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ASYMPTOTIC BEHAVIOUR OF ASSOCIATED

PRIMES OF MONOMIAL IDEALS WITH

COMBINATORIAL APPLICATIONS

M. NASERNEJAD

Abstract. Let R be a commutative Noetherian ring and I be
an ideal of R. We say that I satisfies the persistence property
if AssR(R/Ik) ⊆ AssR(R/Ik+1) for all positive integers k ≥ 1,
which AssR(R/I) denotes the set of associated prime ideals of I.
In this paper, we introduce a class of square-free monomial ideals
in the polynomial ring R = K[x1, . . . , xn] over field K which are
associated to unrooted trees such that if G is a unrooted tree and
It(G) is the ideal generated by the paths of G of length t, then
Jt(G) := It(G)∨, where I∨ denotes the Alexander dual of I, satis-
fies the persistence property. We also present a class of graphs such
that the path ideals generated by paths of length two satisfy the
persistence property. We conclude this paper by giving a criterion
for normally torsion-freeness of monomial ideals.

1. Introduction

Let R be a commutative Noetherian ring and I be an ideal of R.
A prime p ⊂ R is an associated prime of I if there exists an element
v in R such that p = (I :R v). The set of associated primes of I,
denoted AssR(R/I), is the set of all prime ideals associated to I. We
will be interested in the sets AssR(R/Ik) when k varies. A well-known
result of Brodmann [4] proved that the sequence {AssR(R/Ik)}k≥1 of
associated prime ideals is stationary for large k. In fact, there exists a
positive integer k0 such that AssR(R/Ik) = AssR(R/Ik0) for all integers
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k ≥ k0. The least such integer k0 is called the index of stability of I
and AssR(R/Ik0) is called the stable set of associated prime ideals of
I. Many problems arise in the context of Brodmann’s result. One of
them is the following question:

(†) Is it true that

AssR(R/I) ⊆ AssR(R/I2) ⊆ · · · ⊆ AssR(R/Ik) ⊆ · · ·?

McAdam [15] presented an example which says, in general, the above
question has negative answer. We say that an ideal I of R satisfies the
persistence property if it holds true for (†).

Suppose that I is an ideal of the polynomial ring R = K[x1, . . . , xn]
over field K and x1, . . . , xn are indeterminates. Question (†) does not
have an affirmative answer for any monomial ideals, see [11] and [17] for
counterexamples. However, recently, by applying combinatorial meth-
ods, several papers have been published for finding the classes of mono-
mial ideals which satisfying the persistence property. These attempts
led to the persistence property holds for edge ideals [14], the cover ideals
of perfect graphs [7], and polymatroidal ideals [12]. Let G be a finite
simple graph on the vertex set V (G) with the edge set E(G). That is
to say, G has no loops and no multiple edges. Using the paths of G of
length t, we can generate a square-free monomial ideal It(G). One can
investigate edge ideals or path ideals of a graph. The edge ideal of a
graph G has been introduced by Villarreal [18] and is generated by the
monomials xixj where {i, j} is an edge of G. Path ideals of graphs were
first introduced by Conca and De Negri [6] in the context of monomial
ideals of linear type. Then several researchers explored them for special
classes of graphs such as the line graph and the cycle [1, 5] and also for
rooted trees [3, 9]. Assume that It(G)∨ denotes the square-free Alexan-
der dual of It(G). In this paper, we first focus on a class of unrooted
trees and probe the sets of associated primes AssR(R/(It(G)∨)s), as s
increases, and prove that the persistence property holds true. In the
sequel, we introduce a class of graphs, where are called the centipede
graphs, and show that the path ideals generated by paths of length two
have the persistence property. Finally, after recalling the definition of
expansion operator on monomial ideals, we apply it as a criterion for
normally torsion-freeness of monomial ideals.

Throughout this paper, R = K[x1, . . . , xn] is the polynomial ring
over a field K and x1, . . . , xn are indeterminates. Also, for a monomial
ideal I of R, we denote the unique minimal set of monomial generators
of I by G(I). The symbol N (respectively N0) will always denote the
set of positive (respectively non-negative) integers.
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2. Associated primes of powers of path ideals

We begin with the following definition which is essential for us.

Definition 2.1. A tree T is a connected graph which does not contain
any cycle as an induced subgraph. We say that T is rooted if there is a
designated vertex vk such that every vi − vj path is naturally oriented
away from vk. If T has no such root, then we say that T is unrooted.

