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INTEGRAL CLOSURE OF A FILTRATION RELATIVE
TO A NOETHERIAN MODULE

F. DOROSTKAR ∗ AND M. YAHYAPOUR-DAKHEL

Abstract. Let M be a Noetherian R−module. In this paper we
will introduce the integral closure of a filtration F = {In}n≥0 rel-
ative to the Noetherian module M and prove some related results.
The integral closure of a filtration F = {In}n≥0 relative to M is
a filtration and it has an interesting relationship with the integral

closure of the filtration F̃ = {Ĩn}n≥0, where Ĩn is the image of
In under the natural ring homomorphism R→ R/(AnnR(M)) for
every n ≥ 0.

1. Introduction

Throughout this paper R denotes a commutative ring with identity.
Further N and N0 will denote the set of natural integers and non-
negative integers respectively. Also Z will denote the set of integer
numbers.

The ideas of reduction and integral closure of an ideal in a commu-
tative Noetherian ring A (with identity) were introduced by Northcott
and Rees in [2]. It is appropriate for us to recall these definitions.

Let I and J be ideals of a commutative Noetherian ring A. The ideal
I is a reduction of the ideal J if I ⊆ J and there exists an integer n ∈ N
such that IJn = Jn+1. Also an element x of A is said to be integrally
dependent on I if there exist a positive integer n and elements ck ∈ Ik,
k = 1, ..., n, such that

xn + c1x
n−1 + · · ·+ cn−1x+ cn = 0.
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We know from [2], x ∈ A is integrally dependent on I if and only if I
is a reduction of the ideal I + Rx. Further, we know that the set of
all elements of A which are integrally dependent on I is an ideal of A.
This ideal is called the integral closure of I and denoted by I−.

Now let M be a Noetherian R−module. In [5], Sharp, Tiraş and
Yassi introduced concepts of reduction and integral closure of an ideal
I of a commutative ring R relative to a Noetherian R−module M .

Let I and J be ideals of R. The ideal I is said to be a reduction of the
ideal J relative to M , if I ⊆ J and there exists an integer n ∈ N such
that IJnM = Jn+1M . Also an element x of R is said to be integrally
dependent on I relative to a Noetherian R−module M , if there exists
a positive integer n such that

xnM ⊆
n∑

i=1

xn−iI iM.

We know from [5], an element x of R is integrally dependent on I
relative to a Noetherian R−module M , if and only if I is a reduction
of the ideal I +Rx relative to M . Moreover in [5], it is shown that the
set of all elements of R which are integrally dependent on I relative to
M is an ideal of R. This is denoted by I−[M ] and is called the integral
closure of I relative to M .

Here, we give some definitions and notations which will be helpful
for us in the rest of the paper.

A filtration F = {In}n≥0 on R is a descending sequence of ideals
In of R such that I0 = R and InIm ⊆ In+m for all n,m ∈ N0. Let
F = {In}n≥0 and G = {Jn}n≥0 be two filtrations. We say F ≤ G if

In ⊆ Jn for all n. Also two filtrations {
n∑

i=0

In−iJi}n≥0 and {InJn}n≥0
are denoted by F + G and FG respectively.

The integral closure of a filtration F = {In}n≥0 is defined in [3]. For
every n ≥ 0, let Jn be the set of all x ∈ R such that x satisfies an
equation

xm + a1x
m−1 + · · ·+ am−1x+ am = 0

for a positive integer m and elements ai ∈ Ini. Then F− = {Jn}n≥0 is
a filtration such that F ≤ F−. In fact, the integral closure of

⊕
n≥0

Int
n

in R[t] is the N0−graded ring,
⊕
n≥0

Jnt
n.

In this paper we will introduce the integral closure of a filtration
relative to a Noetherian module and study some related topics.
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2. Reduction of a filtration relative to a Noetherian
module

In this section we introduce the reduction of a filtration relative to
a Noetherian module and prove some of its properties.

