{N, I}(M)\right)$ is connected, then $T\left(\Gamma_{N, I}(M)\right)$ is connected.

Proof. (1) Let $x \in M(N, I)$ be a nonzero element. Then x is adjacent to 0 . So $x-0-x^{\prime}$ is a path in $M\left(\Gamma_{N, I}(M)\right)$ between any two nonzero distinct elements $x, x^{\prime} \in M(N, I)$. Since $M(N, I)$ is not a submodule of M, so $|M(N, I)| \geq 3$. Thus there exist nonadjacent vertices $x, x^{\prime} \in$ $M(N, I)$. So $\operatorname{diam}\left(M\left(\Gamma_{N, I}(M)\right)\right)=2$.
(2) Since $M(N, I)$ is not a submodule of M, so there exists nonzero elements $x, x^{\prime} \in M(N, I)$ such that $x+x^{\prime} \notin M(N, I)$. Then $-x \in$ $M(N, I)$ and $x+x^{\prime} \in M-M(N, I)$ are adjacent vertices in $T\left(\Gamma_{N, I}(M)\right)$, since $-x+\left(x+x^{\prime}\right)=x^{\prime} \in M(N, I)$. The "in particular" statement is clear.
(3) Since $M\left(\Gamma_{N, I}(M)\right)$ and $\bar{M}\left(\Gamma_{N, I}(M)\right)$ are connected and there is an edge between $M\left(\Gamma_{N, I}(M)\right)$ and $\bar{M}\left(\Gamma_{N, I}(M)\right)$, then there is a path from x to y for every element $x, y \in M$. Thus $T\left(\Gamma_{N, I}(M)\right)$ is connected.

Theorem 4.2. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is not a submodule of M. Then $T\left(\Gamma_{N, I}(M)\right)$ is connected if and only if $M=<M(N, I)>$.

Proof. Suppose that $T\left(\Gamma_{N, I}(M)\right)$ is connected, and let $m \in M$. Then there is a path $0-m_{1}-m_{2}-\ldots-m_{n}-m$ from 0 to m in $T\left(\Gamma_{N, I}(M)\right)$. So $m_{1}, m_{1}+m_{2}, \ldots, m_{n-1}+m_{n}, m_{n}+m \in M(N, I)$. Hence $m \in<m_{1}, m_{1}+$ $m_{2}, \ldots, m_{n-1}+m_{n}, m_{n}+m>\subseteq<M(N, I)>$; so $M=<M(N, I)>$.
Conversely, suppose that $M=<M(N, I)>$. We first show that there is a path from 0 to x in $T\left(\Gamma_{N, I}(M)\right)$ for any $0 \neq x \in M$. By hypothesis, $x=m_{1}+m_{2}+\ldots+m_{n}$ for some $m_{1}, \ldots, m_{n} \in M(N, I)$. Let $x_{0}=0$ and $x_{k}=(-1)^{n+k}\left(m_{1}+\ldots+m_{k}\right)$ for each integer k with $0 \leq k \leq n$. Then $x_{k}+x_{k+1}=(-1)^{n+k+1} m_{k+1} \in M(N, I)$ for each k with $0 \leq k \leq n-1$, and thus $0-x_{1}-x_{2}-\ldots-x_{n-1}-x_{n}=x$ is a path from 0 to x in $T\left(\Gamma_{N, I}(M)\right)$ of length at most n. Now, let $0 \neq x, y \in M$. Then by the preceding argument, there are paths from x to 0 and 0 to y in $T\left(\Gamma_{N, I}(M)\right)$. Hence there is a path from x to y in $T\left(\Gamma_{N, I}(M)\right)$; so $T\left(\Gamma_{N, I}(M)\right)$ is connected.

Theorem 4.3. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is not a submodule of M. Assume that $n \geq 2$ be the least integer such that $M=<m_{1}, m_{2}, \ldots, m_{n}>$ for some $m_{1}, \ldots, m_{n} \in M(N, I)$ (that is, $T\left(\Gamma_{N, I}(M)\right)$ is connected), then:
(1) If n is an even integer, then $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right) \leq n$.
(2) If n is an odd integer, then diam $\left(T\left(\Gamma_{N, I}(M)\right)\right) \leq n+1$.
(3) If M is a cyclic R-module, then $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right) \in\{n, n+1\}$.

