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INTEGRAL CLOSURE OF A FILTRATION RELATIVE
TO A NOETHERIAN MODULE

F. DOROSTKAR * AND M. YAHYAPOUR-DAKHEL

ABSTRACT. Let M be a Noetherian R—module. In this paper we
will introduce the integral closure of a filtration F = {I,, },,>0 rel-
ative to the Noetherian module M and prove some related results.
The integral closure of a filtration F = {I,,},,>¢ relative to M is
a filtration and it has an interesting relationship with the integral
closure of the filtration F = {I,,},>0, where I, is the image of
I,, under the natural ring homomorphism R — R/(Anngr(M)) for
every n > 0.

1. INTRODUCTION

Throughout this paper R denotes a commutative ring with identity.
Further N and N, will denote the set of natural integers and non-
negative integers respectively. Also Z will denote the set of integer
numbers.

The ideas of reduction and integral closure of an ideal in a commu-
tative Noetherian ring A (with identity) were introduced by Northcott
and Rees in [2]. It is appropriate for us to recall these definitions.

Let I and J be ideals of a commutative Noetherian ring A. The ideal
I is a reduction of the ideal J if I C J and there exists an integer n € N
such that IJ" = J""!. Also an element x of A is said to be integrally
dependent on I if there exist a positive integer n and elements ¢, € I*,
k =1,...,n, such that

e 4+, e, =0.
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We know from [2], x € A is integrally dependent on [ if and only if /
is a reduction of the ideal I + Rz. Further, we know that the set of
all elements of A which are integrally dependent on [ is an ideal of A.
This ideal is called the integral closure of I and denoted by I~.

Now let M be a Noetherian R—module. In [5], Sharp, Tirag and
Yassi introduced concepts of reduction and integral closure of an ideal
I of a commutative ring R relative to a Noetherian R—module M.

Let I and J be ideals of R. The ideal I is said to be a reduction of the
ideal J relative to M, if I C J and there exists an integer n € N such
that IJ"M = J""1M. Also an element x of R is said to be integrally
dependent on I relative to a Noetherian R—module M, if there exists
a positive integer n such that

"M C zn: " M.

i=1

We know from [5], an element = of R is integrally dependent on I
relative to a Noetherian R—module M, if and only if [ is a reduction
of the ideal I + Rx relative to M. Moreover in [5], it is shown that the
set of all elements of R which are integrally dependent on [ relative to
M is an ideal of R. This is denoted by I~[M! and is called the integral
closure of I relative to M.

Here, we give some definitions and notations which will be helpful
for us in the rest of the paper.

A filtration F = {I,},>0 on R is a descending sequence of ideals
I, of R such that Iy = R and I,I,, C I,,,, for all n,m € Ny. Let
F = {l,}n>0 and G = {J,}n>0 be two ﬁltrations. We say F < G if

I, C J, for all n. Also two filtrations {Z I Jiyn>0 and {1, J, }n>o

are denoted by F + G and FG respectlvely

The integral closure of a filtration F = {I,,},>¢ is defined in [3]. For
every n > 0, let J, be the set of all x € R such that x satisfies an
equation

2" 4 a ™ 1T Gy =0

for a positive integer m and elements a; € I,;. Then F~ = {J,}n>0 is
a filtration such that F < F~. In fact, the integral closure of @ I,,t"
n>0

in R[t] is the Nog—graded ring, € J,t".
n>0
In this paper we will introduce the integral closure of a filtration

relative to a Noetherian module and study some related topics.
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2. REDUCTION OF A FILTRATION RELATIVE TO A NOETHERIAN
MODULE

In this section we introduce the reduction of a filtration relative to
a Noetherian module and prove some of its properties.

Definition 2.1. (See [, 2.1.3].) Let F = {I,},>0 and G = {J, }n>0 be
filtrations on R. F is said to be a reduction of G if F < G and there
exists a positive integer d such that

d
J, = Z[n,iJi for every n > 1.
i=0

Here, and throughout this paper, I; = R if ¢+ < 0.

