MAPPINGS BETWEEN THE LATTICES OF VARIETIES OF SUBMODULES

H. F. MOGHIMI * AND M. NOFERESTI

ABSTRACT. Let R be a commutative ring with identity and M be an R-module. It is shown that the usual lattice $\mathcal{V}(_RM)$ of varieties of submodules of M is a distributive lattice. If M is a semisimple R-module and the unary operation ' on $\mathcal{V}(_RM)$ is defined by $(V(N))' = V(\tilde{N})$, where $M = N \oplus \tilde{N}$, then the lattice $\mathcal{V}(_RM)$ with ' forms a Boolean algebra. In this paper, we examine the properties of certain mappings between $\mathcal{V}(_RR)$ and $\mathcal{V}(_RM)$, in particular considering when these mappings are lattice homomorphisms. It is shown that if M is a faithful primeful R-module, then $\mathcal{V}(_RR)$ and $\mathcal{V}(_RM)$ are isomorphic lattices, and therefore $\mathcal{V}(_RM)$ and the lattice $\mathcal{R}(R)$ of radical ideals of R are anti-isomorphic lattices. Moreover, if R is a semisimple ring, then $\mathcal{V}(_RR)$ and $\mathcal{V}(_RM)$ are isomorphic Boolean algebras, and therefore $\mathcal{V}(_RM)$ and $\mathcal{L}(R)$ are anti-isomorphic Boolean algebras.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Let R be a ring, M be an R-module and $\mathcal{L}(_RM)$ be the lattice of submodules of M with the following operations:

$$L \vee N = L + N$$
 and $L \wedge N = L \cap N$,

for all submodules L and N of M. In case M = R, we write $\mathcal{L}(R)$ instead of $\mathcal{L}(R)$ for convenience. Recently, the relationship between

MSC(2010): Primary: 13C13, 13C99; Secondary: 06B99, 06E99

Keywords: Lattice homomorphism, ω -module, Primeful module, Semisimple ring.

Received: 9 May 2021, Accepted: 26 November 2021.

^{*}Corresponding author .

lattices $\mathcal{L}(R)$ and $\mathcal{L}(RM)$ has been considered by examining the properties of a number of mappings between them (see [16, 17, 18]). For example, there are two mappings $\lambda \colon \mathcal{L}(R) \to \mathcal{L}(RM)$ defined by $\lambda(I) = IM$ and $\mu \colon \mathcal{L}(RM) \to \mathcal{L}(R)$ defined by $\mu(N) = (N:M)$, where $(N:M) = \{r \in R \mid rM \subseteq N\}$. In [16], it has been investigated conditions under which these mappings are homomorphisms or isomorphisms. An R-module M is called a λ -module (resp. μ -module) if λ (resp. μ) is a lattice homomorphism. A number of properties of these modules can also be found in [14].

A proper submodule P of an R-module M is called a prime submodule if for $r \in R$, $x \in M$, $rx \in P$ implies that $r \in (P : M)$ or $x \in P$ [8]. The set of all prime submodules of M is called the *spectrum* of M and is denoted by $\operatorname{Spec}(M)$. An R-module M is called *primeful* if M = (0) or $M \neq (0)$ and for each prime ideal p of R containing (0 : M) there exists a prime submodule P of M such that (P : M) = p [9].

For a proper submodule N of an R-module M, the intersection of all prime submodules of M containing N is called the radical of N and denoted by rad N; if there are no such prime submodules, rad N is M (see, for example, [13]). A submodule N of M is called a radical submodule if rad N = N. For an ideal I of R, the radical of I is denoted by \sqrt{I} and has the characterization $\sqrt{I} = \{x \in R \mid x^n \in I \text{ for some } n > 0\}$.

The collection of all radical submodules of M, denoted $\mathcal{R}(_RM)$, is a lattice with the following operations:

$$L \vee N = \operatorname{rad}(L + N)$$
 and $L \wedge N = L \cap N$,

for all radical submodules L and N of M [12]. For convenience, we write $\mathcal{R}(R)$ for $\mathcal{R}(R)$. It is seen that the mapping $\rho \colon \mathcal{R}(R) \to \mathcal{R}(RM)$ defined by $\rho(I) = \operatorname{rad}(\lambda(I)) = \operatorname{rad}(IM)$ is a lattice homomorphism, but $\sigma \colon \mathcal{R}(RM) \to \mathcal{R}(R)$ defined by $\sigma(N) = \mu(N) = (N:M)$ is not. In [12], conditions under which M is a σ -module have been studied, i.e., σ is a lattice homomorphism.

