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THE GENERALIZED TOTAL GRAPH OF MODULES
RESPECT TO PROPER SUBMODULES OVER

COMMUTATIVE RINGS

N. K. TOHIDI ∗, F. ESMAEILI-KHALIL SARAEI AND S. A. JALILI

Abstract. Let M be a module over a commutative ring R and
let N be a proper submodule of M . The total graph of M over R
with respect to N , denoted by T (ΓN (M)), have been introduced
and studied in [2]. In this paper, A generalization of the total
graph T (ΓN (M)), denoted by T (ΓN,I(M)) is presented, where I
is an ideal of R. It is the graph with all elements of M as vertices,
and for distinct m,n ∈ M , the vertices m and n are adjacent if
and only if m + n ∈ M(N, I), where M(N, I) = {m ∈ M : rm ∈
N + IM for some r ∈ R − I}. The main purpose of this paper
is to extend the definitions and properties given in [2] and [12] to
a more general case.

1. Introduction

Throughout of this paper R is a commutative ring with nonzero iden-
tity and M is a unitary R-module. Recently, there has been consider-
able attention in the work to associating graphs with algebraic struc-
tures (see [1],[5],[7] and [11] ). In [6], the notion of the total graph of a
commutative ring T (Γ(R)) was introduced. The vertices of this graph
are all elements of R and two vertices x, y ∈ R are adjacent if and only
if x + y ∈ Z(R) (Z(R) is the set of zero divisors of R). The total tor-
sion element graph of a module M over a commutative ring R denoted
by T (Γ(M)) was introduced by Ebrahimi Atani and Habibi in [12], as
the graph with all elements of M as vertices, and two distinct vertices
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x, y ∈M are adjacent if and only if x+ y ∈ T (M) (T (M) is the set of
torsion elements of M). Let N be a proper submodule of an R-module
M and the ideal {r ∈ R : rM ⊆ N} will be denoted by (N : M).
Also for an element r ∈ R, the submodule {m ∈ M : rm ∈ N} will
be denoted by (N :M r). In [2], Abbasi and Habibi introduced total
graph of M respect to an arbitrary proper submodule N ; denoted by
T (ΓN(M)). The vertex set of T (ΓN(M)) is M and two distinct ver-
tices m,n ∈ M are adjacent if and only if m + n ∈ M(N), where
M(N) = {m ∈ M : rm ∈ N for some r ∈ R − (N : M)}. A proper
submoduleN ofM is said to be a prime submodule if whenever rm ∈ N
for some r ∈ R and m ∈ M , then either m ∈ N or r ∈ (N : M). It is
clear to see that if N is a prime submodule of M , then P = (N : M) is
a prime ideal of R and N is said to be a P -prime submodule. Now, let
I be a proper ideal of R. Then S(I) is the set of all elements of R that
are not prime to I; i.e., S(I) = {a ∈ R : ra ∈ I for some r ∈ R − I}.
It is clear that S(P ) = P for every prime ideal P of R. We define
M(N, I) = {m ∈ M : rm ∈ N + IM for some r ∈ R − I}. Since
IM+N ⊆M , then M(N, I) is not empty. M(N, I) is not necessarily a
submodule of M (not always closed under addition, see Example 2.2),
but it is clear that if r ∈ R and x ∈ M(N, I), then rx ∈ M(N, I). It
is easy to see that T (M) = M(0, 0) and M(N, I) = M(N) for every
ideal I ⊆ (N : M).
In the present paper, we introduce and investigate the generalized to-
tal graph of M respect to a submodule, denoted by T (ΓN,I(M)), as a
(undirected) graph with all elements of M as vertices, and for dis-
tinct m,n ∈ M , the vertices m and n are adjacent if and only if
m+n ∈M(N, I). It is easy to check that T (ΓN(M)) = T (ΓN,(N :M)(M))
and T (Γ(M)) = T (Γ0,0(M)). So by this definition, we can extend the
definitions and the results of graphs expressed in [2] and [12].
Let M(ΓN,I(M)) be the (induced) subgraph of T (ΓN,I(M)) with vertex
setM(N, I), and letM(ΓN,I(M)) be the (induced) subgraph T (ΓN,I(M))
with vertices consisting of M −M(N, I).
The study of T (ΓN,I(M)) breaks naturally into two cases depending on
whether or not M(N, I) is a submodule of M . In the second section, we
obtain some properties concerning M(N, I). In the third section, we
handle the case when M(N, I) is a submodule of M ; in forth section,
we do the case when M(N, I) is not a submodule of M . For every case,
we characterize the girths and diameters of T (ΓN,I(M)), M(ΓN,I(M))
and M(ΓN,I(M)).
We begin with some notation and definitions. For a graph Γ, by E(Γ)
and V (Γ), we mean the set of all edges and vertices, respectively. We
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recall that a graph is connected if there exists a path connecting any
two of it’s distinct vertices. At the other extreme, we say that a graph
is totally disconnected if no two vertices of this graph are adjacent. The
distance between two distinct vertices a and b, denoted by d(a, b), is
the length of a shortest path connecting them (if such a path does not
exist, then d(a, b) =∞. We also define d(a, a) = 0. The diameter of a
graph Γ, denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A
graph is complete if it is connected with diameter less than or equal to
one. The girth of a graph Γ, denoted gr(Γ), is the length of a shortest
cycle in Γ, provided Γ contains a cycle; otherwise; gr(Γ) = ∞. We
denote the complete graph on n vertices by Kn and the complete bi-
partite graph on m and n vertices by Km,n (we allow m and n to be
infinite cardinals). We will sometimes call a K1,m a star graph. For a
graph Γ, the degree of a vertex v in Γ, denoted deg(v), is the number
of edges of Γ incident with v. For a nonnegative integer k, a graph is
called k-regular if every vertex has degree k. We say that two (induced)
subgraphs Γ1 and Γ2 of Γ are disjoint if Γ1 and Γ2 have no common
vertices and no vertices of Γ1 is adjacent(in Γ) to some vertex of Γ2.