Definition 2.1. (See [4, 2.1.3].) Let F = {In}n≥0 and G = {Jn}n≥0 be
filtrations on R. F is said to be a reduction of G if F ≤ G and there
exists a positive integer d such that

Jn =
d∑

i=0

In−iJi for every n ≥ 1.

Here, and throughout this paper, Ii = R if i ≤ 0.

Let F = {In}n≥0 be a filtration on R. We know from [4], the graded
subring R[t−1, I1t, I2t

2, ....] of R[t, t−1] is called the Rees ring of R with
respect to the filtration F = {In}n≥0 and denoted by R(R,F). For an
R−module M the set

M [t−1, I1t, I2t
2, ....] = {

s∑
j=r

mjt
j ∈M [t, t−1] : mj ∈ IjM, r, s ∈ Z}

is shown byR(M,F). We knowR(M,F) is a gradedR(R,F)−module
by the following scalar multiplication

(
m∑
i=n

ait
i)(

s∑
j=r

mjt
j) =

m∑
i=n

s∑
j=r

aimjt
i+j

for every
m∑
i=n

ait
i ∈ R(R,F) and

s∑
j=r

mjt
j ∈ R(M,F).

Now let F = {In}n≥0 and G = {Jn}n≥0 be filtrations on R such that
every ideal Jn is finitely generated. We know from [4, 2.3], F is a reduc-
tion of G if and only ifR(R,G) is a finitely generatedR(R,F)−module.

Definition 2.2. (See [4, 2.1.4].) Let R be a Noetherian ring and
F = {In}n≥0 be a filtration on R. If there exists a positive integer d
such that

In =
d∑

i=1

In−iIi for every n ≥ 1
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then the filtration F = {In}n≥0 is said a Noetherian filtration.
We know from [4, 2.2.1], a filtration F = {In}n≥0 on R is a Noether-

ian filtration if and only if R(R,F) is a Noetherian ring.

Definition 2.3. Let F = {In}n≥0 and G = {Jn}n≥0 be filtrations on
R and let M be a Noetherian R − module. Then F is said to be
a reduction of G relative to M if F ≤ G and there exists a positive
integer d such that

JnM =
d∑

i=0

In−iJiM for every n ≥ 1.

Theorem 2.4. Let F = {In}n≥0 and G = {Jn}n≥0 be filtrations on
R and let F ≤ G. Let M be a Noetherian R − module. Then F
is a reduction of G relative to M if and only if R(M,G) is a finitely
generated R(R,F)−module.

Proof. (⇒) Since F is a reduction of G relative to M there exists a
positive integer d such that

JnM =
d∑

i=0

In−iJiM for every n ≥ 1.

Then R(R,F)−module R(M,G) is generated by J0M,J1M, . . . , JdM .
Since M is a Noetherian R−module, J0M,J1M, . . . , JdM are finitely
generated as an R−module. This showsR(M,G) is a finitely generated
R(R,F)−module.

(⇐) Let {α1, . . . , αs} be a finitely generator for R(R,F)−module
R(M,G). By adding the appropriate zero homogeneous component,
we can assume that

αt = at1mt1 + · · ·+ atkmtk

where at1 ∈ J1, . . . , atk ∈ Jk and mt1, . . . ,mtk ∈M for every 1 ≤ t ≤ s.
This is clear that R(R,F)−module R(M,G) can be generated by all
homogeneous components atimti for every 1 ≤ t ≤ s and 1 ≤ i ≤ k.

Now let x ∈ JnM . Then we can see, x =
s∑

t=1

k∑
i=1

rtiatimti where rti ∈

In−i. This shows that JnM ⊆
k∑

i=0

In−iJiM . Now the proof is completed

because the inverse inclusion is clear. �

Corollary 2.5. Let F ,G,H, and K be filtrations on a Noetherian ring
R and let M be a Noetherian R−module.
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(a) If F is a reduction of H relative to M and G is a reduction of
K relative to M then F + G is a reduction of H+K relative to
M .

