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Abstract. In this paper, a new fourth-order finite difference weighted essentially non-oscillatory (WENO)
scheme is developed for the fractional differential equations which may contain non-smooth solutions at a
later time, even if the initial solution is smooth enough. A set of Z-type non-linear weights is constructed
based on the L1 norm, yielding improved WENO scheme with more accurate resolution. The Caputo
fractional derivative of order α is split into a weakly singular integral and a classical second derivative.
The classical Gauss-Jacobi quadrature is employed for solving the weakly singular integral. Also, a new
WENO-type reconstruction methodology for approximating the second derivative is developed. Some
benchmark examples are prepared to illustrate the efficiency, robustness, and good performance of this
new finite difference WENO-Z scheme.
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1 Introduction

In this research work, a new fourth-order finite difference weighted essentially non-oscillatory (WENO)
scheme is developed for solving the fractional differential equations. In recent decades, high-order essen-
tially non-oscillatory (ENO) and WENO methods have been widely considered to solve the hyperbolic
conservation laws and approximate the convection terms in convection dominated convection-diffusion
partial differential equations, because these methodologies have good properties such as conservation,
high-order accuracy in smooth regions, and non-oscillatory near discontinuities.

In 1987, finite volume ENO schemes were developed to solve one-dimensional hyperbolic conser-
vation laws problem [10]. The main objective of these high-order methods was to employ the smoothest
spatial stencil among all candidate stencils to obtain numerical approximation at the half points to keep
optimal order of accuracy in smooth regions and suppress non-physical oscillations in non-smooth re-
gions. To solve multi-dimensional problems, the finite difference ENO schemes are very simple and
efficient which the first version of these schemes are developed by Shu and Osher in [19, 20]. Liu et
al. designed a third-order accurate finite volume WENO scheme in [14]. Also, by designing the new
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smoothness indicators and non-linear weights, Jiang and Shu [11] proposed a fifth-order finite difference
WENO scheme.

More recently, high-order numerical methods for the fractional diffusion equations have attracted a
lot of attention. In [15], Liu et al. developed the finite difference WENO schemes for partial differen-
tial equations, which approximate the second derivative term directly by a conservative flux difference.
However, unlike the positive linear weights of WENO schemes for hyperbolic conservation laws [11],
the negative linear weights exist so that some special care, such as the technique in [18], was applied
to guarantee the non-oscillatory performance in regions of sharp interfaces. Moreover, the mapped non-
linear weights were necessary to achieve designed high order accuracy. After that, Abedian et al. [4]
extended the central WENO reconstruction to approximate the second derivative to deal with the appear-
ance of the negative ideal weights and the mapped non-linear weights were also applied to maintain the
high-order accuracy in smooth regions. They also did a lot of other interesting work to approximate the
second derivative in [1–3, 5]. Liu et al. was introduced the method of lines for solving space fractional
differential equations [13]. In [16], Meerschaert and Tadjeran proposed the finite difference scheme for
solving space fractional differential equations. Deng developed the finite element scheme for space and
time-space fractional differential equations [6]. The spectral method for solving time-space fractional
diffusion equations was developed in [12]. Deng et al. extended the high-order finite difference WENO
scheme for solving the fractional differential equations, whose solution may be discontinuous [7]. In
2021, Zhang et al. [21] proposed a sixth-order finite difference WENO scheme for solving the fractional
differential equations. The aim of this paper is to develop a fourth-order finite difference WENO scheme
with Z-type non-linear weighting procedure for solving fractional differential equations containing non-
smooth solutions, because there are not many papers on numerically solving the fractional differential
equations with discontinuous solutions.

The organization of this research paper is as follows. In Section 2, a new fourth-order finite difference
WENO-Z scheme is developed to solve the fractional differential equations in detail. In Section 3, some
benchmark numerical test cases are prepared to show the numerical accuracy and resolution of this new
WENO-Z method. Concluding remarks are given in Section 4.

2 Fourth-order finite difference WENO method

The one-dimensional fractional differential equation is considered as follows

∂u(x, t)
∂ t

= c1
c
aDα

x u(x, t)+ c2
c
xDα

b u(x, t)+ f (x, t), x ∈ [a,b], (1)

where 1 < α < 2, c1,c2 are non-negative constants and c1c2 6= 0. Here, the left and right α-th Caputo
fractional derivatives are defined by Podlubny [17] as follows

c
aDα

x u(x) =
1

Γ(2−α)

∫ x

a

u′′(ξ )
(x−ξ )α−1 dξ ,

c
xDα

b u(x) =
1

Γ(2−α)

∫ b

x

u′′(ξ )
(ξ − x)α−1 dξ .