Let F = {I,,}n>0 be a filtration on R. We know from [], the graded
subring R[t™!, I t, I,t*, ....] of R[t,t7'] is called the Rees ring of R with
respect to the filtration F = {I,,},,>0 and denoted by R(R, F). For an
R—module M the set

Mt Lt Lt?, ) =) mgt) € M[t,t7"] :m; € M, r,s € Z}
j=r

is shown by R(M, F). We know R(M, F) is a graded R(R, F)—module
by the following scalar multiplication

(zm: altz)(i mjtj) = i i aimjt”j
=n j=r

i=n j=r

for every > a;t" € R(R, F) and Y m;t! € R(M,F).

i=n j=r

Now let F = {I,,},>0 and G = {J,, },>0 be filtrations on R such that
every ideal J,, is finitely generated. We know from [, 2.3], F is a reduc-
tion of G if and only if R(R, G) is a finitely generated R(R, F)—module.

Definition 2.2. (See [/, 2.1.4].) Let R be a Noetherian ring and
F = {I,}n>0 be a filtration on R. If there exists a positive integer d
such that

I, = Z I, ;I; foreveryn>1
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then the filtration F = {I,,},>0 is said a Noetherian filtration.
We know from [, 2.2.1], a filtration F = {I,,},,>0 on R is a Noether-
ian filtration if and only if R(R, F) is a Noetherian ring.

Definition 2.3. Let F = {[,},>0 and G = {J, },>0 be filtrations on
R and let M be a Noetherian R — module. Then F is said to be
a reduction of G relative to M if F < G and there exists a positive
integer d such that

d
J.M = Z L,_;J;M  for everyn > 1.

1=0

Theorem 2.4. Let F = {I,}n>0 and G = {J,}n>0 be filtrations on
R and let F < G. Let M be a Noetherian R — module. Then F
is a reduction of G relative to M if and only if R(M,G) is a finitely
generated R(R, F)—module.

Proof. (=) Since F is a reduction of G relative to M there exists a
positive integer d such that

d
J, M = Z L,_;J;M for every n > 1.

=0

Then R(R, F)—module R(M, G) is generated by JoM, J1 M, ..., J;M.
Since M is a Noetherian R—module, JoM, J\ M, ... J;M are finitely
generated as an R—module. This shows R(M, G) is a finitely generated
R(R, F)—module.

(<) Let {ay,...,as} be a finitely generator for R(R, F)—module
R(M,G). By adding the appropriate zero homogeneous component,
we can assume that

Qp = Q1M1 + - -+ QMg

where a;; € Ji, ..., ay € Jp and myq, ..., my. € M for every 1 <t < s.
This is clear that R(R, F)—module R(M,G) can be generated by all

homogeneous components a;;my; for every 1 <t < sand 1 <1 < k.
s k

Now let z € J,M. Then we can see, x = > > ryamy where ry; €
t=1i=1

k
I,,_;. This shows that J,M C > I, ;J;M. Now the proof is completed
i=0
because the inverse inclusion is clear. O

Corollary 2.5. Let F,G,H, and K be filtrations on a Noetherian ring
R and let M be a Noetherian R — module.
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(a) If F is a reduction of H relative to M and G is a reduction of
IC relative to M then F + G is a reduction of H + IC relative to
M.

(b) If F is a reduction of G relative to M and also a reduction of
IC relative to M then F is a reduction of G + KC relative to M.

(¢) If F is a reduction of H relative to M and F < G < H then G
15 a reduction of H relative to M. Further if F is a Noetherian
filtration then F is a reduction of G relative to M.

Proof. (a) Let F = {I,}n>0,G = {Jn}n>0, H = {Hp}n>0, and K =
{K, }n>0. We can see
R(R, F+ g) = R[U, ]1t7 Jlt, ]2t2, J2t2, ]

and

R(M, H + IC) = R[U, Hlt, Klt, H2t2, K2t2, ]
Since F is a reduction of H relative to M, R(M,H) is a finitely gener-
ated R(R, F)—module by 2.4. Similarly R(M, K) is a finitely generated
R(R,G)—module . Now we can see R(M,H+K) is a finitely generated
R(R, F + G)—module and so the claim follows from 2.4.

