Journal of Algebra and Related Topics Vol. 10, No 1, (2022), pp 129-141

INTEGRAL CLOSURE OF A FILTRATION RELATIVE TO A NOETHERIAN MODULE

F. DOROSTKAR * AND M. YAHYAPOUR-DAKHEL

ABSTRACT. Let M be a Noetherian R-module. In this paper we will introduce the integral closure of a filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$ relative to the Noetherian module M and prove some related results. The integral closure of a filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$ relative to M is a filtration and it has an interesting relationship with the integral closure of the filtration $\widetilde{\mathcal{F}} = \{\widetilde{I}_n\}_{n\geq 0}$, where \widetilde{I}_n is the image of I_n under the natural ring homomorphism $R \to R/(Ann_R(M))$ for every $n \geq 0$.

1. INTRODUCTION

Throughout this paper R denotes a commutative ring with identity. Further **N** and **N**₀ will denote the set of natural integers and nonnegative integers respectively. Also **Z** will denote the set of integer numbers.

The ideas of reduction and integral closure of an ideal in a commutative Noetherian ring A (with identity) were introduced by Northcott and Rees in [2]. It is appropriate for us to recall these definitions.

Let I and J be ideals of a commutative Noetherian ring A. The ideal I is a reduction of the ideal J if $I \subseteq J$ and there exists an integer $n \in \mathbb{N}$ such that $IJ^n = J^{n+1}$. Also an element x of A is said to be integrally dependent on I if there exist a positive integer n and elements $c_k \in I^k$, k = 1, ..., n, such that

$$x^{n} + c_{1}x^{n-1} + \dots + c_{n-1}x + c_{n} = 0.$$

MSC(2010): 13B22

Keywords: Filtration, Reduction of a filtration, Integral closure of a filtration.

Received: 7 August 2021, Accepted: 14 October 2021.

^{*}Corresponding author .

We know from [2], $x \in A$ is integrally dependent on I if and only if I is a reduction of the ideal I + Rx. Further, we know that the set of all elements of A which are integrally dependent on I is an ideal of A. This ideal is called the integral closure of I and denoted by I^- .

Now let M be a Noetherian R-module. In [5], Sharp, Tiraş and Yassi introduced concepts of reduction and integral closure of an ideal I of a commutative ring R relative to a Noetherian R-module M.

Let I and J be ideals of R. The ideal I is said to be a reduction of the ideal J relative to M, if $I \subseteq J$ and there exists an integer $n \in \mathbb{N}$ such that $IJ^nM = J^{n+1}M$. Also an element x of R is said to be integrally dependent on I relative to a Noetherian R-module M, if there exists a positive integer n such that

$$x^n M \subseteq \sum_{i=1}^n x^{n-i} I^i M.$$

We know from [5], an element x of R is integrally dependent on I relative to a Noetherian R-module M, if and only if I is a reduction of the ideal I + Rx relative to M. Moreover in [5], it is shown that the set of all elements of R which are integrally dependent on I relative to M is an ideal of R. This is denoted by $I^{-[M]}$ and is called the integral closure of I relative to M.

Here, we give some definitions and notations which will be helpful for us in the rest of the paper.

A filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$ on R is a descending sequence of ideals I_n of R such that $I_0 = R$ and $I_n I_m \subseteq I_{n+m}$ for all $n, m \in \mathbb{N}_0$. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ and $\mathcal{G} = \{J_n\}_{n\geq 0}$ be two filtrations. We say $\mathcal{F} \leq \mathcal{G}$ if $I_n \subseteq J_n$ for all n. Also two filtrations $\{\sum_{i=0}^n I_{n-i}J_i\}_{n\geq 0}$ and $\{I_nJ_n\}_{n\geq 0}$ are denoted by $\mathcal{F} + \mathcal{G}$ and $\mathcal{F}\mathcal{G}$ respectively.

The integral closure of a filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$ is defined in [3]. For every $n \geq 0$, let J_n be the set of all $x \in R$ such that x satisfies an equation

$$x^m + a_1 x^{m-1} + \dots + a_{m-1} x + a_m = 0$$

for a positive integer m and elements $a_i \in I_{ni}$. Then $\mathcal{F}^- = \{J_n\}_{n\geq 0}$ is a filtration such that $\mathcal{F} \leq \mathcal{F}^-$. In fact, the integral closure of $\bigoplus_{n\geq 0} I_n t^n$ in R[t] is the \mathbf{N}_0 -graded ring, $\bigoplus_{n\geq 0} J_n t^n$.