(2)
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Now, the fractional derivatives are split into a second derivative and an integral part

c
aDα

x u(x) =

 1
Γ(2−α)

∫ x

a

v(ξ )
(x−ξ )α−1 dξ ,

v = uxx,

c
xDα

b u(x) =

 1
Γ(2−α)

∫ b

x

v(ξ )
(ξ − x)α−1 dξ ,

v = uxx.

(3)

Eq. (1) can be rewritten by simple linear transformation as follows [7]

∂u(x, t)
∂ t

=
1

Γ(2−α)

(
c1
(x−a

2
)2−α

∫ 1

−1

v(a+x
2 + x−a

2 η , t)
(1−η)α−1 dη

+ c2
(b− x

2
)2−α

∫ 1

−1

v(b+x
2 + b−x

2 η , t)
(1+η)α−1 dη

)
+ f (x, t),

v(x, t) =
∂ 2

∂x2 u(x, t).

(4)

The Gauss-Jacobi quadratures with weight functions (1−η)1−α and (1+η)1+α are employed to solve
the two weakly singular integrals in (4), respectively.

A new WENO-Z reconstruction is needed to do the spatial discretization for v = uxx in the conserva-
tion form. The construction procedure is narrated in detail as follows.

First,

v(x, t) =
∂ 2

∂x2 u(x, t) = f (u)xx, (5)

is defined. A uniform mesh x j with the mesh size ∆x = x j+1− x j is considered. The half point and
the numerical approximation to the nodal point value are denoted by x j+ 1

2
= 1

2(x j + x j+1) and u j(t),
respectively. The semi-discrete finite difference scheme of (5) is considered as

v j(t) =
f̂ j+ 1

2
− f̂ j− 1

2

∆x2 . (6)

Here, v j(t) is the numerical approximation to the nodal point value v(x j, t) of the exact solution. The
term f̂ j+ 1

2
= f (u j−s, · · · ,u j+s+1), is the numerical flux function. It is designed to satisfy the condition

that the flux difference approximates f (u)xx with k-th order accuracy

f̂ j+ 1
2
− f̂ j− 1

2

∆x2 = f (u)xx|x=x j +O(∆xk). (7)

The WENO-Z reconstruction of the second-order derivative is performed in terms of h(x), which is
defined as

f (u(x)) =
1

∆x2

∫ x+ ∆x
2

x− ∆x
2

∫
χ+ ∆x

2

χ− ∆x
2

h(ψ)dψdχ. (8)

Differentiating both sides twice with respect to x, one obtains

f (u)xx =
1

∆x2

(
h(x+∆x)−2h(x)+h(x−∆x)

)
. (9)
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Setting g(x) as g(x) = h(x+ ∆x
2 )−h(x− ∆x

2 ) gives the equation

f (u)xx

∣∣∣∣
x=x j

=
g(x j+ 1

2
)−g(x j− 1

2
)

∆x2 . (10)

How to develop numerical flux is our main concern in the following.

Step 1. Choose a four-point spatial stencil and two three-point spatial stencils T1 = {x j−1, . . . ,x j+2}, T0 =
{x j−1,x j,x j+1}, T2 = {x j,x j+1,x j+2}. By approximating g(x), the numerical schemes are formulated.
These approximations of g(x) are shown by Pr(x) with r = 0,1,2 and are constructed by employing a
polynomial form with undetermined coefficients. First, a polynomial of degree three on T1, demonstrated
by q(x) = ∑

3
i=0 aixi, is considered to approximate h(x). Next, substituting q(x) into (8) and integrating,

f (u) is computed. Then, using the given point-values of f (u) on T1, a linear system is generated and the
coefficients can be explicitly computed. Finally, P1(x) is completely determined by

P1(x) = q(x+
∆x
2
)−q(x− ∆x

2
). (11)

Similarly, two linear polynomials are obtained to approximate g(x) on two smaller stencils T0 and T2.
The approximations of g(x) at x j+ 1

2
are given by

f̂ (0)
j+ 1

2
:= P0(x j+ 1

2
) = f (u j+1)− f (u j),

f̂ (1)
j+ 1

2
:= P1(x j+ 1

2
) =

1
12

(
f (u j−1)−15 f (u j)+15 f (u j+1)− f (u j+2)

)
,

f̂ (2)
j+ 1

2
:= P2(x j+ 1

2
) = f (u j+1)− f (u j).