2. Some Properties of M(N, I)

In this section we list some basic properties concerning M(N, I)
where N is a proper submodule of an R-module M and I is a proper
ideal of R. We show that M(N, I) is a union of prime submodules of
M . We have the following remark by [10, 2.2 and 2.7].

Remark 2.1. Let N,L be proper submodules of an R-module M and
let I, P be proper ideals of R.
(1) If N ⊆ IM , then M(N, I) = M(0, I) = M(IM). In particular, if
N,L ⊆ IM , then M(N, I) = M(L, I).
(2) If P is a prime ideal of R and M(N, I) ⊆ M(N,P ) 6= M , then
I ⊆ P .
(3) If P is a prime ideal of R, then N is a P -prime submodule of M if
and only if M = M(N,P ).
(4) If P is a prime ideal of R and M(N,P ) 6= M , then M(N,P )
is a P -prime submodule of M and is the intersection of all P -prime
submodules of M containing N .

The following examples show that if N is a proper submodule of
an R-module M and I is a proper ideal of R, then M(N, I) is not
necessarily a proper submodule of M .
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Example 2.2. Let R = Z, M = Z × Z, N = 4Z × 7Z and I = 28Z.
It is clear that M(N, I) is not a submodule of M , since (1, 0), (0, 1) ∈
M(N, I) but (1, 1) /∈M(N, I).

Example 2.3. Let R = Z12, M = Z6.
(a) If N = 2̄Z6 and I = 3̄Z12. Then M(N, I) = IM +N = M .
(b) If N = 3̄Z6 and I = 6̄Z12. Then IM = 0 and since 3̄1̄ ∈ N and
3̄ /∈ I, so 1̄ ∈M(N, I). Thus M(N, I) = M .

Proposition 2.4. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R. If M(N, I) is a proper submodule of M ,
then M(N, I) is an S(I)-prime submodule of M . Moreover, r ∈ S(I)
if and only if rm ∈M(N, I) for every m ∈M .

Proof. We first show that (M(N, I) : M) = S(I). Let r ∈ (M(N, I) :
M). Then rM ⊆ M(N, I). Suppose that m ∈ M − M(N, I), so
rm ∈M(N, I) and srm ∈ N+IM for some s ∈ R−I. Thus rs /∈ R−I
since m /∈ M(N, I). Therefore rs ∈ I and so r ∈ S(I). Conversely,
assume that t ∈ S(I). So tr ∈ I for some r ∈ R − I. If m ∈ M , then
r(tm) = (rt)m ∈ IM ⊆ IM +N . This implies that tm ∈ M(N, I) for
every m ∈M . Thus t ∈ (M(N, I) : M).
Now, let rm ∈ M(N, I) for some r ∈ R and m ∈ M such that m /∈
M(N, I). The above argument shows that tr ∈ I for some t ∈ R − I.
Therefore r ∈ S(I) = (M(N, I) : M). The ”moreover” statement
follows directly from the above arguments. �

Recall that if M 6= T (M), then T (M) is a union of prime submodules
([4, 3.3]). Now, we have the following theorem by the similar method
in [4, 3.3].

Theorem 2.5. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R with M 6= M(N, I). Then M(N, I) is a
union of prime submodules of M .

Proof. Let x ∈ M(N, I). Set Sx = {L : L is a submodule of M, x ∈
L ⊆ M(N, I), and L =

⋃
(IM + N :M rλ) for some {rλ} ⊆ R}.

Assume that rx ∈ IM +N for some r ∈ R− I. So x ∈ (IM +N :M r),
then Sx 6= ∅. Partially order Sx by inclusion. By Zorn’s Lemma, Sx
has a maximal element Lx. It suffices to show that Lx is a prime
submodule.
Let Lx =

⋃
λ∈Λ(IM + N :M rλ) and let rm ∈ Lx with m /∈ Lx. If

rrλ ∈ R− I for every λ ∈ Λ, then (IM +N :M rλ) ⊆ (IM +N :M rrλ).
Hence Lx ⊆ L′x =

⋃
λ∈Λ(IM +N :M rrλ). Now, let m1,m2 ∈ L′x. Then

mi ∈ (IM + N :M rrλi) for i = 1, 2. So rmi ∈ (IM + N :M rλi) ⊆ Lx
and hence rm1 + rm2 ∈ Lx. Thus rm1 + rm2 ∈ (IM + N :M rη)
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for some η ∈ Λ; so m1 + m2 ∈ (IM + N :M rrη) ⊆ L′x. It is clear
that L′x is closed under scalar product, so L′x is a submodule of M
with L′x ⊆ M(N, I). Thus by maximality of Lx, Lx = L′x. Since
rm ∈ Lx, so rm ∈ (IM + N :M rα) for some α ∈ Λ. Hence m ∈
(IM + N :M rrα) ⊆ L′x = Lx; a contradiction. So rrλ ∈ I for some
λ ∈ Λ. Then rrλM ⊆ IM and hence rM ⊆ (IM +N :M rλ) ⊆ Lx. So
M(N, I) =

⋃
x∈M(N,I) Lx is a union of prime submodules. �

Proposition 2.6. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R with M 6= M(N, I) and M 6= T (M). If R
is not an integral domain and L1 ∩ L2 = 0 for some prime submodules
L1, L2 ⊆ M(N, I), then either P ∩ L1 6= 0 or P ∩ L2 6= 0 for every
prime submodule P of M .