For a submodule N of an R-module M, the variety of N is

$$V(N) = \{ P \in \operatorname{Spec}(M) \mid (P : M) \supseteq (N : M) \}.$$

It is evident that $V((0)) = \operatorname{Spec}(M)$ and $V(M) = \emptyset$. The collection of all varieties of submodules of M forms a lattice which we shall denote by $\mathcal{V}(_RM)$ with respect to the following operations:

$$V(L) \vee V(N) = V(L \cap N)$$
 and $V(L) \wedge V(N) = V(L + N)$,

for all submodules L and N of M. In particular, we shall denote the lattice $\mathcal{V}(_RR)$ by $\mathcal{V}(R)$.

In this paper, we consider the mappings $\nu \colon \mathcal{V}(R) \to \mathcal{V}(RM)$ defined by

$$\nu(V(I)) = V(IM),$$

for every ideal I of R, and $\omega \colon \mathcal{V}(_RM) \to \mathcal{V}(R)$ defined by

$$\omega(V(N)) = V((N:M)),$$

for every submodule N of M. It is shown that ν is always a lattice epimorphism (Theorem 2.2), but ω is not necessarily a lattice homomorphism (Example 2.3). We say that an R-module M is an ω -module if ω is a lattice homomorphism. It is shown that every cyclic module is an ω -module (Lemma 2.6). Also a vector space $\mathbb V$ over a field F is an ω -module if and only if $\dim_F \mathbb V \leq 1$ (Lemma 2.7). It is proved that a finitely generated R-module M is an ω -module if and only if M is a multiplication module (Theorem 2.8). It is shown that if M is a faithful primeful R-module, then $\mathcal V(R)$ and $\mathcal V(RM)$ are isomorphic lattices (Theorem 2.16), and $\mathcal V(RM)$ and $\mathcal R(R)$ are anti-isomorphic lattices (Theorem 2.18).

Note that $\mathcal{L}(_RM)$ is not a distributive lattice in general, even if M=R. However, It is proved that $\mathcal{V}(_RM)$ is a distributive lattice for any R-module M (Theorem 3.1). It is shown that if M is a semisimple R-module and (V(N))' is defined to be the variety of direct sum complement of N, then $\mathcal{V}(_RM)$ together with ' is a Boolean algebra (Theorem 3.4). Furthermore, if R is a semisimple ring, then $\mathcal{V}(_RM)$ is a finite Boolean algebra, and therefore its cardinal number is 2^n for some positive integer n (Corollary 3.5). It is also proved that if R is a semisimple ring, then $\mathcal{L}(R)$ is a Boolean algebra. Moreover, if M is a faithful primeful R-module, then $\mathcal{L}(R)$ and $\mathcal{V}(_RM)$ are anti-isomorphic Boolean algebras (Proposition 3.8).

2. Mappings between $\mathcal{V}(R)$, $\mathcal{V}(RM)$, and $\mathcal{R}(RM)$

Let R be a ring and let M be an R-module. Recall that the collection of varieties $\mathcal{V}(RM)$ of submodules of M is a lattice via the following operations:

$$V(L) \vee V(N) = V(L \cap N)$$
 and $V(L) \wedge V(N) = V(L + N)$, where \vee and \wedge are respectively supremum and infimum of $\{V(L), V(N)\}$ with respect to inclusion.

The following lemma collects some facts about varieties of submodules which will be used in the sequel.

Lemma 2.1. Let R be a ring and let M be an R-module. Then (1) $V(IM) = V(\sqrt{I}M)$ for every ideal I of R.

- (2) $V((I \cap J)M) = V(IM \cap JM) = V(IM) \cup V(JM)$ for all ideals I and J of R.
- (3) $V(IM + JM) = V(IM) \cap V(JM)$ for all ideals I and J of R.
- (4) V(N) = V((N:M)M) for every submodule N of M.