(12)

It is only needed to shift each index by −1 to obtain the fluxes f̂ (r)
j− 1

2
with r = 0,1,2.

Step 2. Set any positive linear (ideal) weights d0,d1 and d2, such that d0 + d1 + d2 = 1. The main se-
lection principle of the ideal weights is solely based on the consideration of a balance between accuracy
and ability to obtain essentially non-oscillatory shock transitions.

Step 3. Compute the smoothness indicators βr, r = 0,1,2 which measure how smooth the functions Pr(x)
are in the target cells [x j,x j+1]. The smaller these smoothness indicators, the smoother the functions are
in different target cells. For the given values f (ui) with xi ∈ Tr, the smoothness on Tr is estimated by
employing the ν th-order generalized undivided difference [9] which is defined as

Dν
r f (u j+ 1

2
) = ∑

xi∈Tr

a[ν ]r,i f (u j+i), (13)

for ν = 1,2. The coefficient vector a[ν ]r := (a[ν ]r,i : xi ∈ Tr) is calculated by solving the linear system

∑
xi∈Tr

a[ν ]r,i

(xi− x j+ 1
2
)m

m!
=

{
∆xν , ν = m

0, ν 6= m,
(14)
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with m = 0, . . . ,nr− 1 where nr is the cardinality of Tr (for more details see [9]). More precisely, the
functionals D1

r f (u j+ 1
2
) and D2

r f (u j+ 1
2
) with r = 0,1,2 can be written as

D1
0 f (u j+ 1

2
) =− f (u j)+ f (u j+1),

D1
1 f (u j+ 1

2
) =

1
24

f (u j−1)−
9
8

f (u j)+
9
8

f (u j+1)−
1
24

f (u j+2),

D1
2 f (u j+ 1

2
) =− f (u j)+ f (u j+1),

D2
0 f (u j+ 1

2
) = f (u j−1)−2 f (u j)+ f (u j+1),

D2
1 f (u j+ 1

2
) =

1
2

f (u j−1)−
1
2

f (u j)−
1
2

f (u j+1)+
1
2

f (u j+2),

D2
2 f (u j+ 1

2
) = f (u j)−2 f (u j+1)+ f (u j+2).

(15)

In [8], it is demonstrated that

Dν
r f (u j+ 1

2
) =

dν

dxν
f (u j+ 1

2
)∆xν +O(∆x3), (16)

as can be verified by the Taylor expansion. The new smoothness indicators are proposed by

βr =
∣∣D1

r f (u j+ 1
2
)
∣∣+ ∣∣D2

r f (u j+ 1
2
)
∣∣, r = 0,1,2. (17)

The Taylor expansion at x j+ 1
2

of those smoothness indicators yields

β0 =
∣∣ f ′(u j+ 1

2
)∆x+

1
24

f (3)(u j+ 1
2
)∆x3∣∣+ ∣∣ f ′′(u j+ 1

2
)∆x2− 1

2
f (3)(u j+ 1

2
)∆x3∣∣+O(∆x4),

β1 =
∣∣ f ′(u j+ 1

2
)∆x− 3

640
f (5)(u j+ 1

2
)∆x5∣∣+ ∣∣ f ′′(u j+ 1

2
)∆x2 +

5
24

f (4)(u j+ 1
2
)∆x4∣∣+O(∆x6),

β2 =
∣∣ f ′(u j+ 1

2
)∆x+

1
24

f (3)(u j+ 1
2
)∆x3∣∣+ ∣∣ f ′′(u j+ 1

2
)∆x2 +

1
2

f (3)(u j+ 1
2
)∆x3∣∣+O(∆x4).

(18)

Step 4. Compute the non-linear weights based on the ideal weights and the smoothness indicators. Then,
the non-linear weights are defined by

wr =
αr

∑
2
l=0 αl

, αr = dr

(
1+
( τ4

βr + ε

)2
)
, r = 0,1,2, (19)

with ε = 10−12. Here, τ4 = |β2−β0| is the global smoothness indicator on the stencil T1.