Proof. Let L1 be a P1- prime submodule and L2 be a P2- prime submod-
ule of M . So P1, P2 6= 0, since R is not an integral domain. Therefore
P1P2M ⊆ P1M ∩ P2M ⊆ L1 ∩ L2 = 0. Thus P1P2M = 0 ⊆ P . This
implies that either P1M ⊆ P or P2M ⊆ P , since P is a prime submod-
ule of M . Hence either 0 6= P1M ⊆ P ∩L1 or 0 6= P2M ⊆ P ∩L2, since
M 6= T (M). �

Proposition 2.7. Let N be a proper submodule of an R-module M and
let P be a prime ideal of R such that M(N,P ) 6= M . Then for every
multiplicatively closed subset S of R with S ∩ P 6= ∅, S−1(M(N,P )) =
S−1M(S−1N,S−1P ).

Proof. Assume that m/s ∈ S−1M(S−1N,S−1P ) for some m ∈ M
and s ∈ S. So there exists r/t ∈ S−1R − S−1P such that rm/st ∈
(S−1P )(S−1M) + S−1N = S−1(PM + N). Thus rm/st = x/s′ for
some x ∈ PM +N and s′ ∈ S. Hence s′′s′rm = s′′stx for some s′′ ∈ S.
Since P is a prime ideal of R, so s′′s′ /∈ P , then rm ∈ M(N,P ) by
definition. So m ∈ M(N,P ) since r /∈ P and M(N,P ) is a P -prime
submodule of M by [10, 2.2]. Conversely, let m/s ∈ S−1(M(N,P )) for
some m ∈M(N,P ) and s ∈ S. Thus tm ∈ PM+N for some t ∈ R−P .
Then t/1 ∈ S−1R− S−1P and (t/1)(m/s) = tm/s ∈ S−1(PM +N) =
(S−1P )(S−1M) + S−1N . Hence m/s ∈ S−1M(S−1N,S−1P ). �

3. The case when M(N, I) is a submodule of M

In this section, we study the case when M(N, I) a submodule of
M (i.e when M(N, I) is closed under addition). It is clear that if
M(N, I) = M , then T (ΓN,I(M)) is a complete graph. Thus, in this
section we suppose that M(N, I) 6= M . So if M(N, I) is a submodule
of M , then M(N, I) is actually a prime submodule of M by Proposition
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2.4. We denote M(ΓN,I(M)) and M(ΓN,I(M)) the (induced) subgraphs
of T (ΓN,I(M)) with vertices in M(N, I) and M−M(N, I) respectively.

Theorem 3.1. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
Then:
(1) M(ΓN,I(M)) is a complete (induced) subgraph of T (ΓN,I(M)) and
it is disjoint from M(ΓN,I(M)).
(2) If 0 6= IM +N $M(N, I), then gr(M(ΓN,I(M))) = 3.

Proof. (1) It is clear by definition that for all m,n ∈ M(N, I), we
have m + n ∈ M(N, I); since M(N, I) is a submodule of M . Thus
M(ΓN,I(M)) is a complete (induced) subgraph of T (ΓN,I(M)). Now,
suppose that x ∈ M(N, I) and y ∈ M − M(N, I). If x and y are
adjacent, then x+ y ∈M(N, I) which is a contradiction.
(2) Let 0 6= x ∈ IM+N and y ∈M(N, I)−(IM+N). Then 0−x−y−0
is a 3-cycle in M(ΓN,I(M)). �

Theorem 3.2. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
(1) Assume that G is an induced subgraph of M(ΓN,I(M)) and let m
and m′ be distinct vertices of G which are connected by a path in G.
Then there exists a path in G of length at most 2 between m and m′. In
particular, if M(ΓN,I(M)) is connected, then diam(M(ΓN,I(M))) ≤ 2.
(2) Let m and m′ be distinct elements of M(ΓN,I(M)) that are con-
nected by a path. If m and m′ are not adjacent, then m−(−m)−m′ and
m−(−m′)−m′ are paths of length 2 between m and m′ in M(ΓN,I(M)).

Proof. (1) It suffices to show that if m1,m2,m3 and m4 are distinct
vertices of subgraph G and there is a path m1−m2−m3−m4 from m1

to m4, then m1 and m4 are adjacent. So m1 +m2,m2 +m3,m3 +m4 ∈
M(N, I) gives m1+m4 = (m1+m2)−(m2+m3)+(m3+m4) ∈M(N, I);
since M(N, I) is a submodule of M . Thus m1 and m4 are adjacent. So
if M(ΓN,I(M)) is connected, then diam(M(ΓN,I(M))) ≤ 2.
(2) Since m + m′ /∈ M(N, I), then there exists x ∈ M − M(N, I)
such that m − x − m′ is a path of length 2 by part (1) above. Thus
m+x, x+m′ ∈M(N, I). Thus m−m′ = (m+x)−(x+m′) ∈M(N, I).
Also m 6= −m and m′ 6= −m; since m,m + m′ /∈ M(N, I). Thus
m− (−m)−m′ and m− (−m′)−m′ are paths of length 2 between m
and m′ in M(ΓN,I(M)). �

Theorem 3.3. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
Then the following statements are equivalent:
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(1) M(ΓN,I(M)) is connected.
(2) Either m + m′ ∈ M(N, I) or m − m′ ∈ M(N, I) for all m,m′ ∈
M −M(N, I).
(3) Either m + m′ ∈ M(N, I) or m + 2m′ ∈ M(N, I) for all m,m′ ∈
M −M(N, I).
In particular, either 2m ∈ M(N, I) or 3m ∈ M(N, I) (but not both)
for all m ∈M −M(N, I).