Proof. (1) Let I be any ideal of R. Then $IM \subseteq \sqrt{I}M$ and hence $V(\sqrt{I}M) \subseteq V(IM)$. For the reverse inclusion, let $P \in V(IM)$. Then we have

$$I \subset (IM : M) \subset (P : M)$$
.

Thus $\sqrt{I} \subseteq (P:M)$ and hence

$$(\sqrt{I}M:M)\subseteq ((P:M)M:M)\subseteq (P:M).$$

It follows that $P \in V(\sqrt{I}M)$ and hence $V(IM) \subseteq V(\sqrt{I}M)$. (2) Let I and J be two ideals of R. It is easily seen that

$$V(IM) \cup V(JM) \subseteq V(IM \cap JM) \subseteq V((I \cap J)M).$$

For the reverse inclusion, let $P \in V((I \cap J)M)$. Then

$$I \cap J \subseteq ((I \cap J)M : M) \subseteq (P : M).$$

Now since (P:M) is a prime ideal of R, we have $I \subseteq (P:M)$ or $J \subseteq (P:M)$. Therefore $(IM:M) \subseteq (P:M)$ or $(JM:M) \subseteq (P:M)$. It follows that $P \in V(IM)$ or $P \in V(JM)$ and hence $P \in V(IM) \cup V(JM)$, as required.

- (3) Clearly $V(IM+JM) \subseteq V(IM) \cap V(JM)$. For the reverse inclusion, let $P \in V(IM) \cap V(JM)$. Then $I \subseteq (IM:M) \subseteq (P:M)$ and $J \subseteq (JM:M) \subseteq (P:M)$. Thus $(I+J)M \subseteq (P:M)M \subseteq P$. Therefore $((I+J)M:M) \subseteq (P:M)$ and hence $P \in V(IM+JM)$.
- (4) Let N be any submodule of M. It is clear that $V(N) \subseteq V((N:M)M)$. For the reverse inclusion, let $P \in V((N:M)M)$. Then we have $(N:M) \subseteq ((N:M)M:M) \subseteq (P:M)$ and hence $P \in V(N)$.

Theorem 2.2. Let R be a ring and M be an R-module. Then $\nu \colon \mathcal{V}(R) \to \mathcal{V}(RM)$ defined by $\nu(V(I)) = V(IM)$ is a lattice epimorphism. In particular, $\mathcal{V}(RM)$ is isomorphic to a quotient of $\mathcal{V}(R)$.

Proof. First we show that ν is well-defined. For this, let V(I) = V(J) for ideals I and J of R and assume that $P \in V(IM)$. It follows that $I \subseteq (IM : M) \subseteq (P : M)$. Then $(P : M) \in V(I)$, and so $(P : M) \in V(J)$. Hence we have $(JM : M) \subseteq ((P : M)M : M) \subseteq (P : M)$ which shows that $P \in V(JM)$. Therefore $V(IM) \subseteq V(JM)$. Similarly $V(JM) \subseteq V(IM)$, so that V(IM) = V(JM).

Now, let I and J be two ideals of R. Then by Lemma 2.1(2), we have

$$\nu(V(I) \vee V(J)) = \nu(V(I \cap J)) = V((I \cap J)M) = V(IM \cap JM)$$
$$= V(IM) \vee V(JM) = \nu(V(I)) \vee \nu(V(J)).$$

Also,

$$\nu(V(I) \wedge V(J)) = \nu(V(I+J)) = V((I+J)M) = V(IM+JM)$$
$$= V(IM) \wedge V(JM) = \nu(V(I)) \wedge \nu(V(J)).$$

Thus ν is a lattice homomorphism.

Moreover, by Lemma 2.1(4), $\nu(V((N:M))) = V((N:M)M) = V(N)$ for any submodule N of M. Thus ν is an epimorphism.