Proof. Let x and x^{\prime} be distinct elements of M. By assumption, $x=$ $\sum_{i=1}^{n} r_{i} m_{i}$ and $x^{\prime}=\sum_{i=1}^{n} r_{i}^{\prime} m_{i}$ for some $r_{i}, r_{i}^{\prime} \in R$.
(1) Let n be an even integer. Define $x_{0}=x, x_{n}=x^{\prime}$ and for each integer k with $1 \leq k \leq n-1, x_{k}=(-1)^{k}\left(\sum_{i=k+1}^{n} r_{i} m_{i}+\sum_{i=1}^{k} r_{i}^{\prime} m_{i}\right)$. So $x_{k}+x_{k+1}=(-1)^{k} m_{k+1}\left(r_{k+1}-r_{k+1}^{\prime}\right) \in M(N, I)$ for each integer k with $0 \leq k \leq n-1$. Then $x-x_{1}-\ldots-x_{n-1}-x^{\prime}$ is a path from x to x^{\prime} in $T\left(\Gamma_{N, I}(M)\right)$ with length at most n.
(2) Let n be an odd integer. If $x^{\prime}=-x^{\prime}$, then we have a path similar to the case (1) above. So we may assume that $x^{\prime} \neq-x^{\prime}$. If $x=-x^{\prime}$, then the edge $x-x^{\prime}$ exists, otherwise we define x_{k} similar to case (1) above for each integer k with $0 \leq k \leq n-1, x_{n}=-x^{\prime}$ and $x_{n+1}=x^{\prime}$. So $x_{k}+x_{k+1}=(-1)^{k} m_{k+1}\left(r_{k+1}-r_{k+1}^{\prime}\right) \in M(N, I)$ for each integer k with $0 \leq k \leq n-1$ and there is a path $x-x_{1}-\ldots-x_{n+1}\left(=x^{\prime}\right)$ from x to x^{\prime} in $T\left(\Gamma_{N, I}(M)\right)$ with length at most $n+1$.
(3) Suppose that M is a cyclic module with generator m. Let $0-y_{1}-$
$\ldots-y_{k-1}-m$ be a path from 0 to m in $T\left(\Gamma_{N, I}(M)\right)$ of length k. Thus $y_{1}, y_{1}+y_{2}, \ldots, y_{k-1}+m \in M(N, I)$, hence $m \in<y_{1}, y_{1}+y_{2}, \ldots, y_{k-1}+$ $m>\subseteq<M(N, I)>$. Then $k \geq n$ and the proof is complete.
Theorem 4.4. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is not a submodule of M. Assume that $n \geq 2$ be the least integer such that $M=<m_{1}, m_{2}, \ldots, m_{n}>$ for some $m_{1}, \ldots, m_{n} \in M(N, I)$ and M be a cyclic R-module with generator m. Then
(1) $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right) \in\{d(0, m), d(0, m)-1\}$.
(2) If $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right)=n$, then $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \geq n-2$.
(3) If $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right)=n+1$, then $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \geq n-1$.

Proof. (1) This follows from Theorem 4.3.
(2) Suppose that $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right)=n$. Since $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right) \in$ $\{d(0, m), d(0, m)-1\}$ by part (1) above, so let $0-x_{1}-\ldots-x_{n-1}-m$ be a shortest path from 0 to m in $T\left(\Gamma_{N, I}(M)\right)$. Then $x_{1} \in M(N, I)$. If $x_{i} \in M(N, I)$ for some $2 \leq i \leq n-1$, then $0-x_{i}-x_{i+1}-\ldots-x_{n-1}-m$ is a path from 0 to m whose length is less than n, a contradiction. So $x_{i} \in M-M(N, I)$ for each $2 \leq i \leq n-1$. Hence $x_{2}-\ldots-x_{n-1}-m$ is a shortest path from x_{2} to m in $\bar{M}\left(\Gamma_{N, I}(M)\right)$ of length $n-2$. So $\operatorname{diam}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \geq n-2$.
(3) The proof is similar to part (2) above.

Let N be a proper submodule of an R-module M and let I be a proper ideal of R. Recall that two submodules L and K of M are called co-maximal if $M=L+K$. Note that if proper subset $M(N, I)$ of M contains two co-maximal submodules of M, then $M(N, I)$ is not a submodule of M.

Theorem 4.5. Let M be a finitely generated R-module and $n \geq 2$ be the least integer that $M=<m_{1}, m_{2}, \ldots, m_{n}>$ for some $m_{1}, \ldots, m_{n} \in M$. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ contains two co-maximal submodules of M. Then $T\left(\Gamma_{N, I}(M)\right)$ is connected with $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right) \leq 2 n$.
Proof. Let $L, K \subseteq M(N, I)$ be co-maximal submodules of M. Then $M=L+K$; so $m_{i}=x_{i}+y_{i}$ for some $x_{i} \in L$ and $y_{i} \in K$ for every $i=1,2, \ldots, n$. Hence $M=<x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}>$. Thus $T\left(\Gamma_{N, I}(M)\right)$ is connected with $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right) \leq 2 n$ by Theorem 4.2 and Theorem 4.3.