In this paper we will introduce the integral closure of a filtration relative to a Noetherian module and study some related topics.

2. Reduction of a filtration relative to a Noetherian module

In this section we introduce the reduction of a filtration relative to a Noetherian module and prove some of its properties.

Definition 2.1. (See [4, 2.1.3].) Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ and $\mathcal{G} = \{J_n\}_{n\geq 0}$ be filtrations on R. \mathcal{F} is said to be a reduction of \mathcal{G} if $\mathcal{F} \leq \mathcal{G}$ and there exists a positive integer d such that

$$J_n = \sum_{i=0}^d I_{n-i} J_i \quad for \ every \ n \ge 1.$$

Here, and throughout this paper, $I_i = R$ if $i \leq 0$.

Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on R. We know from [4], the graded subring $R[t^{-1}, I_1t, I_2t^2, ...]$ of $R[t, t^{-1}]$ is called the Rees ring of R with respect to the filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$ and denoted by $\mathcal{R}(R, \mathcal{F})$. For an R-module M the set

$$M[t^{-1}, I_1t, I_2t^2, \dots] = \{\sum_{j=r}^s m_j t^j \in M[t, t^{-1}] : m_j \in I_j M, r, s \in \mathbf{Z}\}$$

is shown by $\mathcal{R}(M, \mathcal{F})$. We know $\mathcal{R}(M, \mathcal{F})$ is a graded $\mathcal{R}(R, \mathcal{F})$ -module by the following scalar multiplication

$$(\sum_{i=n}^{m} a_i t^i) (\sum_{j=r}^{s} m_j t^j) = \sum_{i=n}^{m} \sum_{j=r}^{s} a_i m_j t^{i+j}$$

for every $\sum_{i=n}^{m} a_i t^i \in \mathcal{R}(R, \mathcal{F})$ and $\sum_{i=r}^{s} m_j t^j \in \mathcal{R}(M, \mathcal{F}).$

Now let $\mathcal{F} = \{I_n\}_{n\geq 0}$ and $\mathcal{G} = \{J_n\}_{n\geq 0}$ be filtrations on R such that every ideal J_n is finitely generated. We know from [4, 2.3], \mathcal{F} is a reduction of \mathcal{G} if and only if $\mathcal{R}(R, \mathcal{G})$ is a finitely generated $\mathcal{R}(R, \mathcal{F})$ -module.

Definition 2.2. (See [4, 2.1.4].) Let R be a Noetherian ring and $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on R. If there exists a positive integer d such that

$$I_n = \sum_{i=1}^d I_{n-i} I_i \quad for \ every \ n \ge 1$$

then the filtration $\mathcal{F} = \{I_n\}_{n>0}$ is said a Noetherian filtration.

We know from [4, 2.2.1], a filtration $\mathcal{F} = \{I_n\}_{n\geq 0}$ on R is a Noetherian filtration if and only if $\mathcal{R}(R, \mathcal{F})$ is a Noetherian ring.

Definition 2.3. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ and $\mathcal{G} = \{J_n\}_{n\geq 0}$ be filtrations on R and let M be a Noetherian R – module. Then \mathcal{F} is said to be a reduction of \mathcal{G} relative to M if $\mathcal{F} \leq \mathcal{G}$ and there exists a positive integer d such that

$$J_n M = \sum_{i=0}^d I_{n-i} J_i M \quad for \ every \ n \ge 1.$$

Theorem 2.4. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ and $\mathcal{G} = \{J_n\}_{n\geq 0}$ be filtrations on R and let $\mathcal{F} \leq \mathcal{G}$. Let M be a Noetherian R – module. Then \mathcal{F} is a reduction of \mathcal{G} relative to M if and only if $\mathcal{R}(M, \mathcal{G})$ is a finitely generated $\mathcal{R}(R, \mathcal{F})$ -module.