Let \sim be the relation on $\mathcal{V}(R)$ which is defined by $V(I)\sim V(J)$ if and only if V(IM)=V(JM). It is easily seen that \sim is an equivalence relation on $\mathcal{V}(R)$. Furthermore, it is a congruence relation on $\mathcal{V}(R)$. For this, let $V(I_1)\sim V(J_1)$ and $V(I_2)\sim V(J_2)$, i.e., $V(I_1M)=V(J_1M)$ and $V(I_2M)=V(J_2M)$. Thus by Lemma 2.1(2),

$$V((I_1 \cap I_2)M) = V(I_1M) \cup V(I_2M)$$
$$= V(J_1M) \cup V(J_2M)$$
$$= V((J_1 \cap J_2)M)$$

which shows that $V(I_1) \vee V(I_2) \sim V(J_1) \vee V(J_2)$. Also, by Lemma 2.1(3),

$$V((I_1 + I_2)M) = V(I_1M) \cap V(I_2M)$$
$$= V(J_1M) \cap V(J_2M)$$
$$= V((J_1 + J_2)M)$$

which shows that $V(I_1) \wedge V(I_2) \sim V(J_1) \wedge V(J_2)$. Hence $\mathcal{V}(R)/\sim$, the set of all equivalence classes with respect to \sim , is a lattice with the following operations $\tilde{\vee}$ and $\tilde{\wedge}$:

$$V(I)/\sim \tilde{\lor} V(J)/\sim = (V(I)\lor V(J))/\sim$$

and

$$V(I)/{\sim} \; \tilde{\wedge} \; V(J)/{\sim} = (V(I) \wedge V(J))/{\sim}$$

for all $V(I)/\sim, V(J)/\sim \in \mathcal{V}(R)/\sim$. Now, it is easy to check that the mapping $\overline{\nu} \colon \mathcal{V}(R)/\sim \to \mathcal{V}(_RM)$ defined by $\overline{\nu}(V(I)/\sim) = V(IM)$ is a lattice isomorphism.

The following example shows that ω is not well-defined in general.

Example 2.3. Let $R = \mathbb{Z}$ and $M = \mathbb{Z}(p^{\infty})$. As mentioned in [11], M has no prime submodule. Thus $V((0)) = V(M) = \emptyset$. Hence

 $\omega \colon \mathcal{V}(_RM) \to \mathcal{V}(R)$ defined by $\omega(V(N)) = V((N:M))$ is not well-defined, since

$$\omega(V(0)) = V((0:M)) = V(0) = \operatorname{Spec}(\mathbb{Z})$$

but

$$\omega(V(M)) = V((M:M)) = V(R) = \emptyset.$$

Recall that a non-zero module M is a primeful module if for every $p \in V((0:M))$, there exists $P \in \operatorname{Spec}(M)$ such that (P:M) = p. Now we show that ω is a well defined mapping for primeful modules as a class of modules which contains all finitely generated modules and all projective modules over integral domains (see [9, Proposition 3.8 and Corollary 4.3]).

Theorem 2.4. Let R be a ring and let M be a primeful R-module. Then ω is well-defined. Furthermore $\nu\omega=1$ and therefore ω is an injection.

Proof. Assume that V(L) = V(N) for two submodules L and N of M. Let $p \in V((L:M))$. Since M is a primeful R-module, there exists $P \in \operatorname{Spec}(M)$ such that (P:M) = p. Thus $P \in V(L)$ and hence $P \in V(N)$. Therefore $p = (P:M) \supseteq (N:M)$. It follows that $V((L:M)) \subseteq V((N:M))$. Similarly, $V((N:M)) \subseteq V((L:M))$. Hence we have

$$\omega(V(L)) = V((L:M)) = V((N:M)) = \omega(V(N))$$

and thus ω is well-defined. Also, by Lemma 2.1(4),

$$\nu\omega(V(N)) = \nu(V((N:M))) = V((N:M)M) = V(N).$$

Therefore $\nu\omega = 1$ and hence ω is an injection.

Corollary 2.5. Let R be a ring and M be a primeful R-module. Then ω is a monomorphism if and only if

$$V(((L+N):M)) = V((L:M) + (N:M)),$$

for all submodules L and N of M.