(b) If F is a reduction of G relative to M and also a reduction of
K relative to M then F is a reduction of G +K relative to M .

(c) If F is a reduction of H relative to M and F ≤ G ≤ H then G
is a reduction of H relative to M . Further if F is a Noetherian
filtration then F is a reduction of G relative to M .

Proof. (a) Let F = {In}n≥0,G = {Jn}n≥0,H = {Hn}n≥0, and K =
{Kn}n≥0. We can see

R(R,F + G) = R[u, I1t, J1t, I2t
2, J2t

2, ...]

and

R(M,H +K) = R[u,H1t,K1t,H2t
2, K2t

2, ...].

Since F is a reduction of H relative to M , R(M,H) is a finitely gener-
atedR(R,F)−module by 2.4. SimilarlyR(M,K) is a finitely generated
R(R,G)−module . Now we can see R(M,H+K) is a finitely generated
R(R,F + G)−module and so the claim follows from 2.4.

(b) It is clear by (a) since F + F = F .
(c) The first part follows from 2.4. Now let F be a Noetherian

filtration. Then by [4, 2.2.1], R(R,F) is Noetherian. Since F is a
reduction of H relative to M , R(M,H) is a finitely generated module
over the Noetherian ring R(R,F). Therefore R(M,G) is a finitely
generated R(R,F)−module. Then F is a reduction of G relative to M
by 2.4. �

Remark 2.6. Let F = {In}n≥0 and G = {Jn}n≥0 be filtrations on R
and let M be an R−module. Let F be a reduction of G relative to M .
Then there exists a positive integer d such that

JnM =
d∑

i=0

In−iJiM for every n ≥ 1.

Let d < d′. Since
d′∑

i=d+1

In−iJiM ⊆ JnM , we have

JnM =
d∑

i=0

In−iJiM +
d′∑

i=d+1

In−iJiM =
d′∑
i=0

In−iJiM.

Lemma 2.7. Let F = {In}n≥0,G = {Jn}n≥0,K = {Kn}n≥0, and H =
{Hn}n≥0 be filtrations on R and let M be an R−module.

(a) If F is a reduction of G relative to M and K is a reduction of
H relative to M then FK is a reduction of GH relative to M .
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(b) If F is a reduction of G relative to M and G is a reduction of
K relative to M then F is a reduction of K relative to M .

Proof. (a) Let F be a reduction of G relative to M and also K be a
reduction of H relative to M . By 2.6, we can choose a positive integer
d such that

JnM =
d∑

i=0

In−iJiM and HnM =
d∑

i=0

Kn−iHiM

for every n ≥ 1. Now we have

JnHnM =
d∑

i=0

In−iJiHnM =
d∑

i=0

In−iJi(
d∑

i=0

Kn−iHiM).

Since for every 1 < t < d we have

In−tJt ⊆ In−t−1Jt−1 ⊆ · · · ⊆ In−1J1

and
Kn−tHt ⊆ Kn−t−1Ht−1 ⊆ · · · ⊆ Kn−1H1,

we can see that

JnHnM =
d∑

i=0

In−iJi(
d∑

i=0

Kn−iHiM) ⊆
d∑

i=0

In−iKn−iJiHiM

for every n ≥ 1. Now (a) is clear because the inverse inclusion is clear.
(b) Since G is a reduction of K relative to M , there exists a positive

integer d such that

KnM =
d∑

i=0

Jn−iKiM for every n ≥ 1.

Now since F is a reduction of G relative to M , there exists a positive

integer d′ such that for every n − i we have Jn−iM =
d′∑
t=0

In−i−tJtM .

This shows that

KnM =
d∑

i=0

Ki

d′∑
t=0

In−i−tJtM

⊆
d∑

i=0

Ki

d′∑
t=0

In−i−tKtM

⊆
d∑

i=0

d′∑
t=0

In−i−tKi+tM
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and this shows that

KnM ⊆
d+d′∑
i=0

In−iKiM for every n ≥ 1.