Example 2.2. Consider T1 = (V (T1), E(T1)) and T2 = (V (T2), E(T2)),
where

V (T1) = V (T2) = {v1, v2, v3, v4, v5, v6},

E(T1) = {v1v2, v1v3, v2v4, v2v5, v4v6},

and
E(T2) = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v4, v6)}.

Then the graph T1, the left tree in the figure below, is an example of a
tree which is not rooted while T2, the right tree in the figure below, is
rooted at the vertex v1.
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We now state the notions of path ideals and the Alexander dual of
them.

Definition 2.3. Let G be a finite simple graph on the vertex set
V (G) := [n] = {1, . . . , n} with the edge set E(G). We define the
path ideal of length t corresponding to G by

It(G) = (xi1 · · ·xit+1
: {i1, . . . , it+1} is a path of G of length t).

Also the Alexander dual of It(G), where denoted by It(G)∨, is the
following ideal

It(G)∨ =
⋂

{i1,...,it+1} is a path of G of length t

(xi1 , . . . , xit+1
).

We observe that when t = 1, the path ideal of G is exactly the edge
ideal corresponding to G and the Alexander dual of it is exactly the
cover ideal.

Next proposition is fundamental in order to prove the Theorem 2.6.
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Proposition 2.4. Let I be a square-free monomial ideal in the polyno-

mial ring R = K[x1, . . . , xn], G(I) = {u1, . . . , um} and AssR(R/I) =
{p1, . . . , ps}. Suppose also that there exists variable xt ∈ {x1, . . . , xn}
such that xt ∈ pi for any i = 1, . . . , s. Then there exists i ∈ N with

1 ≤ i ≤ m such that ui = xt.

Proof. Since I is a square-free monomial ideal, by [10, Corollary 1.3.6],
it follows that I = p1 ∩ · · · ∩ ps. As xt ∈ pi for any i = 1, . . . , s, we
conclude that xt ∈ I. By [10, Proposition 1.1.5], there exists i ∈ N

with 1 ≤ i ≤ m such that ui ∈ G(I) and ui divides xt. This implies
that ui = xt, as claimed. �

The following definition has mentioned in [13, Definition 2.1].

Definition 2.5. Let I be a monomial ideal in R with the unique min-
imal set of monomial generators G(I) = {u1, . . . , um}. Then we say
that I is a weakly monomial ideal if there exists i ∈ N with 1 ≤ i ≤ m
such that each monomial uj has no common factor with ui for all j ∈ N

with 1 ≤ j ≤ m and j 6= i.

We now present the first main result in this section.

Theorem 2.6. Let T be an unrooted tree on the vertex set V (T ) =
{z, 1, . . . , n} with the following edge set

E(T ) = {{z, i}, {kj + i, kj + k + i} : i = 1, . . . , k, j = 0, . . . , m− 1}

such that n = k(m + 1) for some k ∈ N and m ∈ N0. Suppose also

that I2m+2(T ) is the path ideal corresponding to T of length 2m+2 and

J2m+2(T ) = I2m+2(T )
∨. Then the ideal J2m+2(T ) has the persistence

property.

Proof. It is easy to verify that the ideal I2m+2(T ), where has exactly
(

k

2

)

distinct generators, is given by

(xmk+i · · ·xk+ixixzxjxk+j · · ·xmk+j | i, j ∈ {1, . . . , k} and i 6= j).

Thus we deduce that

J2m+2(T ) =
⋂

i,j∈{1,...,k},i 6=j

(xmk+i, . . . , xk+i, xi, xz, xj , xk+j, . . . , xmk+j).

One can easily observe that this is a minimal primary decomposition
of J2m+2(T ). By virtue of Proposition 2.4, we have xz ∈ G(J2m+2(T )).
Assume that G(J2m+2) = {xz, u1, . . . , us}. Since G(J2m+2) is a minimal
set, this implies that (xz , uj) = 1 for all j = 1, . . . , s. Hence, by
Definition 2.5, J2m+2(T ) is a weakly monomial ideal. According to [13,
Corollary 3.5] and [13, Theorem 2.9], it follows that the ideal J2m+2(T )
has the persistence property, as desired. �
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The following example explains the above theorem.