Proof. \Rightarrow) Follows from $\omega(V(L) \wedge V(N)) = \omega(V(L)) \wedge \omega(V(N))$. \Leftarrow) Let L and N be any submodules of M. Then

$$\omega(V(L) \vee V(N)) = \omega(V(L \cap N)) = V(((L \cap N) : M))$$

$$= V((L : M) \cap (N : M))$$

$$= V((L : M)) \vee V((N : M))$$

$$= \omega(V(L)) \vee \omega(V(N)).$$

Next note that

$$\omega(V(L) \wedge V(N)) = \omega(V(L+N)) = V(((L+N):M)),$$

and

$$\omega(V(L)) \wedge \omega(V(N)) = V((L:M)) \wedge V((N:M))$$
$$= V((L:M) + (N:M)).$$

The result follows.

Recall that an R-module M is called an ω -module if ω is a lattice homomorphism. For example, the zero module is clearly an ω -module but there are many non-trivial examples as we show next.

Lemma 2.6. Every cyclic module is an ω -module.

Proof. By [16, Corollary 3.7], every cyclic module is a μ -module. Thus the assertion follows from [16, Lemma 3.1] and Corollary 2.5.

The following lemma presents vector spaces with dimension greater than one as examples of primeful modules which are not ω -modules. We note that every proper subspace of any vector space $\mathbb V$ is a prime submodule of $\mathbb V$.

Lemma 2.7. Let \mathbb{V} be a vector space over a field F. Then \mathbb{V} is an ω -module if and only if $\dim_F \mathbb{V} \leq 1$.

Proof. First assume that \mathbb{V} is an ω -module with $\dim_F \mathbb{V} > 1$. Let \mathbb{W}_1 and \mathbb{W}_2 be two non-zero subspaces of \mathbb{V} such that $\mathbb{V} = \mathbb{W}_1 \oplus \mathbb{W}_2$, then we have

$$V(((\mathbb{W}_1 + \mathbb{W}_2) : \mathbb{V})) = V((\mathbb{V} : \mathbb{V})) = V(F) = \emptyset$$

and

$$V((\mathbb{W}_1 : \mathbb{V}) + (\mathbb{W}_2 : \mathbb{V})) = V((0)) = \{(0)\}.$$

Thus by Corollary 2.5, \mathbb{V} is not an ω -module.

Conversely if $\dim_F \mathbb{V} \leq 1$, then by Lemma 2.6, \mathbb{V} is an ω -module. \square

An R-module M is called a *multiplication* module if for every submodule N of M there exists an ideal I of R such that N = IM (see, for example, [4]). In this case, we can take I = (N:M). The following theorem shows that multiplication modules and ω -modules coincide for finitely generated modules.

Theorem 2.8. Let R be a ring and M be a finitely generated R-module. Then the following statements are equivalent:

- (1) M is an ω -module.
- (2) M is a σ -module.

- (3) M is a μ -module.
- (4) M is a multiplication module.
- (5) $M/\mathfrak{m}M$ is a cyclic R-module for every maximal ideal \mathfrak{m} of R.

Proof. (1) \Rightarrow (2) Let L and N be any submodules of M. Then

$$V(((L+N):M)) = V((L:M) + (N:M))$$

implies that $\sqrt{(L+N):M} = \sqrt{(L:M) + (N:M)}$. Since M is finitely generated, by [10, Theorem 4.4],

$$(rad(L+N): M) = \sqrt{(L+N): M} = \sqrt{(L:M) + (N:M)}.$$

Now, by [12, Lemma 2.2], M is a σ -module.

- $(2)\Leftrightarrow(3)\Leftrightarrow(4)$ Follows from [12, Theorem 2.11].
- $(3)\Rightarrow(1)$ Follows from Theorem 2.4, Corollary 2.5 and [16, Lemma 3.1].
- $(4) \Leftrightarrow (5)$ By [4, Corollary 1.5].

Corollary 2.9. Every homomorphic image of a finitely generated ω module is an ω -module.

Proof. Follows from [16, Proposition 3.6] and Theorem
$$2.8$$

The following result shows that being ω -module is a local property for finitely generated modules.

Corollary 2.10. Let R be a ring and M be a finitely generated Rmodule. Then the following statements are equivalent:

- (1) M is an ω -module.
- (2) M_p is an ω -module for all prime ideals p of R.
- (3) $M_{\mathfrak{m}}$ is an ω -module for all maximal ideals \mathfrak{m} of R.