Proof. (1) ⇒ (2) Assume that there exist m,m′ ∈ M −M(N, I) such
that m+m′ /∈M(N, I). If m = m′, then m−m′ ∈M(N, I). Otherwise
m− (−m′)−m′ is a path from m to m′ by Theorem 3.2 (2), and hence
m−m′ ∈M(N, I).
(2) ⇒ (3) Assume that m + m′ /∈ M(N, I) for some m,m′ ∈ M −
M(N, I). Since (m + m′) −m′ = m /∈ M(N, I), so m + 2m′ = (m +
m′)+m′ ∈M(N, I) by assumption. In particular, if m ∈M−M(N, I)
then either 2m ∈M(N, I) or 3m ∈M(N, I).
(3) ⇒ (1) Let m,m′ ∈ M −M(N, I) be distinct elements of M such
that m + m′ /∈ M(N, I). Then m + 2m′ ∈ M(N, I) by assumption,
so 2m′ /∈ M(N, I) since M(N, I) is a submodule of M . Hence 3m′ ∈
M(N, I) by hypothesis. Since m+m′ /∈ M(N, I) and 3m′ ∈ M(N, I),
we conclude that m 6= 2m′, and so m− 2m′ −m′ is a path from m to
m′ in M(ΓN,I(M)) as required. �

Theorem 3.4. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M . If
|M(N, I)| = α and |M/M(N, I)| = β (we allow α and β to be infinite),
then:
(1) If 2 ∈ S(I), then M(ΓN,I(M)) is a disjoint union of β − 1 copies
of Kα.
(2) If 2 /∈ S(I), then M(ΓN,I(M)) is a disjoint union of (β − 1)/2
copies of Kα,α.

Proof. (1) Suppose that 2 ∈ S(I) and x ∈ M − M(N, I). So 2x ∈
M(N, I) by Proposition 2.4. Since (x+m1) + (x+m2) = 2x+ (m1 +
m2) ∈M(N, I) for all m1,m2 ∈M(N, I), so each coset x+M(N, I) in-
duces a complete subgraph of M(ΓN,I(M)). Now, we show that distinct
cosets form disjoint subgraphs of M(ΓN,I(M)). If x + m1 and y + m2

are adjacent for some m1,m2 ∈ M − M(N, I) and x, y ∈ M(N, I),
then m1 + m2 = (x + m1) + (y + m2) − (x + y) ∈ M(N, I) and hence
m1 −m2 = (m1 +m2)− 2m1 ∈M(N, I), by Proposition 2.4 and since
M(N, I) is a submodule of M . So m1 + M(N, I) = m2 + M(N, I) a
contradiction. Thus M(ΓN,I(M)) is a union of β− 1 disjoint (induced)
subgraphs m+M(N, I), each of which is a Kα, where α = |M(N, I)| =
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|m+M(N, I)|.
(2) Let m ∈M−M(N, I) and 2 /∈ S(I). Then no two distinct elements
in m+M(N, I) are adjacent. Otherwise, (m+x) + (m+ y) ∈M(N, I)
for some x, y ∈M(N, I). This implies that 2m ∈M(N, I). So 2 ∈ S(I)
by Proposition 2.4, a contradiction. Also, the two cosets m+M(N, I)
and −m+M(N, I) are adjacent. So (m+M(N, I))∪ (−m+M(N, I))
is a complete bipartite subgraph of M(ΓN,I(M)). If x + m1 is adja-
cent to y + m2 for some x, y ∈ M −M(N, I) and m1,m2 ∈ M(N, I),
then x + y ∈ M(N, I) and so x + M(N, I) = −y + M(N, I). Thus
M(ΓN,I(M)) is a union of (β− 1)/2 disjoint (induced) subgraphs (m+
M(N, I)) ∪ (−m + M(N, I)), each of which is a Kα,α, where α =
|M(N, I)| = |m+M(N, I)|. �

Example 3.5. Let R = Z18, M = R.
(a) If N = 6̄Z18 and I = 2̄Z18, then M(N, I) = IM + N = 2Z18 and
2 ∈ S(I) = I implies that M(ΓN,I(M)) is the complete graph K9.
(α = 9, β = 2)
(b) If N = 6̄Z18 and I = 3̄Z18, then M(N, I) = IM + N = 3̄Z18 and
2 /∈ S(I) = I implies that M(ΓN,I(M)) is the complete bipartite graph
K6,6. (α = 6, β = 3)

Theorem 3.6. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
Then
(1) M(ΓN,I(M)) is complete if and only if |M/M(N, I)| = 2 or |M | =
|M/M(N, I)| = 3.
(2) M(ΓN,I(M)) is connected if and only if |M/M(N, I)| = 2 or
|M/M(N, I)| = 3.
(3) M(ΓN,I(M)) (and hence T (ΓN,I(M)) and M(ΓN,I(M))) are totally
disconnected if and only if M(N, I) = {0} and 2 ∈ S(I).