Example 2.7. Suppose that T is the unrooted tree on the vertex set
V (T ) = {z, 1, 2, 3, 4, 5, 6, 7, 8, 9}, as shown in the figure below.
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According to the definition, one can obtain

I6(T ) = (x7x4x1xzx2x5x8, x7x4x1xzx3x6x9, x8x5x2xzx3x6x9).

It follows that the Alexander dual of I6(T ) is given by

J6(T ) =(x7, x4, x1, xz, x2, x5, x8) ∩ (x7, x4, x1, xz, x3, x6, x9)

∩(x8, x5, x2, xz, x3, x6, x9).

Now, the Theorem 2.6 implies that the ideal J6(T ) has the persis-
tence property.

We conclude this section with giving another class of graphs which
the path ideals generated by path of length two have the persistence
property. To do this, we first recall the definition of strongly superficial
elements and then introduce a class of graphs which are called the
centipede graphs.

Definition 2.8. Let I be an ideal in a commutative ring S, and let
k ∈ N. An element x in S is called a superficial element of degree k for

I if x ∈ Ik and there exists c ∈ N such that (In+k :S x) ∩ Ic = In for
all n ≥ c. If (In+k :S x) = In for all n ∈ N, we say that x is a strongly

superficial element of degree k for I (see [16, 4.1.2]).

The following proposition is essential in order to complete the proof
of Theorem 2.11.

Proposition 2.9. Suppose that I is an arbitrary ideal in commutative

Noetherian ring S such that has a strongly superficial element of degree

one. Then I has the persistence property.

Proof. Let u be a strongly superficial element of degree one for I. Then
(In+1 :S u) = In for all n ∈ N. Since (In+1 :S I) ⊆ (In+1 :S u),
it follows that (In+1 :S I) = In for all n ∈ N. For completing the
proof, assume that I = (v1, . . . , vt). Choose an arbitrary m ∈ N and
consider p ∈ AssS(S/I

m). Then there exists an element c in S such
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that p = (Im :S c). This implies that

p = ((Im+1 :S I) :S c)

= (Im+1 :S Ic)

=

t
⋂

i=1

(Im+1 :S vic).

One can conclude that there exists a positive integer 1 ≤ j ≤ t such
that p = (Im+1 :S vjc), and so p ∈ AssS(S/I

m+1). Therefore I has the
persistence property, as claimed. �

In the next definition, we present a class of graphs which we need in
the Theorem 2.11.

Definition 2.10. The centipede graph Wn with n ∈ N, as shown in the
figure below, is the graph on the vertex set {a1, . . . , an} ∪ {b1, . . . , bn}.
The set of edges of the centipede graph is given by

E(Wn) = {{ai, bi} : 1 ≤ i ≤ n} ∪ {{bj, bj+1} : 1 ≤ j ≤ n− 1}.

b b b bb

b b b bb

a1 a2 a3 an−1 an

b1 b2 b3 bn−1 bn

We now state the second main result in this section.

Theorem 2.11. Let Wn, for some n ∈ N with n ≥ 2, be a centipede

graph with corresponding path ideal I2(Wn). Then I2(Wn) has the per-

sistence property.

Proof. To simplify in notations, we consider the following centipede
graph on the vertex set V (Wn) = {1, 2, 3, . . . , 2n − 2, 2n − 1, 2n} and
also set J := I2(Wn).

b b b bb

b b b bb

2 4 6 2n− 2 2n

1 3 5 2n− 3 2n− 1

It is routine to verify that

G(J) ={x2k−1x2kx2k+1, x2k−1x2k+1x2k+2 : k = 1, . . . , n− 1}

∪{x2r−1x2r+1x2r+3 : r = 1, . . . , n− 2}.

Clearly the ideal J has exactly 3n − 4 distinct minimal generators.
Assume that G(J) = {u1, . . . , uk} with k := 3n − 4, such that u1 :=
x1x2x3, u2 := x1x3x4, u3 := x1x3x5, u4 := x3x5x7, u5 := x3x5x6 and
u6 := x3x4x5. Here and in the sequel, our aim is to show that (Jm+1 :R
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u1) = Jm for all m ∈ N. To do this, choose an arbitrary m ∈ N. Then
we have the following equalities

(Jm+1 :R u1) =(JmJ :R u1)

=

k
∑

i=1

(Jmui :R u1)

=Jm +
k

∑

i=2

(Jmui :R u1).