An R-module M is called a distributive module if $\mathcal{L}(_RM)$ is a distributive lattice. As shown in the next theorem, distributive modules coincide with modules whose 2-generated submodules are ω modules. An R-module M is called a chain module if the set of submodules of M is linearly ordered by inclusion. It is clear that every chain module is distributive and they coincide over local rings. In this case, these modules also coincide with $Bezout\ modules$ which are modules that their finitely generated submodules are cyclic [1, Proposition 1.3].

Theorem 2.11. Let R be a ring and M be an R-module. Then the following statements (1)-(6) are equivalent. In particular, if R is a local ring, then all of the following statements are equivalent:

- (1) Every finitely generated submodule of M is an ω -module.
- (2) Every 2-generated submodule of M is an ω -module.

- (3) Every finitely generated submodule of M is a multiplication module.
- (4) R = (Rx : Ry) + (Ry : Rx) for all $x, y \in M$.
- (5) R = (L:N) + (N:L) for all finitely generated submodules L, N of M.
- (6) M is a distributive module.
- (7) M is a chain module.
- (8) The set of cyclic submodules of M is linearly ordered by inclusion.
- (9) M is a Bezout module.
- (10) Every 2-generated submodule of M is cyclic.

Proof. $(1) \Rightarrow (2)$ Clear.

(2) \Rightarrow (4) Let M = Rx + Ry be a 2-generated ω -module. Then by Corollary 2.5,

$$\emptyset = V(R) = V((Rx + Ry : Rx + Ry))$$

= $V((Rx : (Rx + Ry)) + (Ry : (Rx + Ry)))$
= $V((Rx : Ry) + (Ry : Rx)).$

Thus (Rx : Ry) + (Ry : Rx) = R.

- (4) \Rightarrow (1) By [12, Corollary 2.14], every finitely generated submodule of M is a μ -module. Thus (1) follows from Theorem 2.8.
- $(3) \Leftrightarrow (4) \Leftrightarrow (5)$ Follows from Theorem 2.8 and [16, Corollary 3.9].
- $(4) \Leftrightarrow (6)$ Follows from [19, Theorem 1.6].

Now, if R is a local ring, then by [1, Proposition 1.3] and [12, Corollary 2.17], all of the statements (1)-(10) are equivalent.

Now, we examine the conditions under which ν and ω are lattice isomorphisms.

Lemma 2.12. Let ω be a well-defined mapping. Then

- (1) $\nu\omega\nu=\nu$.
- (2) $\omega\nu\omega=\omega$.

Proof. (1) Let I be an ideal of R. Then by Lemma 2.1(4),

$$\begin{split} \nu\omega\nu(V(I)) &= \nu\omega(V(IM)) = \nu(V((IM:M))) \\ &= V((IM:M)M) = V(IM) = \nu(V(I)). \end{split}$$

Thus $\nu\omega\nu=\nu$.

(2) By Theorem 2.4, $\nu\omega = 1$ and hence $\omega\nu\omega = \omega$.

The following result is a consequence of Lemma 2.12.

Theorem 2.13. Let R be a ring and let ω be a well-defined mapping. Then the following statements are equivalent:

- (1) ν is an injection.
- (2) $\omega \nu = 1$.
- (3) V(I) = V((IM : M)) for every ideal I of R.
- (4) ω is a surjection.

Proof. (1) \Rightarrow (2) Since $\nu\omega\nu = \nu$, we have $\nu\omega\nu(V(I)) = \nu(V(I))$ for all $V(I) \in \mathcal{V}(R)$. Since ν is injective, we get $\omega\nu(V(I)) = V(I)$ for all $V(I) \in \mathcal{V}(R)$. Thus $\omega\nu = 1$.

- $(2) \Rightarrow (1), (4)$ Clear.
- $(2) \Leftrightarrow (3)$ Clear.
- $(4) \Rightarrow (2)$ Let $V(I) \in \mathcal{V}(R)$. Since ω is a surjection, there exists $V(N) \in \mathcal{V}(RM)$ such that $\omega(V(N)) = V(I)$. Thus

$$\omega\nu(V(I)) = \omega\nu(\omega(V(N)) = \omega\nu\omega(V(N)) = \omega(V(N)) = V(I).$$

Corollary 2.14. Let R be a ring and M be a primeful R-module. Then ν is a bijection if and only if ω is a bijection. In this case ν and ω are inverses of each other, and therefore $\mathcal{V}(R)$ and $\mathcal{V}(_RM)$ are isomorphic lattices.