Proof. (\Rightarrow) Since \mathcal{F} is a reduction of \mathcal{G} relative to M there exists a positive integer d such that

$$J_n M = \sum_{i=0}^d I_{n-i} J_i M \text{ for every } n \ge 1.$$

Then $\mathcal{R}(R, \mathcal{F})$ -module $\mathcal{R}(M, \mathcal{G})$ is generated by J_0M, J_1M, \ldots, J_dM . Since M is a Noetherian R-module, J_0M, J_1M, \ldots, J_dM are finitely generated as an R-module. This shows $\mathcal{R}(M, \mathcal{G})$ is a finitely generated $\mathcal{R}(R, \mathcal{F})$ -module.

 (\Leftarrow) Let $\{\alpha_1, \ldots, \alpha_s\}$ be a finitely generator for $\mathcal{R}(R, \mathcal{F})$ -module $\mathcal{R}(M, \mathcal{G})$. By adding the appropriate zero homogeneous component, we can assume that

$$\alpha_t = a_{t1}m_{t1} + \dots + a_{tk}m_{tk}$$

where $a_{t1} \in J_1, \ldots, a_{tk} \in J_k$ and $m_{t1}, \ldots, m_{tk} \in M$ for every $1 \leq t \leq s$. This is clear that $\mathcal{R}(R, \mathcal{F})$ -module $\mathcal{R}(M, \mathcal{G})$ can be generated by all homogeneous components $a_{ti}m_{ti}$ for every $1 \leq t \leq s$ and $1 \leq i \leq k$. Now let $x \in J_n M$. Then we can see, $x = \sum_{t=1}^s \sum_{i=1}^k r_{ti}a_{ti}m_{ti}$ where $r_{ti} \in I_{n-i}$. This shows that $J_n M \subseteq \sum_{i=0}^k I_{n-i}J_iM$. Now the proof is completed because the inverse inclusion is clear. \Box

Corollary 2.5. Let $\mathcal{F}, \mathcal{G}, \mathcal{H}$, and \mathcal{K} be filtrations on a Noetherian ring R and let M be a Noetherian R – module.

- (a) If F is a reduction of H relative to M and G is a reduction of K relative to M then F + G is a reduction of H + K relative to M.
- (b) If \mathcal{F} is a reduction of \mathcal{G} relative to M and also a reduction of \mathcal{K} relative to M then \mathcal{F} is a reduction of $\mathcal{G} + \mathcal{K}$ relative to M.
- (c) If \mathcal{F} is a reduction of \mathcal{H} relative to M and $\mathcal{F} \leq \mathcal{G} \leq \mathcal{H}$ then \mathcal{G} is a reduction of \mathcal{H} relative to M. Further if \mathcal{F} is a Noetherian filtration then \mathcal{F} is a reduction of \mathcal{G} relative to M.

Proof. (a) Let $\mathcal{F} = \{I_n\}_{n\geq 0}, \mathcal{G} = \{J_n\}_{n\geq 0}, \mathcal{H} = \{H_n\}_{n\geq 0}$, and $\mathcal{K} = \{K_n\}_{n\geq 0}$. We can see

$$\mathcal{R}(R, \mathcal{F} + \mathcal{G}) = R[u, I_1t, J_1t, I_2t^2, J_2t^2, \ldots]$$

and

$$\mathcal{R}(M, \mathcal{H} + \mathcal{K}) = R[u, H_1t, K_1t, H_2t^2, K_2t^2, \ldots].$$

Since \mathcal{F} is a reduction of \mathcal{H} relative to M, $\mathcal{R}(M, \mathcal{H})$ is a finitely generated $\mathcal{R}(R, \mathcal{F})$ -module by 2.4. Similarly $\mathcal{R}(M, \mathcal{K})$ is a finitely generated $\mathcal{R}(R, \mathcal{G})$ -module . Now we can see $\mathcal{R}(M, \mathcal{H}+\mathcal{K})$ is a finitely generated $\mathcal{R}(R, \mathcal{F}+\mathcal{G})$ -module and so the claim follows from 2.4.

(b) It is clear by (a) since $\mathcal{F} + \mathcal{F} = \mathcal{F}$.