(b) It is clear by (a) since F + F = F.

(c) The first part follows from 2.4. Now let F be a Noetherian
filtration. Then by [1, 2.2.1], R(R,F) is Noetherian. Since F is a
reduction of H relative to M, R(M,H) is a finitely generated module
over the Noetherian ring R(R,F). Therefore R(M,G) is a finitely
generated R(R, F)—module. Then F is a reduction of G relative to M
by 2.4. OJ

Remark 2.6. Let F = {I,,},>0 and G = {J,,} >0 be filtrations on R
and let M be an R—module. Let F be a reduction of G relative to M.
Then there exists a positive integer d such that

d
J. M = Z L, J;M  for everyn > 1.
i=0
d/
Let d < d'. Since > I, ;J;M C J,M, we have
i=d+1

d & &
JoM =Y "L o JiM+ > LM =Y 1, ;JiM.
i=0 i=d+1 i=0
Lemma 2.7. Let F = {In}nzo,g = {Jn}nzo,lc = {Kn}nzo, and H =
{H,}n>0 be filtrations on R and let M be an R — module.

(a) If F is a reduction of G relative to M and K is a reduction of
H relative to M then FK is a reduction of GH relative to M.
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(b) If F is a reduction of G relative to M and G is a reduction of
IC relative to M then F is a reduction of KC relative to M.

Proof. (a) Let F be a reduction of G relative to M and also K be a
reduction of H relative to M. By 2.6, we can choose a positive integer
d such that

d d
J,M = Z I, ;M and H,M = Z K, H;M
=0 =0

for every n > 1. Now we have

d d d
ToH M =Y L i H M =Y 1, Ji(Y K iHiM).
i=0 i=0 =0
Since for every 1 < t < d we have
Lty S Iy v di 1 € S 1y
and
anth g antletfl g e g anlHla

we can see that

d d d
JoHoM =) Looii() | Koni M) €Y Lo iKoiiH:M
i=0 =0 =0
for every n > 1. Now (a) is clear because the inverse inclusion is clear.
(b) Since G is a reduction of K relative to M, there exists a positive
integer d such that

d
K, M = Z Jn_iKGM  for every n > 1.
i=0

Now since F is a reduction of G relative to M, there exists a positive
d/
integer d’ such that for every n — i we have J, ;M = > I, ; J;M.

t=0
This shows that

d d
K,M = Z K; Z I, i M
=0 t=0
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and this shows that
d+d’
K, M C Z I, ;K;M  for everyn > 1.
i=0

Now the proof is completed because the inverse inclusion is clear. [

3. INTEGRAL CLOSURE OF A FILTRATION RELATIVE TO A
NOETHERIAN MODULE

In this section we define the integral closure of a filtration relative
to a Noetherian module and prove some of its properties. For this, we
introduce a useful notation.

Remark 3.1. Let M be a Noetherian R—module. In the remain-
der of this paper, as shown in [5], the commutative Noetherian ring

R/Anng(M) is denoted by R. Further for every ideal I of R, the
ideal I + Anng(M)/Anng(M) of R is denoted by I. Also an element
r+ Anng(M) € R/Anng(M) is denoted by z. If F = {I,},>0 is
filtration of ideals of R then the filtration {I,},>o of ideals of R is
denoted by F.

Theorem 3.2. Let F = {I,},>0 be a filtration on R and let M be a
Noetherian R — module. For every n > 0, we assume that J,, contains
all x € R such that

k
kM C Zz’f—ilmM

for a positive integer k. Further we assume that the integral closure

of filtration F on R be (F ) = {K tnso. Then x € J, if and only if
T € K

Proof. (<) Let ¥ € K,>o. Then there exist a positive integer k and
elements a; € I,,;, 1 = 1, ..., k, such that

T+ 4 T+ A = 0.
Now since M has natural structure as R/(0 :g M)—module,

k
2F M C Z " M.