Step 5. The final reconstruction formulation of the numerical flux, defined by a convex combination of
the three reconstructed polynomial approximations, is given by

f̂ j+ 1
2
=

w1

d1

[
f̂ (1)

j+ 1
2
−d0 f̂ (0)

j+ 1
2
−d2 f̂ (2)

j+ 1
2

]
+w0 f̂ (0)

j+ 1
2
+w2 f̂ (2)

j+ 1
2
. (20)
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Step 6. After doing the spatial discretization, a classical non-linear ODE system is generated as follows

du j(t)
dt

=
1

Γ(2−α)

(
c1
(x j−a

2
)2−α

∫ 1

−1
v(

a+ x j

2
+

x j−a
2

η , t)(1−η)1−αdη

+ c2
(b− x j

2
)2−α

∫ 1

−1
v(

b+ x j

2
+

b− x j

2
η , t)(1+η)1−αdη

)
+ f (x j, t),

v j(t) =
f̂ j+ 1

2
− f̂ j− 1

2

∆x2 .

(21)

Then, the third-order version TVD Runge-Kutta time discretization scheme is employed to obtain fully
discrete scheme both in space and time as follows [19]

u(1)j = un
j +∆tF(un

j),

u(2)j = 3
4 un

j +
1
4 u(1)j + 1

4 ∆tF(u(1)j ),

un+1
j = 1

3 un
j +

2
3 u(2)j + 2

3 ∆tF(u(2)j ),

(22)

where F(u) is the spatial operator.

Remark 1. As is said, the Gauss-Jacobi quadratures are employed for the two weakly singular integrals,
but they usually cannot be guaranteed that all Gaussian nodes are the subsets of the points {x j}. Ac-
cordingly, the interpolation is needed to obtain the values of the intermediate functions v(x, t) at different
Gaussian quadrature points. The degree of the interpolation polynomial is suitably considered such that
the error caused in this approximation is of the same order as the error of the corresponding WENO-Z
scheme.

2.1 Analysis of the accuracy of WENO-Z scheme

Evaluating the polynomials P0(x),P1(x) and P2(x) at x = x j+ 1
2

and from (8) it can be seen that

f̂ (0)
j+ 1

2
= f̂ (2)

j+ 1
2
= f (u j+1)− f (u j) =

∫ x
j+ 3

2

x
j+ 1

2

∫
χ+ ∆x

2

χ− ∆x
2

h(ψ)dψdχ−
∫ x

j+ 1
2

x
j− 1

2

∫
χ+ ∆x

2

χ− ∆x
2

h(ψ)dψdχ,

1
d1

[
f̂ (1)

j+ 1
2
−d0 f̂ (0)

j+ 1
2
−d2 f̂ (2)

j+ 1
2

]
=

1
12d1

f (u j−1)+Cd ( f (u j)− f (u j+1))−
1

12d1
f (u j+2)

=
1

12d1

∫ x
j− 1

2

x
j− 3

2

∫
χ+ ∆x

2

χ− ∆x
2

h(ψ)dψdχ +Cd

∫ x
j+ 1

2

x
j− 1

2

∫
χ+ ∆x

2

χ− ∆x
2

h(ψ)dψdχ

−Cd

∫ x
j+ 3

2

x
j+ 1

2

∫
χ+ ∆x

2

χ− ∆x
2

h(ψ)dψdχ− 1
12d1

∫ x
j+ 5

2

x
j+ 3

2

∫
χ+ ∆x

2

χ− ∆x
2

h(ψ)dψdχ,

(23)

where

Cd =− 5
4d1

+
d0

d1
+

d2

d1
.
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Now suppose the function h(ψ) is smooth, so this function has Taylor expansion at point x j, which is
inserted into (23). By integrating, it can be seen that

f̂ (0)
j+ 1

2
=

2

∑
γ=1

∆xγ

γ!
dγh(x j)

dxγ
+

1
4

d3h(x j)

dx3 ∆x3 +O(∆x4),

1
d1

[
f̂ (1)

j+ 1
2
−d0 f̂ (0)

j+ 1
2
−d2 f̂ (2)

j+ 1
2

]
=

2

∑
γ=1

∆xγ

γ!
dγh(x j)

dxγ
− 3d0 +3d2−2

12d1

d3h(x j)

dx3 ∆x3 +O(∆x4),

f̂ (2)
j+ 1

2
=

2

∑
γ=1

∆xγ

γ!
dγh(x j)

dxγ
+

1
4

d3h(x j)

dx3 ∆x3 +O(∆x4).