Theorem 4.6. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is not a submodule of M.
(1) If $I M+N \neq\{0\}$, then $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=3$. Otherwise $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right) \in\{3, \infty\}$.
(2) $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=3$ if and only if $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=3$.
(3) The (induced) subgraph of $M\left(\Gamma_{N, I}(M)\right)$ with vertices in $N+I M$ is complete, hence $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=3$ when $|N+I M| \geq 3$.
(4) If $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=4$, then $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=\infty$.
(5) If $I M+N \neq 0$ and $2 \in I$, then $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \in\{3, \infty\}$.
(6) If $2 \notin I$, then $\operatorname{gr}\left(\bar{M}\left(\Gamma_{N, I}(M)\right)\right) \in\{3,4, \infty\}$.

Proof. (1) Suppose that $0 \neq x \in I M+N$ and $y \in M(N, I)-(I M+N)$. So $r y \in I M+N$ for some $r \in R-I$, thus $r(x+y) \in I M+N$. Hence $x+y \in M(N, I)$ and then $0-x-y-0$ is a 3 -cycle in $M\left(\Gamma_{N, I}(M)\right)$. Now, assume that $I M+N=\{0\}$, then $N=I M=\{0\}$. If $x+y \in M(0, I)$ for some nonzero distinct elements $x, y \in M(0, I)$, then $0-x-y-0$ is a 3-cycle in $M\left(\Gamma_{0, I}(M)\right)$, so $\operatorname{gr}\left(M\left(\Gamma_{0, I}(M)\right)\right)=3$. Otherwise, $x+y \in$ $M-M(0, I)$ for all distinct elements $x, y \in M(0, I)$. Therefore, each nonzero element $x \in M(0, I)$ is adjacent to 0 , and no two nonzero distinct vertices $x, y \in M(0, I)$ are adjacent. Thus $M\left(\Gamma_{0, I}(M)\right)$ is a star graph with center 0 and $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=\infty$.
(2) We need only show that $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=3$ when $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)$ $=3$. First suppose that $2 x \neq 0$ for some nonzero element $x \in M(N, I)$, then $0-x-(-x)-0$ is a 3 -cycle in $M(N, I)$. So we may assume that $2 x=0$ for all $x \in M(N, I)$. There are elements $m, m^{\prime} \in M(N, I)$ such that $m+m^{\prime} \notin M(N, I)$, since $M(N, I)$ is not a submodule of M. So $2\left(m+m^{\prime}\right)=0$, this implies that $2 \in I$. Let $m-m_{1}-m_{2}-m$ be a $3-$ cycle in $T\left(\Gamma_{N, I}(M)\right)$. Then $m+m_{1}, m_{1}+m_{2}, m_{2}+m \in M(N, I)$. First suppose that $m+m_{1} \neq 0$ and $m+m_{2} \neq 0$. Since $m_{1}+m_{2} \in M(N, I)$; so there exists $r \in R-I$ such that $r\left(m_{1}+m_{2}\right) \in I M+N$. Thus $r\left(m_{1}+m_{2}+2 m\right) \in I M+N$ since $2 \in I$. Hence $0-\left(m+m_{1}\right)-\left(m+m_{2}\right)-0$ is a 3 -cycle in $M\left(\Gamma_{N, I}(M)\right)$.
Now suppose that $m+m_{1} \neq 0$ and $m+m_{2}=0$, then $m_{2}=-m$ and $2 m \neq 0$ since m and m_{2} are distinct elements. Then $0-\left(m_{1}+m\right)-$ $\left(m_{1}-m\right)-0$ is a 3 -cycle in $M\left(\Gamma_{N, I}(M)\right)$ since $2 \in I$.
(3) It is clear, since $N+I M \subseteq M(N, I)$ is a submodule of M.
(4) This follows by parts (1) and (2) above.
(5) Let $\bar{M}\left(\Gamma_{N, I}(M)\right)$ contains a cycle and let $0 \neq x \in I M+N$. Then there is a path $m_{1}-m_{2}-m_{3}$ in $\bar{M}\left(\Gamma_{N, I}(M)\right)$. If m_{1} and m_{3} are adjacent vertices in $\bar{M}\left(\Gamma_{N, I}(M)\right)$, then the proof is complete. So we may assume that $m_{1}+m_{3} \notin M(N, I)$. If $m_{2}-m_{1}, m_{3}-m_{2} \in I M+N$, then $m_{3}-m_{1} \in I M+N$. Since $2 m_{1} \in I M+N$, thus $m_{1}+m_{3} \in I M+N$, which is a contradiction. So, without loss of generality we may assume that $m_{2}-m_{1} \notin I M+N$. Hence $\left(x+m_{1}\right)-m_{1}-m_{2}-\left(x+m_{1}\right)$ is a