=1
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(=) Since x € J,, there exists a positive integer k, such that
k
> M.
i=1

k

Let L = Y 2*7I,,;. Since M is a Noetherian R module, by [1, 2.1], we
=1

can see that there exist an integer t € N and elements c¢q,...,c; € R

with ¢; € L7 C Z 2¥= T . such that
i=j

g e af D e 2 e € (05 M),

But for every 1 < j <'t, we have

kj kj

kt—j kt—kj
= JInj—|—~~+x ank]

This implies that

e Z kt Z[nz

and s0 7 € K,,. O

In the above theorem, let R be a Noetherian ring and let R—module
M be R. Then Anng(R) = 0 and in this case the above theorem is
clear.

Corollary 3.3. Let F = {I,,}n>0 be a filtration on R and let M be a
Noetherian R —module. For every n > 0, we assume that J, contains
all x € R such that

k
kM C Zx’f*ﬁmM
=1

for a positive integer k. Then G = {J,}n>0 is a filtration on R.

Proof. It is clear that Jy = R. By 3.2, we can see that J, is an ideal
of R for every n € N. Now let x € J, and Y € Jm. Also let the integral
closure of filtration F on R be (F)™ = {K, }nso. We know from 3.2,

RS K and y € K,,. Since (F) = {Kn}nzg is a filtration, we see that

TYy=2y € K K - Kn+m Then zy € J,4m by 3.2. U
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Definition 3.4. Let F = {I,},>0 be a filtration on R and let M be
a Noetherian R — module. For every n, let J, be the set of all x € R
such that

k
M CY 2t LM
i=1
for a positive integer k. By 3.3, {J, }n>0 is a filtration on R. This filtra-
tion is denoted by F~) and is called the integral closure of filtration

—~——

F relative to M. We follows from 3.2, (F-(M) = (F)".

Remark 3.5. Let F = {I,},>0 be a filtration on R and let M be a
Noetherian R — module. Let for x € R and a positive integer k, we
k
have z*M C Y 2*~i[,;M. Then for every r > 0 we have
i=1
k+r
:L,k+1”M C Z :L.(kJrT)fi[niM.
i=1
Theorem 3.6. Let F and G be filtrations on R. Then for every Noe-
therian R—module M, we have
(a) F < F-0;
(b) if F <G then F- M) < G-(M);
(c) (F~OD)=(M) — F=(M).
(d) F-Mg-M) < (FG)=(M)

Proof. (a) and (b) are clear.

(¢) Let F = {L,}ns0, F~ ™M) = {J,, }ns0, and (F~OD) =) = [ 1 <.
Let the integral closure of filtration {<7n}n20 of ideals R be the filtration
{3 nz0)" = {Un}tnso. We know from 3.2, {K,}nso = {Up }nso. This
shows N N N

{Kn}nzo = ({Jntnz0) = (({Ln}nz0) ) -
By [3, 2.4(3)], we have ({I,}n>0) ) = ({In}n>0) and so {K,}u>0 =
{jn}nz& Now since Anng(M) C J, for every n > 0, we can see that
(F-UD)=(M) < F=(M) Byt by (a), we have F~M) < (F~(M))=(M) apq
s (F-(0)=(0) — F-0n)

(d) Let f = {I boso and G = {J,}ns0. Further let F~) =
{Kn}nz0, G~ = {Lo}nso, and (FG)™ ™ = {H,}nz0. By 3.2, we
know the mtegral closure of filtrations {I,, Fn>0, { T }ns0, and {I,,J, }nso
of ideals R are ({I boso)” = {Kotwso, ({Jn bn0) = = {L,}n>0, and
({17, tn>0) = = {H, }n>0 respectively. Since R is a Noetherian ring
by [3, 2.4(4)], we have ({]Nn}nzo)i({Jn}nZO)i < ({{ndn}n>0) - This
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implies that {f(n}nzo{in}nzo < {ﬁn}nzo. Now since Anng(M) C H,
for every n > 0, we can conclude that F~MG-M) < (FG)-M) O

Proposition 3.7. Let F = {I,}n>0 be a Noetherian filtration of ideals
R and let M be a Noetherian R—module. Let F~M) = {J,},>0 be the

integral closure of filtration F relative to M. If the filtration {j;L}nZO

1s a Noetherian filtration on R then the filtration F is a reduction of
the filtration F~™M) relative to M.