(c) The first part follows from 2.4. Now let \mathcal{F} be a Noetherian filtration. Then by [4, 2.2.1], $\mathcal{R}(R, \mathcal{F})$ is Noetherian. Since \mathcal{F} is a reduction of \mathcal{H} relative to M, $\mathcal{R}(M, \mathcal{H})$ is a finitely generated module over the Noetherian ring $\mathcal{R}(R, \mathcal{F})$. Therefore $\mathcal{R}(M, \mathcal{G})$ is a finitely generated $\mathcal{R}(R, \mathcal{F})$ -module. Then \mathcal{F} is a reduction of \mathcal{G} relative to M by 2.4. \Box

Remark 2.6. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ and $\mathcal{G} = \{J_n\}_{n\geq 0}$ be filtrations on R and let M be an R-module. Let \mathcal{F} be a reduction of \mathcal{G} relative to M. Then there exists a positive integer d such that

$$J_n M = \sum_{i=0}^{a} I_{n-i} J_i M \quad for \ every \ n \ge 1.$$

Let d < d'. Since $\sum_{i=d+1}^{d'} I_{n-i} J_i M \subseteq J_n M$, we have

$$J_n M = \sum_{i=0}^d I_{n-i} J_i M + \sum_{i=d+1}^{d'} I_{n-i} J_i M = \sum_{i=0}^{d'} I_{n-i} J_i M.$$

Lemma 2.7. Let $\mathcal{F} = \{I_n\}_{n\geq 0}, \mathcal{G} = \{J_n\}_{n\geq 0}, \mathcal{K} = \{K_n\}_{n\geq 0}, \text{ and } \mathcal{H} = \{H_n\}_{n\geq 0}$ be filtrations on R and let M be an R-module.

(a) If \mathcal{F} is a reduction of \mathcal{G} relative to M and \mathcal{K} is a reduction of \mathcal{H} relative to M then $\mathcal{F}\mathcal{K}$ is a reduction of $\mathcal{G}\mathcal{H}$ relative to M.

(b) If F is a reduction of G relative to M and G is a reduction of K relative to M then F is a reduction of K relative to M.

Proof. (a) Let \mathcal{F} be a reduction of \mathcal{G} relative to M and also \mathcal{K} be a reduction of \mathcal{H} relative to M. By 2.6, we can choose a positive integer d such that

$$J_n M = \sum_{i=0}^d I_{n-i} J_i M \quad and \quad H_n M = \sum_{i=0}^d K_{n-i} H_i M$$

for every $n \ge 1$. Now we have

$$J_n H_n M = \sum_{i=0}^d I_{n-i} J_i H_n M = \sum_{i=0}^d I_{n-i} J_i (\sum_{i=0}^d K_{n-i} H_i M).$$

Since for every 1 < t < d we have

$$I_{n-t}J_t \subseteq I_{n-t-1}J_{t-1} \subseteq \cdots \subseteq I_{n-1}J_1$$

and

$$K_{n-t}H_t \subseteq K_{n-t-1}H_{t-1} \subseteq \cdots \subseteq K_{n-1}H_1,$$

we can see that

$$J_n H_n M = \sum_{i=0}^d I_{n-i} J_i (\sum_{i=0}^d K_{n-i} H_i M) \subseteq \sum_{i=0}^d I_{n-i} K_{n-i} J_i H_i M$$

for every $n \ge 1$. Now (a) is clear because the inverse inclusion is clear.

(b) Since \mathcal{G} is a reduction of \mathcal{K} relative to M, there exists a positive integer d such that

$$K_n M = \sum_{i=0}^d J_{n-i} K_i M$$
 for every $n \ge 1$.

Now since \mathcal{F} is a reduction of \mathcal{G} relative to M, there exists a positive integer d' such that for every n - i we have $J_{n-i}M = \sum_{t=0}^{d'} I_{n-i-t}J_tM$. This shows that

$$K_n M = \sum_{i=0}^d K_i \sum_{t=0}^{d'} I_{n-i-t} J_t M$$
$$\subseteq \sum_{i=0}^d K_i \sum_{t=0}^{d'} I_{n-i-t} K_t M$$
$$\subseteq \sum_{i=0}^d \sum_{t=0}^{d'} I_{n-i-t} K_{i+t} M$$

and this shows that

$$K_n M \subseteq \sum_{i=0}^{d+d'} I_{n-i} K_i M$$
 for every $n \ge 1$.

Now the proof is completed because the inverse inclusion is clear. \Box

3. Integral closure of a filtration relative to a Noetherian module

In this section we define the integral closure of a filtration relative to a Noetherian module and prove some of its properties. For this, we introduce a useful notation.