(24)

Now, it can be seen that

g(x j+ 1
2
) = h(x j+1)−h(x j) =

2

∑
γ=1

∆xγ

γ!
dγh(x j)

dxγ
+

1
6

d3h(x j)

dx3 ∆x3 +O(∆x4). (25)

As mentioned above, to obtain the flux f̂ (m)

i− 1
2

it is only need to shift each index by −1. Therefore,

f̂ (0)
j± 1

2
= g(x j± 1

2
)+

1
12

d3h(x j)

dx3 ∆x3 +O(∆x4),

1
d1

[
f̂ (1)

j± 1
2
−d0 f̂ (0)

j± 1
2
−d2 f̂ (2)

j± 1
2

]
= g(xi± 1

2
)+

d1−1
12d1

d3h(x j)

dx3 ∆x3 +O(∆x4),

f̂ (2)
j± 1

2
= g(x j± 1

2
)+

1
12

d3h(x j)

dx3 ∆x3 +O(∆x4).

(26)

Proposition 1. For the numerical flux f̂ j+ 1
2

given by (20) that non-linear weights (19) is applied, the
WENO-Z scheme can obtain the fourth-order accuracy in smooth areas.

Proof. Adding and subtracting d0 f̂ (0)
j+ 1

2
+
[

f̂ (1)
j+ 1

2
−d0 f̂ (0)

j+ 1
2
−d2 f̂ (2)

j+ 1
2

]
+d2 f̂ (2)

j+ 1
2

from Eq. (20) gives

f̂ j+ 1
2
= f̂ (1)

j+ 1
2
+(w0−d0) f̂ (0)

j+ 1
2
+(w1−d1)

1
d1

[
f̂ (1)

j+ 1
2
−d0 f̂ (0)

j+ 1
2
−d2 f̂ (2)

j+ 1
2

]
+(w2−d2) f̂ (2)

j+ 1
2

=
(
g(x j+ 1

2
)− 1

90
d5h(x j)

dx5 ∆x5 +O(∆x6)
)

+
(
(w0−d0) f̂ (0)

j+ 1
2
+(w1−d1)

1
d1

[
f̂ (1)

j+ 1
2
−d0 f̂ (0)

j+ 1
2
−d2 f̂ (2)

j+ 1
2

]
+(w2−d2) f̂ (2)

j+ 1
2

)
,

(27)

where the second parenthesis must be at least O(∆x6) in smooth areas, in order to warranty the approxi-
mation to the second order derivative to be fourth-order accurate. Substituting Eq. (26), yields

(w0−d0) f̂ (0)
j+ 1

2
+(w1−d1)

1
d1

[
f̂ (1)

j+ 1
2
−d0 f̂ (0)

j+ 1
2
−d2 f̂ (2)

j+ 1
2

]
+(w2−d2) f̂ (2)

j+ 1
2

=−w1−d1

12d1

d3h(x j)

dx3 ∆x3 +
2

∑
r=0

(wr−dr)O(∆x4).

(28)
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Notice that sum of dr and sum of wr with r = 0,1,2 is one. The necessary and sufficient conditions are{
wr−dr ≤ O(∆x2), r = 0,2,
w1−d1 ≤ O(∆x3).

(29)

From Eq. (18), one obtains τ4 = O(∆x3). On condition that ε << βr with r = 0,1,2 and considering
(18) in smooth areas, it concludes (

τ4

ε +βr

)2

= O(∆x4),

therefore

dr =
wr

1+
(

τ4
ε+βr

)2

2

∑
l=0

αl = wr +O(∆x4), (30)

accordingly the conditions (29) satisfy and proof is completed.

3 Computational results

In this section, some numerical experiments are considered to test the performance of the new fourth-
order finite difference WENO scheme with Z-type non-linear weighting procedure. In order to check
whether the random choice of the ideal weights would pollute the accuracy of the new WENO-Z scheme
in smooth areas, three different types of the linear weights are tested in the numerical examples:
(1) γ0 = 0.05,γ1 = 0.9,γ2 = 0.05;
(2) γ0 = γ1 = γ2 =

1
3 ;

(3) γ0 = 0.4,γ1 = 0.2,γ2 = 0.4,
respectively.

Example 1. The fractional differential equation

∂

∂ t
u(x, t) = c

0D1.8
x u(x, t)+ f (x, t), (31)

with the initial condition u(x,0) = sin(4πx)− 2sin(2πx) and periodic boundary conditions is solved.
The computational domain is [0,1]. Its exact solution is u(x, t) = exp(−t)

(
sin(4πx)− 2sin(2πx)

)
and

f (x, t) is numerically obtained. The new WENO-Z scheme is employed and the errors and numerical
orders of accuracy are reported in Table 1. As can be seen, the random selection of the ideal weights will
not pollute the scheme’s optimal order of accuracy in smooth areas.