Proof. We know from [/, 2.8], that the filtration F = {I,}.s0 is a

reduction of the filtration (F)~ = {J, }n=0. Then there exists a positive
integer d such that

d
jn = Z:fn_zjz for every n > 1.
i=0

Now we can see that
d
J,M = Z]n_iJiM for every n >1

1=0

and this completes the proof. [J

Theorem 3.8. Let F = {l,}n>0 be a filtration on R and let M be
a Noetherian R — module. Let F~M) = { ]}, ~q. Further for a non
negative integer n and x € R, let L, = Ra* + 2" ' +2F 210+ +
lyo—1y + Ik and Hy, = I, Then x € J, if and only if the filtration
{Hy}k>0 s a reduction of filtration {Ly}r>o relative to M.

Proof. (=) Let # € J,. Then there exists a positive integer k such
that

k
2F M C Z * M.
=1

Since z*~1,,; C Hy,_(j—sLy—; for every 1 < i <k,

k k k
> "M C Y HyogLi-iM =) HiiLiM.

i=1 =0 =0
k .
But 2*M C Y 2*'I,;M and so
i=1

k
(Ra* " Lt 2 Lgtee - aLyeny L) M = LM © ) HiiLiM.
1=0
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k k

It is easy to see that > Hy ;L;M C LyM. Then LM = > Hy ;L;M.
=0 1=0

Now, we will show that

k
LM = ZHt_Z-LiM for every t > 1.
i=0
First let t < k. Since t < k,

k
L:M = HyL;M C Z H, ;L;M.

1=0

k
Also we know > H, ;L;M C L;M. Thus we have
i=0

k
LM = ZHt_Z-LiM for everyt <k —1.
i=0
Now let ¢ > k. This is clear that

k k
S H LM =) a' Ty M.
=0 =0

k
Since M C > 2*~'1,; M, we can see that
i=1

k
M C A g M.

i=1

But by
k
k+r k—1
T - (k)M C Zm L sy Dn(t—(kgry) M
=1
k k
C Zwkﬂfn(t—kH)M - Z$Zln(t—i)M
i=1 i—0
we have

LM = (z'+a" g+ 42" g+ 2 T+ - A2 lng—y+1n) M

k
C Y HeiLiM

=0
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and this implies that
k
LM = Z H, ,L;M  for every t > 1.
i=0
(<) Let {Hy }x>0 be a reduction of filtration { Ly }r>o relative to M.
Then there exists a positive integer d such that

d
LM = ZHk_iLZ-M for every k > 1.
i=0
d
So we can assume that Ly M = > H(g41y-iyLiM . Now since

1=0
d d d+1
LopM =) Hasy-gLid © Y o oy M =Y o010,
1=0 =0 1=1

d+1
we have 241 M C S g(@FD=D[ M. Hence x € J,. O

+

Definition 3.9. (See [3, 3.1(2)].) Let F = {I,}n>0 be a filtration on

a Noetherian ring R and F~ = {J, }»>0. Members of
A™(F)={P:Pe Ass(R/J,) for some n > 1}

are called the asymptotic prime divisors of F.

Definition 3.10. Let F = {I,},>0 be a filtration on a Noetherian

ring R and M be a Noetherian R—module. Let F~®) = {J,},>0.
Members of

A (F,M)={P: Pec Ass(R/J,) for somen > 1}
are called the asymptotic prime divisors of F relative to M.
Remark 3.11. Let F = {I,,},>0 be a Noetherian filtration of ideals of

R and let M be a Noetherian R—module. Then A~ (F, M) is a finite
set.

Proof. It is easy to see that P € A™(F, M) if and only if P e A~(F).
Since F is a Noetherian filtration on Noetherian ring R, we know from

[3, 3.3(2)], that A=(F) is a finite set and this completes the proof. [J
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