Remark 3.1. Let M be a Noetherian R-module. In the remainder of this paper, as shown in [5], the commutative Noetherian ring $R/Ann_R(M)$ is denoted by \widetilde{R} . Further for every ideal I of R, the ideal $I + Ann_R(M)/Ann_R(M)$ of \widetilde{R} is denoted by \widetilde{I} . Also an element $x + Ann_R(M) \in R/Ann_R(M)$ is denoted by \widetilde{x} . If $\mathcal{F} = \{I_n\}_{n\geq 0}$ is a filtration of ideals of R then the filtration $\{\widetilde{I}_n\}_{n\geq 0}$ of ideals of \widetilde{R} is denoted by $\widetilde{\mathcal{F}}$.

Theorem 3.2. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on R and let M be a Noetherian R – module. For every $n \geq 0$, we assume that J_n contains all $x \in R$ such that

$$x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M$$

for a positive integer k. Further we assume that the integral closure of filtration $\widetilde{\mathcal{F}}$ on \widetilde{R} be $(\widetilde{\mathcal{F}})^- = {\widetilde{K}_n}_{n\geq 0}$. Then $x \in J_n$ if and only if $\widetilde{x} \in \widetilde{K}_n$.

Proof. (\Leftarrow) Let $\tilde{x} \in \tilde{K}_{n \geq 0}$. Then there exist a positive integer k and elements $\tilde{a}_i \in \tilde{I}_{ni}, i = 1, ..., k$, such that

$$\widetilde{x}^k + \widetilde{a}_1 \widetilde{x}^{k-1} + \dots + \widetilde{a}_{k-1} \widetilde{x} + \widetilde{a}_k = 0.$$

Now since M has natural structure as $R/(0:_R M)$ -module,

$$x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M.$$

 (\Rightarrow) Since $x \in J_n$, there exists a positive integer k, such that

$$x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M.$$

Let $L = \sum_{i=1}^{k} x^{k-i} I_{ni}$. Since M is a Noetherian R module, by [1, 2.1], we can see that there exist an integer $t \in \mathbf{N}$ and elements $c_1, ..., c_t \in R$ with $c_j \in L^j \subseteq \sum_{i=j}^{kj} x^{kj-i} I_{ni}$ such that

$$x^{kt} + c_1 x^{k(t-1)} + \dots + c_{t-1} x^k + c_t \in (0 :_R M)$$

But for every $1 \leq j \leq t$, we have

$$c_{j}x^{k(t-j)} \in x^{k(t-j)}L^{j} \subseteq x^{k(t-j)}\sum_{i=j}^{kj}x^{kj-i}I_{ni} = \sum_{i=j}^{kj}x^{kt-i}I_{ni}$$
$$= x^{kt-j}I_{nj} + \dots + x^{kt-kj}I_{nkj}.$$

This implies that

$$(\widetilde{x})^{kt} \in \sum_{i=1}^{kt} (\widetilde{x})^{kt-i} \widetilde{I}_{ni}$$

and so $\widetilde{x} \in \widetilde{K}_n$. \Box

In the above theorem, let R be a Noetherian ring and let R-module M be R. Then $Ann_R(R) = 0$ and in this case the above theorem is clear.

Corollary 3.3. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on R and let M be a Noetherian R – module. For every $n \geq 0$, we assume that J_n contains all $x \in R$ such that

$$x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M$$

for a positive integer k. Then $\mathcal{G} = \{J_n\}_{n\geq 0}$ is a filtration on R.

Proof. It is clear that $J_0 = R$. By 3.2, we can see that J_n is an ideal of R for every $n \in \mathbb{N}$. Now let $x \in J_n$ and $y \in J_m$. Also let the integral closure of filtration $\widetilde{\mathcal{F}}$ on \widetilde{R} be $(\widetilde{\mathcal{F}})^- = {\widetilde{K}_n}_{n\geq 0}$. We know from 3.2, $\widetilde{x} \in \widetilde{K}_n$ and $\widetilde{y} \in \widetilde{K}_m$. Since $(\widetilde{\mathcal{F}})^- = {\widetilde{K}_n}_{n\geq 0}$ is a filtration, we see that $\widetilde{xy} = \widetilde{x} \ \widetilde{y} \in \widetilde{K}_n \widetilde{K}_m \subseteq \widetilde{K}_{n+m}$. Then $xy \in J_{n+m}$ by 3.2. \Box

Definition 3.4. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on R and let M be a Noetherian R – module. For every n, let J_n be the set of all $x \in R$ such that

$$x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M$$

for a positive integer k. By 3.3, $\{J_n\}_{n\geq 0}$ is a filtration on R. This filtration is denoted by $\mathcal{F}^{-(M)}$ and is called the integral closure of filtration \mathcal{F} relative to M. We follows from 3.2, $(\widetilde{\mathcal{F}^{-(M)}}) = (\widetilde{\mathcal{F}})^-$.