For completing the proof, we show that (Jmui :R u1) ⊆ Jm for all
i = 2, . . . , k. To achieve this, choose an arbitrary element v ∈ (Jmui :R
u1) for some 2 ≤ i ≤ k. Hence vu1 ∈ Jmui, and so there exists
a generator of Jm such as ua1

1 · · ·uak
k with a1 + · · · + ak = m, such

that uiu
a1
1 · · ·uak

k divides vu1. So there is a monomial w in R such
that vu1 = wuiu

a1
1 · · ·uak

k . If a1 ≥ 1, then v = wuiu
a1−1
1 · · ·uak

k . By
uiu

a1−1
1 · · ·uak

k ∈ Jm, one can conclude that v ∈ Jm. Thus we assume
that a1 = 0, and so a2+ · · ·+ak = m. Since x2 /∈ uj for all j = 2, . . . , k,
it follows that vx1x3 = w′uiu

a2
2 · · ·uak

k such that w = x2w
′ for some

monomial w′ in R. Hence we consider the following cases:
Case 1. ui = u2 or ui = u3. Accordingly, v = w′x4u

a2
2 · · ·uak

k or
v = w′x5u

a2
2 · · ·uak

k , and so v ∈ Jm.
Case 2. ui = u4. Then vx1 = w′x5x7u

a2
2 · · ·uak

k . Hence we have to
consider the following subcases:

Subcase 2.1. a2 ≥ 1 or a3 ≥ 1. So v = w′x4u4u
a2−1
2 ua3

3 · · ·uak
k or

v = w′x5u4u
a2
2 ua3−1

3 · · ·uak
k . This implies that v ∈ Jm.

Subcase 2.2. a2 = 0 and a3 = 0. Then vx1 = w′x5x7u
a4
4 · · ·uak

k .
Due to x1 /∈ uj for all j = 4, . . . , k, it follows that v = w′′x5x7u

a4
4 · · ·uak

k

such that w′ = x1w
′′ for some monomial w′′ in R. One can conclude

that v ∈ Jm.
Case 3. ui = ur with r ≥ 5. Then vx1x3 = w′uru

a2
2 · · ·uak

k . We now
consider the following subcases:

Subcase 3.1. a2 ≥ 1 or a3 ≥ 1. The proof is similar to Subcase 2.1.
Subcase 3.2. a2 = 0 and a3 = 0. Then vx1x3 = w′uru

a4
4 · · ·uak

k .
Since x1 /∈ uj for all j = 4, . . . , k, it follows that vx3 = w′′uru

a4
4 · · ·uak

k

such that w′ = x1w
′′ for some monomial w′′ in R. If a4 ≥ 1 or a5 ≥ 1 or

a6 ≥ 1, then v = w′′x5x7uru
a4−1
4 · · ·uak

k or v = w′′x5x6uru
a4
4 ua5−1

5 · · ·uak
k

or v = w′′x4x5uru
a4
4 ua5

5 ua6−1
6 · · ·uak

k , and so v ∈ Jm. If ai = 0 for all
i = 4, 5, 6, according to x3 /∈ uj for all j = 7, . . . , k, one can conclude
that v = w1u

a7
7 · · ·uak

k such that w′′ur = x3w1 for some monomial w1

in R. Thus v ∈ Jm.
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Accordingly, we obtain (Jm+1 :R u1) = Jm for all m ∈ N, and so
u1 is a strongly superficial element of degree one for ideal J . Due to
Proposition 2.9, one can deduce that J has the persistence property,
as desired.

�

3. A criterion for normally torsion-freeness of

monomial ideals

In this section, we first recall the definition of the expansion operator
on monomial ideals which has stated in [2], and then apply it as a
criterion for normally torsion-freeness of monomial ideals.

Let K be a field and R = K[x1, . . . , xn] the polynomial ring over
K in the variables x1, . . . , xn. Fix an ordered n-tuple (i1, . . . , in) of
positive integers, and consider the polynomial ring R(i1,...,in) over K in
the variables

x11, . . . , x1i1 , x21, . . . , x2i2 , . . . , xn1, . . . , xnin.

Let pj be the monomial prime ideal (xj1, xj2, . . . , xjij) ⊆ R(i1,...,in). At-
tached to each monomial ideal I with a set of monomial generators
{xa1 , . . . ,xam}, we define the expansion of I with respect to the n-tuple

(i1, . . . , in), denoted by I(i1,...,in), to be the monomial ideal

I(i1,...,in) =

m
∑

i=1

p
ai(1)
1 · · · pai(n)n ⊆ R(i1,...,in).

