
تعداد نشریات | 31 |
تعداد شمارهها | 769 |
تعداد مقالات | 7,292 |
تعداد مشاهده مقاله | 10,760,119 |
تعداد دریافت فایل اصل مقاله | 7,149,698 |
On the m-extension dual complex Fibonacci p-numbers | ||
Journal of Algebra and Related Topics | ||
دوره 12، شماره 1، مهر 2024، صفحه 53-65 اصل مقاله (296.76 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22124/jart.2021.19798.1280 | ||
نویسنده | ||
B. Prasad* | ||
Department of Mathematics, Kandi Raj College, Kandi, India | ||
چکیده | ||
In this paper, we introduced $m$-extension dual complex Fibonacci $p$-numbers. We established the properties of $m$-extension dual complex Fibonacci $p$-numbers. They are connected to complex Fibonacci numbers, complex Fibonacci $p$-numbers and dual complex Fibonacci $p$-numbers. | ||
کلیدواژهها | ||
Dual complex Fibonacci p-numbers؛ Complex Fibonacci p-numbers؛ Fibonacci numbers؛ Golden mean | ||
مراجع | ||
1. F. T. Aydin, Dual Complex k-Fibonacci numbers, Chaos Solitons Fractals, 115 (2018), 1-6. 2. F. T. Aydin, Dual-complex Jacobsthal Quaternions, Mathematical Sciences and Applications E-Notes, 8(2) (2020), 145-156. 3. M. Basu and B. Prasad, The generalized relations among the code elements for Fibonacci coding theory, Chaos Solitons Fractals, 41 (2009), 2517-2525. 4. M. Basu and B. Prasad, Long range variations on the Fibonacci universal code, J. Number Theory, 130 (2010), 1925-1931. 5. W. K. Cli ord , Preliminary sketch biquaternions, Proc London Math Soc, (4) 64 (1873), 381-395. 6. M. S. EL Naschie, Topics in the mathematical physics of E-in nity theory, Chaos Solitons Fractals, 30 (2006), 656-663. 7. M. S. EL Naschie, The theory of cantorian space time and high energy particle physics, Chaos Solitons Fractals, 41 (2009), 2635-2646. 8. M. A. Gungor and A.Z. Azak, Investigation of dual complex Fibonacci, dual complex Lucas numbers and their properties, Adv Appl Cli ord Alg, (4) 27 (2017), 3083-3096. 9. E. Kocer EG et al, On the m extension of the Fibonacci and Lacus p-numbers, Chaos Solitons Fractals, (4) 40 (2009), 1890-1906. 10. A. Kotelnikov, Screw calculus and some of its applications to geometry and mechanics, Annals of Imperial University of Kazan 1985. 11. F. Messelmi, Dual complex numbers and their holomorphic functions, 2015. Working paper or preprint: URL https:// hal.archives-ouvertes.fr/hal-01114178. 12. B. Prasad, The generalized relations among the code elements for a new complex Fibonacci matrix, Discrete Math. Algorithms Appl. (2) 11 (2019), 1950026 (16 pages). 13. B. Prasad, A new Gaussian Fibonacci matrices and its applications, J. Algebra Relat. Topics, (1) 7 (2019), 65-72. 14. B. Prasad, Dual Complex Fibonacci numbers p-numbers, Chaos Solitons Frac- tals, 145 (2021), 109922. 15. A. P. Stakhov, Fibonacci matrices, a generalization of the cassini formula and a new coding theory, Chaos Solitons Fractals, 30 (2006), 56-66. 16. A. P. Stakhov, The golden matrices and a new kind of cryptography, Chaos Solitons Fractals, 32 (2007), 1138-1146. 17. E. Study, Geometrie der dynamen, Leipzig 1903. | ||
آمار تعداد مشاهده مقاله: 997 تعداد دریافت فایل اصل مقاله: 197 |