Now the proof is completed because the inverse inclusion is clear. �

3. Integral closure of a filtration relative to a
Noetherian module

In this section we define the integral closure of a filtration relative
to a Noetherian module and prove some of its properties. For this, we
introduce a useful notation.

Remark 3.1. Let M be a Noetherian R−module. In the remain-
der of this paper, as shown in [5], the commutative Noetherian ring

R/AnnR(M) is denoted by R̃. Further for every ideal I of R, the

ideal I + AnnR(M)/AnnR(M) of R̃ is denoted by Ĩ. Also an element
x + AnnR(M) ∈ R/AnnR(M) is denoted by x̃. If F = {In}n≥0 is a

filtration of ideals of R then the filtration {Ĩn}n≥0 of ideals of R̃ is

denoted by F̃ .

Theorem 3.2. Let F = {In}n≥0 be a filtration on R and let M be a
Noetherian R−module. For every n ≥ 0, we assume that Jn contains
all x ∈ R such that

xkM ⊆
k∑

i=1

xk−iIniM

for a positive integer k. Further we assume that the integral closure

of filtration F̃ on R̃ be (F̃)
−

= {K̃n}n≥0. Then x ∈ Jn if and only if

x̃ ∈ K̃n.

Proof. (⇐) Let x̃ ∈ K̃n≥0. Then there exist a positive integer k and

elements ãi ∈ Ĩni, i = 1, ..., k, such that

x̃k + ã1x̃
k−1 + · · ·+ ãk−1x̃+ ãk = 0.

Now since M has natural structure as R/(0 :R M)−module,

xkM ⊆
k∑

i=1

xk−iIniM.
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(⇒) Since x ∈ Jn, there exists a positive integer k, such that

xkM ⊆
k∑

i=1

xk−iIniM.

Let L =
k∑

i=1

xk−iIni. Since M is a Noetherian R module, by [1, 2.1], we

can see that there exist an integer t ∈ N and elements c1, ..., ct ∈ R

with cj ∈ Lj ⊆
kj∑
i=j

xkj−iIni such that

xkt + c1x
k(t−1) + · · ·+ ct−1x

k + ct ∈ (0 :R M).

But for every 1 ≤ j ≤ t, we have

cjx
k(t−j) ∈ xk(t−j)Lj ⊆ xk(t−j)

kj∑
i=j

xkj−iIni =

kj∑
i=j

xkt−iIni

= xkt−jInj + · · ·+ xkt−kjInkj.

This implies that

(x̃)kt ∈
kt∑
i=1

(x̃)kt−iĨni

and so x̃ ∈ K̃n. �
In the above theorem, let R be a Noetherian ring and let R−module

M be R. Then AnnR(R) = 0 and in this case the above theorem is
clear.

Corollary 3.3. Let F = {In}n≥0 be a filtration on R and let M be a
Noetherian R−module. For every n ≥ 0, we assume that Jn contains
all x ∈ R such that

xkM ⊆
k∑

i=1

xk−iIniM

for a positive integer k. Then G = {Jn}n≥0 is a filtration on R.

Proof. It is clear that J0 = R. By 3.2, we can see that Jn is an ideal
of R for every n ∈ N. Now let x ∈ Jn and y ∈ Jm. Also let the integral

closure of filtration F̃ on R̃ be (F̃)
−

= {K̃n}n≥0. We know from 3.2,

x̃ ∈ K̃n and ỹ ∈ K̃m. Since (F̃)
−

= {K̃n}n≥0 is a filtration, we see that

x̃y = x̃ ỹ ∈ K̃nK̃m ⊆ K̃n+m. Then xy ∈ Jn+m by 3.2. �
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Definition 3.4. Let F = {In}n≥0 be a filtration on R and let M be
a Noetherian R −module. For every n, let Jn be the set of all x ∈ R
such that

xkM ⊆
k∑

i=1

xk−iIniM

for a positive integer k. By 3.3, {Jn}n≥0 is a filtration on R. This filtra-
tion is denoted by F−(M) and is called the integral closure of filtration

F relative to M . We follows from 3.2, ˜(F−(M)) = (F̃)
−

.