3 -cycle in $\bar{M}\left(\Gamma_{N, I}(M)\right)$.
(6) Assume that $\bar{M}\left(\Gamma_{N, I}(M)\right)$ contains a cycle and let $0 \neq x \in I M+N$. Then there is a path $m_{1}-m_{2}-m_{3}$ in $\bar{M}\left(\Gamma_{N, I}(M)\right)$. Let $m_{1}+m_{3} \notin$ $M(N, I)$. Since $m_{1} \neq m_{3}$, then either $m_{1}+m_{2} \neq 0$ or $m_{2}+m_{3} \neq 0$. We may assume that $m_{1}+m_{2} \neq 0$. Since $2 \notin I$, if $2 m_{i}=0$, then $m_{i} \in M(N, I)$ for some $i=1,2,3$ which is a contradiction. Thus $m_{1}-m_{2}-\left(-m_{2}\right)-\left(-m_{1}\right)-m_{1}$ is a 4 -cycle in $M\left(\Gamma_{N, I}(M)\right)$.

Recall that if $\operatorname{gr}(T(\Gamma(M)))=4$, then $\operatorname{gr}(\operatorname{Tor}(\Gamma(M)))=\infty$ if $T(M)$ is not a submodule of M [12, 3.5]. Also, if $\operatorname{gr}\left(T\left(\Gamma_{N}(M)\right)\right)=4$, then $\operatorname{gr}\left(M\left(\Gamma_{N}(M)\right)\right)=\infty$, when $M(N)$ is not a submodule of $M[2,4.5]$. Now, we provide a proof for the converse of $[12,3.5$ (3)] and $[2,4.5$ (4)], when R is not an integral domain and $M \neq T(M)$.

Proposition 4.7. Let N be a proper submodule of an R-module M and let I be a proper ideal of R such that $M(N, I)$ is not a submodule of M and let $M \neq T(M)$. If R is not an integral domain and $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=\infty$, then $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=4$. Moreover, if $\operatorname{gr}(\operatorname{Tor}(\Gamma(M)))=\infty$, then $|M(N, I)|=3$.

Proof. Suppose that $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=\infty$. Since $M(N, I)$ is not a submodule of M, so $M(N, I) \neq M$. Then $M(N, I)=\bigcup_{\alpha \in \Lambda} L_{\alpha}$, where each L_{α} is a prime submodule of M and $|\Lambda| \geq 2$. If $\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=$ ∞, then $x+y \in M-M(N, I)$ for all nonzero distinct elements $x, y \in$ $M(N, I)$. So $\left|L_{\alpha}\right|=2$ for every $\alpha \in \Lambda$. Hence the intersection of any two distinct L_{α} 's is $\{0\}$ and so $|\Lambda|=2$ by Proposition 2.6. So $M(N, I)=L_{1} \cup L_{2}$ for prime submodules L_{1} and L_{2} of M with $L_{1} \cap L_{2}=$ 0 and $\left|L_{1}\right|=\left|L_{2}\right|=2$. So we may assume that $L_{1}=\{0, x\}$ and $L_{2}=\{0, y\}$ where $2 x=2 y=0$. So $|M(N, I)|=3$ and $x+y \notin$ $M(N, I)$. Thus $0-x-(x+y)-y-0$ is a 4 -cycle in $T\left(\Gamma_{N, I}(M)\right)$. Then $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=4$ by Theorem ??(2).
The "moreover" statement follows directly from the above arguments.

Example 4.8. Let $R=\mathbb{Z}, M=\mathbb{Z} \times \mathbb{Z}, N=4 Z \times 7 Z$ and $I=28 \mathbb{Z}$. So $M(N, I)$ is not a submodule of M by Example 2.2. Also, $\mid N+$ $I M \mid \geq 3$, then $\operatorname{gr}\left(T\left(\Gamma_{N, I}(M)\right)\right)=\operatorname{gr}\left(M\left(\Gamma_{N, I}(M)\right)\right)=3$ by Theorem ??. Moreover, $(1,1)-(3,6)-(5,6)-(1,1)$ is a 3 -cycle in $\left.\bar{M}\left(\Gamma_{N, I}(M)\right)\right)$.