Proof. Let |M(N, I)| = α and |M/M(N, I)| = β.
(1) Let M(ΓN,I(M)) be a complete graph. Then M(ΓN,I(M)) is a
single graph Kα or K1,1 by Theorem 3.4. If 2 ∈ S(I), then β − 1 = 1.
Thus β = 2 and hence |M/M(N, I)| = 2. If 2 /∈ S(I), then α = 1 and
(β − 1)/2 = 1. Thus M(N, I) = N + IM = {0} and β = 3; hence
|M | = |M/M(N, I)| = 3. Conversely, first suppose that M/M(N, I) =
{M(N, I), x + M(N, I)}, where x /∈ M(N, I). Then x + M(N, I) =
−x+M(N, I) gives 2x ∈M(N, I). Hence there exists r ∈ R− I such
that (2r)m ∈ IM + N . Since m /∈ M(N, I), then 2r ∈ I and hence
2 ∈ S(I). So, M(ΓN,I(M)) is a single graph Kα. Assume that |M | =
|M/M(N, I)| = 3; If 2 ∈ S(I), then 2 ∈ S(I) = (M(N, I) : M) by
Proposition 2.4. This implies that 2 ∈ (0 : M) which is a contradiction
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since M is a cyclic group of order 3.
(2) Let M(ΓN,I(M)) be a connected graph. Then M(ΓN,I(M)) is a
single Kα or Kα,α by Theorem 3.4. If 2 ∈ S(I), then β − 1 = 1. So
|M/M(N, I)| = β = 2. If 2 /∈ S(I), then (β − 1)/2 = 1 gives β = 3,
so |M/M(N, I)| = β = 3. Conversely, by part (1) above, we may
assume that |M/M(N, I)| = 3. If 2 ∈ S(I), then 2 ∈ (M(N, I) : M)
by Proposition 2.4. Now, suppose that M/M(N, I) = {M(N, I), x +
M(N, I), y+M(N, I)}, where x, y ∈M −M(N, I). Since M/M(N, I)
is a cyclic group of order 3, we have (x+M(N, I))+(x+M(N, I)) = y+
M(N, I). Thus 2x− y ∈M(N, I); hence y ∈M(N, I) (2x ∈M(N, I)),
a contradiction. So 2 /∈ S(I) and M(ΓN,I(M)) is a single graph Kα,α

by Theorem 3.4.
(3) M(ΓN,I(M)) is totally disconnected if and only if it is a disjoint
union of K1’s. By Theorem 3.4, 2 ∈ S(I) and |M(N, I)| = 1. �

Theorem 3.7. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
Then diam(M(ΓN,I(M))) = 0, 1, 2 or∞. In particular, if M(ΓN,I(M))
is connected, then diam(M(ΓN,I(M))) ≤ 2.

Proof. Assume thatM(ΓN,I(M)) is a connected subgraph of T (ΓN,I(M)).
Then M(ΓN,I(M)) is a singleton, a complete graph, or a complete bi-
partite graph by Theorem 3.4. Thus diam(M(ΓN,I(M))) ≤ 2. �

Now, we have the following theorem that gives a more explicit de-
scription of the diameter of M(ΓN,I(M)) by Theorem 3.4 and Theorem
3.6.

Theorem 3.8. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
(1) diam(M(ΓN,I(M))) = 0 if and only if M(N, I) = {0} and |M | = 2.
(2) diam(M(ΓN,I(M))) = 1 if and only if either M(N, I) 6= {0} and
|M/M(N, I)| = 2 or M(N, I) = {0} and |M | = 3.
(3) diam(M(ΓN,I(M))) = 2 if and only if M(N, I) 6= {0} and
|M/M(N, I)| = 3.
(4) Otherwise, diam(M(ΓN,I(M))) =∞.

Proposition 3.9. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
Then gr(M(ΓN,I(M))) = 3, 4 or ∞. In particular, gr(M(ΓN,I(M))) ≤
4 if M(ΓN,I(M)) contains a cycle.

Proof. Let M(ΓN,I(M)) contains a cycle. Since M(ΓN,I(M)) is disjoint
union of either complete or complete bipartite graphs by Theorem 3.4,
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thus it contains either a 3-cycle or 4-cycle. So gr(M(ΓN,I(M))) ≤
4. �

Theorem 3.10. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is a submodule of M .
(1) (a) gr(M(ΓN,I(M))) = 3 if and only if 2 ∈ S(I) and |M(N, I)| ≥ 3.
(b) gr(M(ΓN,I(M))) = 4 if and only if 2 /∈ S(I) and |M(N, I)| ≥ 2.
(c) Otherwise, gr(M(ΓN,I(M))) =∞.
(2) (a) gr(T (ΓN,I(M))) = 3 if and only if |M(N, I)| ≥ 3.
(b) gr(T (ΓN,I(M))) = 4 if and only if 2 /∈ S(I) and |M(N, I)| = 2.
(c) Otherwise gr(T (ΓN,I(M))) =∞.

Proof. Apply Theorem 3.4, Proposition 3.9 and Theorem 3.1. �

4. The case when M(N, I) is not a submodule of M

The aim of this section is to determine when T (ΓN,I(M)) is connected
and we compute diam(T (ΓN,I(M))). We first show that the subgraphs
M(ΓN,I(M)) and M(ΓN,I(M)) are not disjoint, when M(N, I) is not a
submodule of M .

Theorem 4.1. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is not a submodule of
M . Then
(1) M(ΓN,I(M)) is connected with diam(M(ΓN(M))) = 2.
(2) Some vertex of M(ΓN,I(M)) is adjacent to a vertex of M(ΓN,I(M)).
In particular, the subgraphs M(ΓN,I(M)) and M(ΓN,I(M)) are not dis-
joint.
(3) If M(ΓN,I(M)) is connected, then T (ΓN,I(M)) is connected.