Remark 3.5. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on R and let M be a Noetherian R – module. Let for $x \in R$ and a positive integer k, we have $x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M$. Then for every $r \geq 0$ we have

$$x^{k+r}M \subseteq \sum_{i=1}^{k+r} x^{(k+r)-i}I_{ni}M.$$

Theorem 3.6. Let \mathcal{F} and \mathcal{G} be filtrations on R. Then for every Noetherian R-module M, we have

(a) $\mathcal{F} \leq \mathcal{F}^{-(M)}$; (b) if $\mathcal{F} \leq \mathcal{G}$ then $\mathcal{F}^{-(M)} \leq \mathcal{G}^{-(M)}$; (c) $(\mathcal{F}^{-(M)})^{-(M)} = \mathcal{F}^{-(M)}$; (d) $\mathcal{F}^{-(M)}\mathcal{G}^{-(M)} \leq (\mathcal{F}\mathcal{G})^{-(M)}$.

Proof. (a) and (b) are clear.

(c) Let $\mathcal{F} = \{I_n\}_{n\geq 0}$, $\mathcal{F}^{-(M)} = \{J_n\}_{n\geq 0}$, and $(\mathcal{F}^{-(M)})^{-(M)} = \{K_n\}_{n\geq 0}$. Let the integral closure of filtration $\{\widetilde{J}_n\}_{n\geq 0}$ of ideals \widetilde{R} be the filtration $(\{\widetilde{J}_n\}_{n\geq 0})^- = \{\widetilde{U}_n\}_{n\geq 0}$. We know from 3.2, $\{\widetilde{K}_n\}_{n\geq 0} = \{\widetilde{U}_n\}_{n\geq 0}$. This shows

$$\{\widetilde{K}_n\}_{n\geq 0} = (\{\widetilde{J}_n\}_{n\geq 0})^- = ((\{\widetilde{I}_n\}_{n\geq 0})^-)^-.$$

By [3, 2.4(3)], we have $(({\widetilde{I}_n}_{n\geq 0})^-)^- = ({\widetilde{I}_n}_{n\geq 0})^-$ and so ${\widetilde{K}_n}_{n\geq 0} = {\widetilde{J}_n}_{n\geq 0}$. Now since $Ann_R(M) \subseteq J_n$ for every $n \ge 0$, we can see that $(\mathcal{F}^{-(M)})^{-(M)} \le \mathcal{F}^{-(M)}$. But by (a), we have $\mathcal{F}^{-(M)} \le (\mathcal{F}^{-(M)})^{-(M)}$ and so $(\mathcal{F}^{-(M)})^{-(M)} = \mathcal{F}^{-(M)}$.

(d) Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ and $\mathcal{G} = \{J_n\}_{n\geq 0}$. Further let $\mathcal{F}^{-(M)} = \{K_n\}_{n\geq 0}$, $\mathcal{G}^{-(M)} = \{L_n\}_{n\geq 0}$, and $(\mathcal{F}\mathcal{G})^{-(M)} = \{H_n\}_{n\geq 0}$. By 3.2, we know the integral closure of filtrations $\{\widetilde{I}_n\}_{n\geq 0}$, $\{\widetilde{J}_n\}_{n\geq 0}$, and $\{\widetilde{I}_n\widetilde{J}_n\}_{n\geq 0}$ of ideals \widetilde{R} are $(\{\widetilde{I}_n\}_{n\geq 0})^- = \{\widetilde{K}_n\}_{n\geq 0}$, $(\{\widetilde{J}_n\}_{n\geq 0})^- = \{\widetilde{L}_n\}_{n\geq 0}$, and $(\{\widetilde{I}_n\widetilde{J}_n\}_{n\geq 0})^- = \{\widetilde{H}_n\}_{n\geq 0}$ respectively. Since \widetilde{R} is a Noetherian ring by [3, 2.4(4)], we have $(\{\widetilde{I}_n\}_{n\geq 0})^- (\{\widetilde{J}_n\}_{n\geq 0})^- \leq (\{\widetilde{I}_n\widetilde{J}_n\}_{n\geq 0})^-$. This