Remark 3.5. Let F = {In}n≥0 be a filtration on R and let M be a
Noetherian R − module. Let for x ∈ R and a positive integer k, we

have xkM ⊆
k∑

i=1

xk−iIniM . Then for every r ≥ 0 we have

xk+rM ⊆
k+r∑
i=1

x(k+r)−iIniM.

Theorem 3.6. Let F and G be filtrations on R. Then for every Noe-
therian R−module M , we have

(a) F ≤ F−(M);
(b) if F ≤ G then F−(M) ≤ G−(M);
(c) (F−(M))−(M) = F−(M);
(d) F−(M)G−(M) ≤ (FG)−(M).

Proof. (a) and (b) are clear.
(c) Let F = {In}n≥0, F−(M) = {Jn}n≥0, and (F−(M))−(M) = {Kn}n≥0.

Let the integral closure of filtration {J̃n}n≥0 of ideals R̃ be the filtration

({J̃n}n≥0)
−

= {Ũn}n≥0. We know from 3.2, {K̃n}n≥0 = {Ũn}n≥0. This
shows

{K̃n}n≥0 = ({J̃n}n≥0)
−

= (({Ĩn}n≥0)
−

)
−
.

By [3, 2.4(3)], we have (({Ĩn}n≥0)
−

)
−

= ({Ĩn}n≥0)
−

and so {K̃n}n≥0 =

{J̃n}n≥0. Now since AnnR(M) ⊆ Jn for every n ≥ 0, we can see that
(F−(M))−(M) ≤ F−(M). But by (a), we have F−(M) ≤ (F−(M))−(M) and
so (F−(M))−(M) = F−(M).

(d) Let F = {In}n≥0 and G = {Jn}n≥0. Further let F−(M) =

{Kn}n≥0, G−(M) = {Ln}n≥0, and (FG)−(M) = {Hn}n≥0. By 3.2, we

know the integral closure of filtrations {Ĩn}n≥0, {J̃n}n≥0, and {ĨnJ̃n}n≥0
of ideals R̃ are ({Ĩn}n≥0)

−
= {K̃n}n≥0, ({J̃n}n≥0)

−
= {L̃n}n≥0, and

({ĨnJ̃n}n≥0)
−

= {H̃n}n≥0 respectively. Since R̃ is a Noetherian ring

by [3, 2.4(4)], we have ({Ĩn}n≥0)
−

({J̃n}n≥0)
− ≤ ({ĨnJ̃n}n≥0)

−
. This
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implies that {K̃n}n≥0{L̃n}n≥0 ≤ {H̃n}n≥0. Now since AnnR(M) ⊆ Hn

for every n ≥ 0, we can conclude that F−(M)G−(M) ≤ (FG)−(M). �

Proposition 3.7. Let F = {In}n≥0 be a Noetherian filtration of ideals
R and let M be a Noetherian R−module. Let F−(M) = {Jn}n≥0 be the

integral closure of filtration F relative to M . If the filtration {J̃n}n≥0
is a Noetherian filtration on R̃ then the filtration F is a reduction of
the filtration F−(M) relative to M .

Proof. We know from [4, 2.8], that the filtration F̃ = {Ĩn}n≥0 is a

reduction of the filtration (F̃)
−

= {J̃n}n≥0. Then there exists a positive
integer d such that

J̃n =
d∑

i=0

Ĩn−iJ̃i for every n ≥ 1.

Now we can see that

JnM =
d∑

i=0

In−iJiM for every n ≥ 1

and this completes the proof. �

Theorem 3.8. Let F = {In}n≥0 be a filtration on R and let M be
a Noetherian R − module. Let F−(M) = {Jn}n≥0. Further for a non
negative integer n and x ∈ R, let Lk = Rxk +xk−1In1 +xk−2In2 + · · ·+
xIn(k−1) + Ink and Hk = Ink. Then x ∈ Jn if and only if the filtration
{Hk}k≥0 is a reduction of filtration {Lk}k≥0 relative to M .