Proof. (1) Let x ∈ M(N, I) be a nonzero element. Then x is adjacent
to 0. So x− 0− x′ is a path in M(ΓN,I(M)) between any two nonzero
distinct elements x, x′ ∈ M(N, I). Since M(N, I) is not a submodule
of M , so |M(N, I)| ≥ 3. Thus there exist nonadjacent vertices x, x′ ∈
M(N, I). So diam(M(ΓN,I(M))) = 2.
(2) Since M(N, I) is not a submodule of M , so there exists nonzero
elements x, x′ ∈ M(N, I) such that x + x′ /∈ M(N, I). Then −x ∈
M(N, I) and x+x′ ∈M−M(N, I) are adjacent vertices in T (ΓN,I(M)),
since −x + (x + x′) = x′ ∈ M(N, I). The ”in particular” statement is
clear.
(3) Since M(ΓN,I(M)) and M(ΓN,I(M)) are connected and there is an
edge between M(ΓN,I(M)) and M(ΓN,I(M)), then there is a path from
x to y for every element x, y ∈M . Thus T (ΓN,I(M)) is connected. �
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Theorem 4.2. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is not a submodule of
M . Then T (ΓN,I(M)) is connected if and only if M =< M(N, I) >.

Proof. Suppose that T (ΓN,I(M)) is connected, and let m ∈ M . Then
there is a path 0−m1−m2−...−mn−m from 0 to m in T (ΓN,I(M)). So
m1,m1 +m2, ...,mn−1 +mn,mn+m ∈M(N, I). Hence m ∈< m1,m1 +
m2, ...,mn−1 +mn,mn +m >⊆< M(N, I) >; so M =< M(N, I) >.
Conversely, suppose that M =< M(N, I) >. We first show that there
is a path from 0 to x in T (ΓN,I(M)) for any 0 6= x ∈M . By hypothesis,
x = m1 +m2 + ...+mn for some m1, ...,mn ∈M(N, I). Let x0 = 0 and
xk = (−1)n+k(m1 + ...+mk) for each integer k with 0 ≤ k ≤ n. Then
xk + xk+1 = (−1)n+k+1mk+1 ∈M(N, I) for each k with 0 ≤ k ≤ n− 1,
and thus 0 − x1 − x2 − ... − xn−1 − xn = x is a path from 0 to x
in T (ΓN,I(M)) of length at most n. Now, let 0 6= x, y ∈ M . Then
by the preceding argument, there are paths from x to 0 and 0 to y
in T (ΓN,I(M)). Hence there is a path from x to y in T (ΓN,I(M)); so
T (ΓN,I(M)) is connected. �

Theorem 4.3. Let N be a proper submodule of an R-module M and let
I be a proper ideal of R such that M(N, I) is not a submodule of M . As-
sume that n ≥ 2 be the least integer such that M =< m1,m2, ...,mn >
for some m1, ...,mn ∈ M(N, I) (that is, T (ΓN,I(M)) is connected),
then:
(1) If n is an even integer, then diam(T (ΓN,I(M))) ≤ n.
(2) If n is an odd integer, then diam(T (ΓN,I(M))) ≤ n+ 1.
(3) If M is a cyclic R-module, then diam(T (ΓN,I(M))) ∈ {n, n+ 1}.

Proof. Let x and x′ be distinct elements of M . By assumption, x =∑n
i=1 rimi and x′ =

∑n
i=1 r

′
imi for some ri, r

′
i ∈ R.

(1) Let n be an even integer. Define x0 = x, xn = x′ and for each

integer k with 1 ≤ k ≤ n − 1, xk = (−1)k(
∑n

i=k+1 rimi +
∑k

i=1 r
′
imi).

So xk + xk+1 = (−1)kmk+1(rk+1 − r′k+1) ∈ M(N, I) for each integer k
with 0 ≤ k ≤ n− 1. Then x− x1 − ...− xn−1 − x′ is a path from x to
x′ in T (ΓN,I(M)) with length at most n.
(2) Let n be an odd integer. If x′ = −x′, then we have a path similar
to the case (1) above. So we may assume that x′ 6= −x′. If x = −x′,
then the edge x − x′ exists, otherwise we define xk similar to case (1)
above for each integer k with 0 ≤ k ≤ n− 1, xn = −x′ and xn+1 = x′.
So xk + xk+1 = (−1)kmk+1(rk+1 − r′k+1) ∈ M(N, I) for each integer k
with 0 ≤ k ≤ n− 1 and there is a path x− x1 − ...− xn+1(= x′) from
x to x′ in T (ΓN,I(M)) with length at most n+ 1.
(3) Suppose that M is a cyclic module with generator m. Let 0− y1−
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...− yk−1 −m be a path from 0 to m in T (ΓN,I(M)) of length k. Thus
y1, y1 + y2, ..., yk−1 + m ∈ M(N, I), hence m ∈< y1, y1 + y2, ..., yk−1 +
m >⊆< M(N, I) >. Then k ≥ n and the proof is complete. �

Theorem 4.4. Let N be a proper submodule of an R-module M and let
I be a proper ideal of R such that M(N, I) is not a submodule of M . As-
sume that n ≥ 2 be the least integer such that M =< m1,m2, ...,mn >
for some m1, ...,mn ∈ M(N, I) and M be a cyclic R-module with gen-
erator m. Then
(1) diam(T (ΓN,I(M))) ∈ {d(0,m), d(0,m)− 1}.
(2) If diam(T (ΓN,I(M))) = n, then diam(M(ΓN,I(M))) ≥ n− 2.
(3) If diam(T (ΓN,I(M))) = n+ 1, then diam(M(ΓN,I(M))) ≥ n− 1.