Proposition 4.9. Let N be a proper submodule of an R-module M and let I be a proper ideal of R with $|M(N, I)|=\alpha$. Let x be a vertex of $T\left(\Gamma_{N, I}(M)\right)$. Then the degree of x is either α or $\alpha-1$. In particular, if $2 \in S(I)$, then the graph $T\left(\Gamma_{N, I}(M)\right)$ is a $(\alpha-1)$-regular graph.

Proof. If x adjacent to y, then $x+y=z \in M(N, I)$ and hence $y=z-x$ for some $z \in M(N, I)$. Now, we have two cases:
Case 1. If $2 x \in M(N, I)$, then x is adjacent to $z-x$ for any $z \in$ $M(N, I) \backslash\{2 x\}$. Thus the degree of x is $\alpha-1$. In particular, if $2 \in S(I)$, then $T\left(\Gamma_{N, I}(M)\right)$ is a $(\alpha-1)$-regular graph by Proposition 2.4.
Case 2. Suppose that $2 x \notin M(N, I)$. Then x is adjacent to $z-x$ for any $z \in M(N, I)$. Thus the degree of x is α.

Proposition 4.10. Let M be an R-module M and let I be a proper ideal of R such that $M(N, I)$ is not a submodule of M. If $T\left(\Gamma_{I}(R)\right)$ is connected, then $T\left(\Gamma_{N, I}(M)\right)$ is connected for every proper submodule N of M. Moreover if $\operatorname{diam}\left(T\left(\Gamma_{I}(R)\right)\right)=n$, then $\operatorname{diam}\left(T\left(\Gamma_{N, I}(M)\right)\right) \leq$ $2 n+1$.

Proof. Let $T\left(\Gamma_{I}(R)\right)$ be connected and m, n be nonzero elements of M. Then there exists a path $s-a_{1}-a_{2}-\ldots-a_{k-1}-1$ from s to 1 of length k from s to 1 for some nonzero element $s \in S(I)$. So $s, s+a_{1}, \ldots, a_{k-1}+1 \in$ $S(I)$. Thus $m-a_{k-1} m-\ldots-a_{1} m-s m-s n-a_{1} n-\ldots-a_{k-1} n-n$ is a path from m to n of length at most $2 k+1$ by Proposition 2.4. The "moreover" statement follows directly from the above arguments.

Acknowledgments

The authors would like to thank the referee(s) for valuable comments and suggestions which have improved the paper.

References

1. A. Abbasi and Sh. Habibi, The total graph of a commutative ring with respect to proper ideals, J. Korean Math. Sco, 49 (2012), no. 1, 85-98.
2. A. Abbasi and Sh. Habibi, The total graph of a module over a commutative ring with respect to proper submodules, Journal of Algebra and it's Applications, (3) 11 (2012), 1250048-1250060.
3. D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. Algebra, 159 (1993), 500-514.
4. D. D. Anderson and S. Chun, The set of torsion elements of a module, to appear in Comm. Algebra, (42) 4 (2014), 1835-1843.
5. D. F. Anderson, M. C. Axtell and J. A. Stickles, Jr., Zero-divisor graphs in commutative rings, commutative Algebra, Noetherian and Non-Noetherian Perspectives, eds. M. Fontana, S. E. Kabbaj, B. Olberding and I. Swanson (SpringerVerlag, New York, 2011), pp. 23-45.
6. D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.
7. D. F. Anderson and P. F. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 437-447.
8. D. F. Anderson and S. B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure Appl. Algebra, 210 (2007), 543-550.
9. I. Beck, Coloring of a commutative ring, J. Algebra, 116 (1988), 208-226.
10. S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, On generalized distinguished prime submodules, Thai Journal of Mathematics, 6 (2008), 369-376.
11. S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, The total torsion element graph of semimodule over commutative semirings, Algebra and Discrete Mathematics, (1) 16, 2013, 1-15.
12. S. Ebrahimi Atani and S. Habibi, The total torsion element graph of a module over a commutative ring, An. St. Univ. Ovidius Constant, (1) 19 (2011), 23-34.

Narges Khatoon Tohidi

Department of Mathematics, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Email: tohidi@iauo.ac.ir

Fatemeh Esmaeili Khalil Saraei

Faculty of Fouman, College of Engineering, University of Tehran, P.O. Box 435151155, Fouman, Iran.
Email: f.esmaeili.kh@ut.ac.ir

S. Alireza Jalili

Department of Mathematics, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Email: jalili@iauo.ac.ir

[^0]: MSC(2010): 13C13, 05C75, 13A15
 Keywords: Total graph, prime submodule, module.
 Received: 30 August 2013, Accepted: 6 May 2014.
 $*$ Corresponding author .