Here ai(j) denotes the j-th component of the vector ai. We simply
write R∗ and I∗, respectively, rather than R(i1,...,in) and I(i1,...,in).

For monomials xa and xb in R if xb divides xa, then we have

p
ai(1)
1 · · · p

ai(n)
n ⊆ p

bi(1)
1 · · · p

bi(n)
n . So the definition of I∗ does not de-

pend on the choice of the set of monomial generators of I.
For example, consider R = K[x1, x2, x3] and the ordered 3-tuple

(1, 3, 2). Then we have p1 = (x11), p2 = (x21, x22, x23) and p3 =
(x31, x32). So for the monomial ideal I = (x1x2, x

2
3), the ideal I∗ ⊆

K[x11, x21, x22, x23, x31, x32] is p1p2 + p23, namely

I∗ = (x11x21, x11x22, x11x23, x
2
31, x31x32, x

2
32).

We continue with the following definition.

Definition 3.1. Suppose that I is an ideal in a commutative Noe-
therian ring S. Then I is called normally torsion-free if AssS(S/I

k) ⊆
AssS(S/I) for all k ∈ N.

Lemma 3.2. Let I be a monomial ideal of R. Then I is normally

torsion-free if and only if I∗ is.
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Proof. For Sufficiency, consider p ∈ AssR(R/In) for an arbitrary n ∈
N. Due to [2, Proposition 1.2], it follows that p∗ ∈ AssR∗(R∗/(In)∗).
According to [2, Lemma 1.1 (iii)], this implies that (In)∗ = (I∗)n.
Hence p∗ ∈ AssR∗(R∗/(I∗)n). By hypothesis, we deduce that p∗ ∈
AssR∗(R∗/I∗). By virtue of [2, Proposition 1.2], one can conclude that
p ∈ AssR(R/I). Therefore I is a normally torsion-free ideal of R.
Necessity follows from in a similar way and the proof is complete. �

In the following example we clarify importance of the Lemma 3.2.

Example 3.3. Consider the following monomial ideal

J :=(x1,1x3,1x4,1, x1,1x3,1x4,2, x1,1x3,2x4,1, x1,1x3,2x4,2, x1,2x3,1x4,1,

x1,2x3,1x4,2, x1,2x3,2x4,1, x1,2x3,2x4,2, x1,1x5,1, x1,2x5,1, x1,1x5,2,

x1,2x5,2, x1,1x5,3, x1,2x5,3, x2,1x3,1x4,1, x2,1x3,1x4,2, x2,1x3,2x4,1,

x2,1x3,2x4,2),

in the following polynomial ring, where K is a field,

R∗ = K[x1,1, x1,2, x2,1, x3,1, x3,2, x4,1, x4,2, x5,1, x5,2, x5,3].

Now, set p1 := (x1,1, x1,2), p2 := (x2,1), p3 := (x3,1, x3,2), p4 := (x4,1, x4,2)
and p5 := (x5,1, x5,2, x5,3). Thus it is routine to check that

J = p1p3p4 + p1p5 + p2p3p4.

Consider the ideal I := (x1x3x4, x1x5, x2x3x4) in the polynomial ring
R = K[x1, x2, x3, x4, x5]. One can easily see that J is the expansion of
I with respect to the 5-tuple (2, 1, 2, 2, 3). Here and in the sequel, our
aim is to show that I is normally torsion-free. To do this, consider the
graph G, as shown in the figure below, on the vertex set V (G) := [5] =
{1, 2, 3, 4, 5} and the following edge set

E(G) := {{1, 2}, {1, 3}, {1, 4}, {3, 5}, {4, 5}}.

b b

b bb

1 5

2 3 4

It is clear that G is a bipartite graph with the following edge ideal

IG := (x1x2, x1x3, x1x4, x3x5, x4x5)

and the following cover ideal

JG := (x1, x2) ∩ (x1, x3) ∩ (x1, x4) ∩ (x3, x5) ∩ (x4, x5).

One can easily compute that JG = I. On the other hand, according
to [8, Corollary 2.6], it follows that JG is normally torsion-free. Hence
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I is a normally torsion-free and Lemma 3.2 implies that the ideal J is
also normally torsion-free.
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