Proof. (1) This follows from Theorem 4.3.
(2) Suppose that diam(T (ΓN,I(M))) = n. Since diam(T (ΓN,I(M))) ∈
{d(0,m), d(0,m)− 1} by part (1) above, so let 0− x1 − ...− xn−1 −m
be a shortest path from 0 to m in T (ΓN,I(M)). Then x1 ∈M(N, I). If
xi ∈M(N, I) for some 2 ≤ i ≤ n−1, then 0−xi−xi+1− ...−xn−1−m
is a path from 0 to m whose length is less than n, a contradiction. So
xi ∈ M −M(N, I) for each 2 ≤ i ≤ n − 1. Hence x2 − ... − xn−1 −m
is a shortest path from x2 to m in M(ΓN,I(M)) of length n − 2. So
diam(M(ΓN,I(M))) ≥ n− 2.
(3) The proof is similar to part (2) above. �

Let N be a proper submodule of an R-module M and let I be a
proper ideal of R. Recall that two submodules L and K of M are
called co-maximal if M = L+K. Note that if proper subset M(N, I)
of M contains two co-maximal submodules of M , then M(N, I) is not
a submodule of M .

Theorem 4.5. Let M be a finitely generated R-module and n ≥ 2 be
the least integer that M =< m1,m2, ...,mn > for some m1, ...,mn ∈M .
Let N be a proper submodule of an R-module M and let I be a proper
ideal of R such that M(N, I) contains two co-maximal submodules of
M . Then T (ΓN,I(M)) is connected with diam(T (ΓN,I(M))) ≤ 2n.

Proof. Let L,K ⊆ M(N, I) be co-maximal submodules of M . Then
M = L + K; so mi = xi + yi for some xi ∈ L and yi ∈ K for every
i = 1, 2, ..., n. Hence M =< x1, ..., xn, y1, ..., yn >. Thus T (ΓN,I(M)) is
connected with diam(T (ΓN,I(M))) ≤ 2n by Theorem 4.2 and Theorem
4.3. �

Theorem 4.6. Let N be a proper submodule of an R-module M and
let I be a proper ideal of R such that M(N, I) is not a submodule of
M .
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(1) If IM +N 6= {0}, then gr(M(ΓN,I(M))) = 3. Otherwise
gr(M(ΓN,I(M))) ∈ {3,∞}.
(2) gr(T (ΓN,I(M))) = 3 if and only if gr(M(ΓN,I(M))) = 3.
(3) The (induced) subgraph of M(ΓN,I(M)) with vertices in N + IM is
complete, hence gr(M(ΓN,I(M))) = 3 when |N + IM | ≥ 3.
(4) If gr(T (ΓN,I(M))) = 4, then gr(M(ΓN,I(M))) =∞.
(5) If IM +N 6= 0 and 2 ∈ I, then gr(M(ΓN,I(M))) ∈ {3,∞}.
(6) If 2 /∈ I, then gr(M(ΓN,I(M))) ∈ {3, 4,∞}.

Proof. (1) Suppose that 0 6= x ∈ IM+N and y ∈M(N, I)−(IM+N).
So ry ∈ IM +N for some r ∈ R− I, thus r(x+ y) ∈ IM +N . Hence
x+y ∈M(N, I) and then 0−x−y−0 is a 3-cycle in M(ΓN,I(M)). Now,
assume that IM + N = {0}, then N = IM = {0}. If x + y ∈ M(0, I)
for some nonzero distinct elements x, y ∈M(0, I), then 0−x− y− 0 is
a 3-cycle in M(Γ0,I(M)), so gr(M(Γ0,I(M))) = 3. Otherwise, x + y ∈
M −M(0, I) for all distinct elements x, y ∈ M(0, I). Therefore, each
nonzero element x ∈M(0, I) is adjacent to 0, and no two nonzero dis-
tinct vertices x, y ∈ M(0, I) are adjacent. Thus M(Γ0,I(M)) is a star
graph with center 0 and gr(M(ΓN,I(M))) =∞.
(2) We need only show that gr(M(ΓN,I(M))) = 3 when gr(T (ΓN,I(M)))
= 3. First suppose that 2x 6= 0 for some nonzero element x ∈M(N, I),
then 0− x− (−x)− 0 is a 3-cycle in M(N, I). So we may assume that
2x = 0 for all x ∈M(N, I). There are elements m,m′ ∈M(N, I) such
that m + m′ /∈ M(N, I), since M(N, I) is not a submodule of M . So
2(m+m′) = 0, this implies that 2 ∈ I. Let m−m1 −m2 −m be a 3-
cycle in T (ΓN,I(M)). Then m+m1,m1 +m2,m2 +m ∈M(N, I). First
suppose that m+m1 6= 0 and m+m2 6= 0. Since m1 +m2 ∈M(N, I);
so there exists r ∈ R − I such that r(m1 + m2) ∈ IM + N . Thus
r(m1+m2+2m) ∈ IM+N since 2 ∈ I. Hence 0−(m+m1)−(m+m2)−0
is a 3-cycle in M(ΓN,I(M)).
Now suppose that m + m1 6= 0 and m + m2 = 0, then m2 = −m and
2m 6= 0 since m and m2 are distinct elements. Then 0 − (m1 + m) −
(m1 −m)− 0 is a 3-cycle in M(ΓN,I(M)) since 2 ∈ I.
(3) It is clear, since N + IM ⊆M(N, I) is a submodule of M .
(4) This follows by parts (1) and (2) above.
(5) Let M(ΓN,I(M)) contains a cycle and let 0 6= x ∈ IM + N . Then
there is a path m1 −m2 −m3 in M(ΓN,I(M)). If m1 and m3 are ad-
jacent vertices in M(ΓN,I(M)), then the proof is complete. So we may
assume that m1 +m3 /∈M(N, I). If m2−m1,m3−m2 ∈ IM+N , then
m3 −m1 ∈ IM +N . Since 2m1 ∈ IM +N , thus m1 +m3 ∈ IM +N ,
which is a contradiction. So, without loss of generality we may assume
that m2 −m1 /∈ IM +N . Hence (x+m1)−m1 −m2 − (x+m1) is a
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3-cycle in M(ΓN,I(M)).
(6) Assume that M(ΓN,I(M)) contains a cycle and let 0 6= x ∈ IM+N .
Then there is a path m1 −m2 −m3 in M(ΓN,I(M)). Let m1 + m3 /∈
M(N, I). Since m1 6= m3, then either m1 + m2 6= 0 or m2 + m3 6= 0.
We may assume that m1 + m2 6= 0. Since 2 /∈ I, if 2mi = 0, then
mi ∈ M(N, I) for some i = 1, 2, 3 which is a contradiction. Thus
m1 −m2 − (−m2)− (−m1)−m1 is a 4-cycle in M(ΓN,I(M)). �

Recall that if gr(T (Γ(M))) = 4, then gr(Tor(Γ(M))) =∞ if T (M)
is not a submodule of M [12, 3.5]. Also, if gr(T (ΓN(M))) = 4, then
gr(M(ΓN(M))) = ∞, when M(N) is not a submodule of M [2, 4.5].
Now, we provide a proof for the converse of [12, 3.5 (3)] and [2, 4.5 (4)
], when R is not an integral domain and M 6= T (M).

Proposition 4.7. Let N be a proper submodule of an R-module M
and let I be a proper ideal of R such that M(N, I) is not a sub-
module of M and let M 6= T (M). If R is not an integral domain
and gr(M(ΓN,I(M))) = ∞, then gr(T (ΓN,I(M))) = 4. Moreover, if
gr(Tor(Γ(M))) =∞, then |M(N, I)| = 3.

Proof. Suppose that gr(M(ΓN,I(M))) = ∞. Since M(N, I) is not a
submodule of M , so M(N, I) 6= M . Then M(N, I) =

⋃
α∈Λ Lα, where

each Lα is a prime submodule of M and |Λ| ≥ 2. If gr(M(ΓN,I(M))) =
∞, then x+ y ∈M −M(N, I) for all nonzero distinct elements x, y ∈
M(N, I). So |Lα| = 2 for every α ∈ Λ. Hence the intersection of
any two distinct Lα’s is {0} and so |Λ| = 2 by Proposition 2.6. So
M(N, I) = L1∪L2 for prime submodules L1 and L2 of M with L1∩L2 =
0 and |L1| = |L2| = 2. So we may assume that L1 = {0, x} and
L2 = {0, y} where 2x = 2y = 0. So |M(N, I)| = 3 and x + y /∈
M(N, I). Thus 0−x− (x+y)−y−0 is a 4-cycle in T (ΓN,I(M)). Then
gr(T (ΓN,I(M))) = 4 by Theorem ??(2).
The ”moreover” statement follows directly from the above arguments.

�

Example 4.8. Let R = Z, M = Z × Z, N = 4Z × 7Z and I = 28Z.
So M(N, I) is not a submodule of M by Example 2.2. Also, |N +
IM | ≥ 3, then gr(T (ΓN,I(M))) = gr(M(ΓN,I(M))) = 3 by Theorem
??. Moreover, (1, 1)−(3, 6)−(5, 6)−(1, 1) is a 3-cycle in M(ΓN,I(M))).

Proposition 4.9. Let N be a proper submodule of an R-module M
and let I be a proper ideal of R with |M(N, I)| = α. Let x be a vertex
of T (ΓN,I(M)). Then the degree of x is either α or α−1. In particular,
if 2 ∈ S(I), then the graph T (ΓN,I(M)) is a (α− 1)-regular graph.
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Proof. If x adjacent to y, then x+y = z ∈M(N, I) and hence y = z−x
for some z ∈M(N, I). Now, we have two cases:
Case 1. If 2x ∈ M(N, I), then x is adjacent to z − x for any z ∈
M(N, I)\{2x}. Thus the degree of x is α−1. In particular, if 2 ∈ S(I),
then T (ΓN,I(M)) is a (α− 1)-regular graph by Proposition 2.4.
Case 2. Suppose that 2x /∈ M(N, I). Then x is adjacent to z − x for
any z ∈M(N, I). Thus the degree of x is α. �

Proposition 4.10. Let M be an R-module M and let I be a proper
ideal of R such that M(N, I) is not a submodule of M . If T (ΓI(R))
is connected, then T (ΓN,I(M)) is connected for every proper submodule
N of M . Moreover if diam(T (ΓI(R))) = n, then diam(T (ΓN,I(M))) ≤
2n+ 1.

Proof. Let T (ΓI(R)) be connected and m,n be nonzero elements of M .
Then there exists a path s−a1−a2−...−ak−1−1 from s to 1 of length k
from s to 1 for some nonzero element s ∈ S(I). So s, s+a1, ..., ak−1+1 ∈
S(I). Thus m− ak−1m− ...− a1m− sm− sn− a1n− ...− ak−1n−n is
a path from m to n of length at most 2k + 1 by Proposition 2.4. The
”moreover” statement follows directly from the above arguments. �
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