Example 2. In this example, the fractional differential equation

ut +Vux = D∇
αu, (32)

with the computational domain [−L,L] is solved, where 2∇αu = c
aDα

x u+ c
xDα

b u, V = 0.5, and L = 1 or
L = 10.

In this test case, there is no exact solution, thus the approximate solution of 1000 grid points is con-
sidered as the exact solution, named as “Reference” solution. In Figs. 1, 2 and 3, the numerical solutions
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Table 1: L1 and L∞ errors and the order of convergence for Example 1 at T = 0.1 with ∆t = 0.4∆x2.
Case (1) Case (2)

N L∞-error L∞-order L1-error L1-order L∞-error L∞-order L1-error L1-order
10 1.76(-2) - 7.84(-3) - 1.90(-2) - 7.24(-3) -
20 1.29(-3) 3.77 4.51(-4) 4.12 1.23(-3) 3.95 4.00(-4) 4.26
40 7.42(-5) 4.12 2.70(-5) 4.06 9.08(-5) 3.77 2.70(-5) 5.06
80 4.26(-6) 4.12 1.90(-6) 3.83 4.63(-6) 4.29 1.62(-6) 4.88
160 2.77(-7) 3.95 1.23(-7) 3.95 2.77(-7) 4.06 1.01(-7) 5.12
320 1.52(-8) 4.18 7.67(-9) 4.01 1.87(-8) 3.89 7.08(-9) 5.17

Case (3)
N L∞-error L∞-order L1-error L1-order
10 1.90(-2) - 6.95(-3) -
20 1.39(-3) 3.77 4.16(-4) 4.06
40 7.72(-5) 4.18 2.93(-5) 3.83
80 4.82(-6) 4.00 1.83(-6) 4.00
160 2.88(-7) 4.06 1.34(-7) 3.77
320 1.59(-8) 4.18 7.68(-9) 4.12

and Reference solutions for different orders of the fractional derivative and different the linear weights
are demonstrated at T = 0.01. As can be seen, there is no noticeable oscillations at the discontinuities.
Also, it is verified that WENO-Z can generate similar numerical results with different types of the linear
weights. In Fig. 1, the numerical solutions are demonstrated which obtained by employing the method in
which the second spatial derivative is approximated by considering the second central difference method.
It is obvious that the numerical solutions by the second central difference method demonstrate oscilla-
tory behavior. The numerical solutions for D = 0.2 and α = 1.8 at different final time are shown in Fig.
4. In the simulations, the parameters are chosen as: L = 10,N = 200 and ∆t = 0.4∆x2. The numerical
solutions for D = 0.02 and α = 1.8 at different final time are shown in Fig. 5. In the simulations, the
parameters are chosen as: L = 10,N = 200 and ∆t = 0.3∆x1.8.

4 Conclusions

In this paper, a numerical scheme for solving fractional differential equations with piecewise smooth
solutions is discussed. First, the fractional derivative is split into a classical second derivative and a
weakly singular integral. By developing a fourth-order WENO-Z scheme, the second derivative is ap-
proximated while the weakly singular integral is approximated by Gauss-Jacobi quadrature. Finally, a
classical ODE system is obtained, which it is computed by the TVD Runge-Kutta scheme. Numerical ex-
amples demonstrate a fact that the proposed WENO-Z scheme can obtain high-order accuracy in smooth
areas and suppress non-physical oscillations near strong discontinuities.
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Figure 1: The numerical solutions of Example 2 with the linear weights (1) for different orders of the fractional
derivative at T = 0.01. Top (left) to bottom (right): α = 1.2,1.4,1.6 and α = 1.8.
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Figure 2: The numerical solutions of Example 2 with the linear weights (2) for different orders of the fractional
derivative at T = 0.01. Top (left) to bottom (right): α = 1.2,1.4,1.6 and α = 1.8.
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Figure 3: The numerical solutions of Example 2 with the linear weights (3) for different orders of the fractional
derivative at T = 0.01. Top (left) to bottom (right): α = 1.2,1.4,1.6 and α = 1.8.
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Figure 4: The numerical solutions of Example 2 with WENO-Z along with the linear weights (1). ∆t =
0.4∆x2,α = 1.8 and D = 0.2.
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Figure 5: The numerical solutions of Example 2 with WENO-Z along with the linear weights (1). ∆t =
0.3∆x1.8,α = 1.8 and D = 0.02.
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