implies that $\{\widetilde{K}_n\}_{n\geq 0}\{\widetilde{L}_n\}_{n\geq 0} \leq \{\widetilde{H}_n\}_{n\geq 0}$. Now since $Ann_R(M) \subseteq H_n$ for every $n\geq 0$, we can conclude that $\mathcal{F}^{-(M)}\mathcal{G}^{-(M)} \leq (\mathcal{F}\mathcal{G})^{-(M)}$. \Box

Proposition 3.7. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a Noetherian filtration of ideals R and let M be a Noetherian R-module. Let $\mathcal{F}^{-(M)} = \{J_n\}_{n\geq 0}$ be the integral closure of filtration \mathcal{F} relative to M. If the filtration $\{\tilde{J}_n\}_{n\geq 0}$ is a Noetherian filtration on \tilde{R} then the filtration \mathcal{F} is a reduction of the filtration $\mathcal{F}^{-(M)}$ relative to M.

Proof. We know from [4, 2.8], that the filtration $\widetilde{\mathcal{F}} = {\{\widetilde{I}_n\}_{n\geq 0}}$ is a reduction of the filtration $(\widetilde{\mathcal{F}})^- = {\{\widetilde{J}_n\}_{n\geq 0}}$. Then there exists a positive integer d such that

$$\widetilde{J}_n = \sum_{i=0}^d \widetilde{I}_{n-i} \widetilde{J}_i \quad for \ every \ n \ge 1.$$

Now we can see that

$$J_n M = \sum_{i=0}^d I_{n-i} J_i M \quad for \ every \ n \ge 1$$

and this completes the proof. \Box

Theorem 3.8. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on R and let M be a Noetherian R - module. Let $\mathcal{F}^{-(M)} = \{J_n\}_{n\geq 0}$. Further for a non negative integer n and $x \in R$, let $L_k = Rx^k + x^{k-1}I_{n1} + x^{k-2}I_{n2} + \cdots + xI_{n(k-1)} + I_{nk}$ and $H_k = I_{nk}$. Then $x \in J_n$ if and only if the filtration $\{H_k\}_{k\geq 0}$ is a reduction of filtration $\{L_k\}_{k\geq 0}$ relative to M.

Proof. (\Rightarrow) Let $x \in J_n$. Then there exists a positive integer k such that

$$x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M.$$

Since $x^{k-i}I_{ni} \subseteq H_{k-(k-i)}L_{k-i}$ for every $1 \le i \le k$,

$$\sum_{i=1}^{k} x^{k-i} I_{ni} M \subseteq \sum_{i=0}^{k} H_{k-(k-i)} L_{k-i} M = \sum_{i=0}^{k} H_{k-i} L_{i} M.$$

But $x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M$ and so

$$(Rx^{k} + x^{k-1}I_{n1} + x^{k-2}I_{n2} + \dots + xI_{n(k-1)} + I_{nk})M = L_kM \subseteq \sum_{i=0}^k H_{k-i}L_iM.$$

It is easy to see that $\sum_{i=0}^{k} H_{k-i}L_iM \subseteq L_kM$. Then $L_kM = \sum_{i=0}^{k} H_{k-i}L_iM$. Now, we will show that

$$L_t M = \sum_{i=0}^k H_{t-i} L_i M \quad for \ every \ t \ge 1$$

First let t < k. Since t < k,

$$L_t M = H_0 L_t M \subseteq \sum_{i=0}^k H_{t-i} L_i M.$$

Also we know $\sum_{i=0}^{k} H_{t-i}L_iM \subseteq L_tM$. Thus we have

$$L_t M = \sum_{i=0}^k H_{t-i} L_i M \quad for \ every \ t \le k-1.$$

Now let t > k. This is clear that

$$\sum_{i=0}^{k} H_{t-i} L_i M = \sum_{i=0}^{k} x^i I_{n(t-i)} M.$$

Since $x^k M \subseteq \sum_{i=1}^k x^{k-i} I_{ni} M$, we can see that

$$x^{k+r}M \subseteq \sum_{i=1}^{k} x^{k-i} I_{n(r+i)}M.$$

But by

$$x^{k+r} I_{n(t-(k+r))} M \subseteq \sum_{i=1}^{k} x^{k-i} I_{n(r+i)} I_{n(t-(k+r))} M$$
$$\subseteq \sum_{i=1}^{k} x^{k-i} I_{n(t-k+i)} M \subseteq \sum_{i=0}^{k} x^{i} I_{n(t-i)} M$$