Proof. (⇒) Let x ∈ Jn. Then there exists a positive integer k such
that

xkM ⊆
k∑

i=1

xk−iIniM.

Since xk−iIni ⊆ Hk−(k−i)Lk−i for every 1 ≤ i ≤ k,

k∑
i=1

xk−iIniM ⊆
k∑

i=0

Hk−(k−i)Lk−iM =
k∑

i=0

Hk−iLiM.

But xkM ⊆
k∑

i=1

xk−iIniM and so

(Rxk+xk−1In1+x
k−2In2+· · ·+xIn(k−1)+Ink)M = LkM ⊆

k∑
i=0

Hk−iLiM.
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It is easy to see that
k∑

i=0

Hk−iLiM ⊆ LkM . Then LkM =
k∑

i=0

Hk−iLiM .

Now, we will show that

LtM =
k∑

i=0

Ht−iLiM for every t ≥ 1.

First let t < k. Since t < k,

LtM = H0LtM ⊆
k∑

i=0

Ht−iLiM.

Also we know
k∑

i=0

Ht−iLiM ⊆ LtM . Thus we have

LtM =
k∑

i=0

Ht−iLiM for every t ≤ k − 1.

Now let t > k. This is clear that

k∑
i=0

Ht−iLiM =
k∑

i=0

xiIn(t−i)M.

Since xkM ⊆
k∑

i=1

xk−iIniM , we can see that

xk+rM ⊆
k∑

i=1

xk−iIn(r+i)M.

But by

xk+rIn(t−(k+r))M ⊆
k∑

i=1

xk−iIn(r+i)In(t−(k+r))M

⊆
k∑

i=1

xk−iIn(t−k+i)M ⊆
k∑

i=0

xiIn(t−i)M

we have

LtM = (xt+xt−1In1+· · ·+xk+1In(t−(k+1))+x
kIn(t−k)+· · ·+xIn(t−1)+Int)M

⊆
k∑

i=0

Ht−iLiM
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and this implies that

LtM =
k∑

i=0

Ht−iLiM for every t ≥ 1.

(⇐) Let {Hk}k≥0 be a reduction of filtration {Lk}k≥0 relative to M .
Then there exists a positive integer d such that

LkM =
d∑

i=0

Hk−iLiM for every k ≥ 1.

So we can assume that Ld+1M =
d∑

i=0

H((d+1)−i)LiM . Now since

Ld+1M =
d∑

i=0

H((d+1)−i)LiM ⊆
d∑

i=0

x(d−i)In(i+1)M =
d+1∑
i=1

x((d+1)−i)IniM,

we have xd+1M ⊆
d+1∑
i=1

x((d+1)−i)IniM . Hence x ∈ Jn. �

Definition 3.9. (See [3, 3.1(2)].) Let F = {In}n≥0 be a filtration on
a Noetherian ring R and F− = {Jn}n≥0. Members of

A−(F) = {P : P ∈ Ass(R/Jn) for some n ≥ 1}
are called the asymptotic prime divisors of F .

Definition 3.10. Let F = {In}n≥0 be a filtration on a Noetherian
ring R and M be a Noetherian R−module. Let F−(M) = {Jn}n≥0.
Members of

A−(F ,M) = {P : P ∈ Ass(R/Jn) for some n ≥ 1}
are called the asymptotic prime divisors of F relative to M .

Remark 3.11. Let F = {In}n≥0 be a Noetherian filtration of ideals of
R and let M be a Noetherian R−module. Then A−(F ,M) is a finite
set.

Proof. It is easy to see that P ∈ A−(F ,M) if and only if P̃ ∈ A−(F̃).

Since F̃ is a Noetherian filtration on Noetherian ring R̃, we know from

[3, 3.3(2)], that A−(F̃) is a finite set and this completes the proof. �
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