we have

$$L_t M = (x^t + x^{t-1}I_{n1} + \dots + x^{k+1}I_{n(t-(k+1))} + x^kI_{n(t-k)} + \dots + xI_{n(t-1)} + I_{nt})M$$

$$\subseteq \sum_{i=0}^{k} H_{t-i} L_i M$$

and this implies that

$$L_t M = \sum_{i=0}^k H_{t-i} L_i M \quad for \ every \ t \ge 1.$$

 (\Leftarrow) Let $\{H_k\}_{k\geq 0}$ be a reduction of filtration $\{L_k\}_{k\geq 0}$ relative to M. Then there exists a positive integer d such that

$$L_k M = \sum_{i=0}^d H_{k-i} L_i M \quad for \ every \ k \ge 1.$$

So we can assume that $L_{d+1}M = \sum_{i=0}^{d} H_{((d+1)-i)}L_iM$. Now since

$$L_{d+1}M = \sum_{i=0}^{d} H_{((d+1)-i)}L_iM \subseteq \sum_{i=0}^{d} x^{(d-i)}I_{n(i+1)}M = \sum_{i=1}^{d+1} x^{((d+1)-i)}I_{ni}M,$$

we have $x^{d+1}M \subseteq \sum_{i=1}^{d+1} x^{((d+1)-i)} I_{ni}M$. Hence $x \in J_n$. \Box

Definition 3.9. (See [3, 3.1(2)].) Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on a Noetherian ring R and $\mathcal{F}^- = \{J_n\}_{n\geq 0}$. Members of

$$A^{-}(\mathcal{F}) = \{P : P \in Ass(R/J_n) \text{ for some } n \ge 1\}$$

are called the asymptotic prime divisors of \mathcal{F} .

Definition 3.10. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a filtration on a Noetherian ring R and M be a Noetherian R-module. Let $\mathcal{F}^{-(M)} = \{J_n\}_{n\geq 0}$. Members of

$$A^{-}(\mathcal{F}, M) = \{P : P \in Ass(R/J_n) \text{ for some } n \ge 1\}$$

are called the asymptotic prime divisors of \mathcal{F} relative to M.

Remark 3.11. Let $\mathcal{F} = \{I_n\}_{n\geq 0}$ be a Noetherian filtration of ideals of R and let M be a Noetherian R-module. Then $A^-(\mathcal{F}, M)$ is a finite set.

Proof. It is easy to see that $P \in A^{-}(\mathcal{F}, M)$ if and only if $\widetilde{P} \in A^{-}(\widetilde{\mathcal{F}})$. Since $\widetilde{\mathcal{F}}$ is a Noetherian filtration on Noetherian ring \widetilde{R} , we know from [3, 3.3(2)], that $A^{-}(\widetilde{\mathcal{F}})$ is a finite set and this completes the proof. \Box

Acknowledgments

The authors would like to thank the referee for careful reading.

References

- H. Matsumura, *Commutative ring theory*, Proc. University press, Cambridge, 1989.
- D. G. Northcott and D. Rees, *Reductions of ideals in local rings*, Cambridge Philos. Soc., **50** (1954), 145-158.
- J. S. Okon and L. J. Ratliff, Filtrations, closure operations, and prime divisors, Math. Proc. Cambridge Philos Soc., 104 (1988), 31-46.
- J. S. Okon and L. J. Ratliff, *Reductions of filtrations*, Pacific J. Math., (1) 144(1990), 137-154.
- R.Y. Sharp, Y. Tiraş and M. Yassi, Integral closures of ideals relative to local cohomology modules over quasi unmixed local rings, J. London Math. Soc., (2) 42 (1990), 385-392.

Farhad Dorostkar

Department of Pure Mathematics, University of Guilan, Rasht, Iran. Email: dorostkar@guilan.ac.ir

Masoud Yahyapour-Dakhel

Department of Pure Mathematics, University of Guilan, Rasht, Iran. Email: masoudyahyapour@Phd.guilan.ac.ir