Proof. By Theorem 2.2, ν is a surjection and by Theorem 2.4, ω is an injection. Thus by Theorem 2.13, ν is a bijection if and only if ω is a bijection. In this case, ν and ω are inverses of each other and by Theorem 2.2, ν and ω are lattice isomorphisms.

Lemma 2.15. (cf. [9, Proposition 3.1]) Let M be a non-zero primeful R-module and I a radical ideal of R. Then (IM : M) = I if and only if $(0 : M) \subseteq I$.

Theorem 2.16. Let R be a ring and let M be a faithful primeful Rmodule. Then the mappings ν and ω are lattice isomorphisms. In
particular, ν and ω are inverses of each other.

Proof. Let I be an ideal of R. Then by Lemma 2.15,

$$V(I) = V(\sqrt{I}) = V((\sqrt{I}M : M)) \subseteq V((IM : M)).$$

Now, let p be a prime ideal of R containing (IM:M). Thus $I\subseteq p$ and hence $\sqrt{I}\subseteq p$. It follows that $(\sqrt{I}M:M)\subseteq (pM:M)$. Using again Lemma 2.15, $(\sqrt{I}M:M)\subseteq p$. Thus $V((IM:M))\subseteq V((\sqrt{I}M:M))$ and hence V(I)=V((IM:M)). Therefore by Theorem 2.13, ν is an injection and hence by Theorem 2.2, ν is an isomorphism. Then by Corollary 2.14, ω is the inverse of ν and hence ω is an isomorphism. \square

Theorem 2.17. Let R be a ring and let M be a faithful multiplication R-module. Then the following statements are equivalent:

- (1) ω is a lattice isomorphism.
- (2) ν is a lattice isomorphism.
- (3) M is a finitely generated R-module.
- (4) M is a primeful R-module.

 Moreover if R is a domain, then the statements (1) (4) are also equivalent to:
- (5) M is a projective R-module.

Proof. $(1) \Rightarrow (2)$ By Corollary 2.14.

 $(2)\Rightarrow (3)$ By [9, Proposition 3.8], it is enough to show that (pM:M)=p for all prime ideals p of R. Assume on the contrary that $(pM:M)\neq p$ for some prime ideal p of R. Hence $p\notin V((pM:M))$ and thus $V(p)\neq V((pM:M))$. Since ν is an injective, $V(pM)\neq V((pM:M)M)$ which contradicts Lemma 2.1(4).

- $(3) \Rightarrow (4)$ By [9, Proposition 3.8].
- $(4) \Rightarrow (1)$ By Theorem 2.16.

Now if R is a domain, then

- $(3) \Rightarrow (5)$ By [15, Theorem 11].
- $(5) \Rightarrow (4)$ By [9, Corollary 4.3]

A mapping φ from a lattice L to a lattice L' is said to be an *anti-homomorphism*, provided

$$\varphi(a \vee b) = \varphi(a) \wedge \varphi(b)$$
 and $\varphi(a \wedge b) = \varphi(a) \vee \varphi(b)$

for all $a, b \in L$.

As usual, a bijective (resp. injective, surjective) anti-homomorphism is called an anti-isomorphism (resp. anti-monomorphism, anti-epimorphism). Recall that $\mathcal{R}(_RM)$ is the lattice of radical submodules of an R-module M. We end this section by providing conditions under which $\mathcal{V}(_RM)$ and $\mathcal{R}(_RM)$ are anti-isomorphic lattices.

Theorem 2.18. Let R be a ring and M be a faithful primeful R-module, then $\mathcal{V}(_RM)$ and $\mathcal{R}(R)$ are anti-isomorphic lattices.

Proof. First, we show that the mapping $\varphi \colon \mathcal{R}(R) \to \mathcal{V}(R)$ defined by $\varphi(I) = V(I)$ is an anti-isomorphism. Note that φ is a surjection, since $\varphi(\sqrt{I}) = V(\sqrt{I}) = V(I)$. It is easily seen that φ is an injection. Moreover, $\varphi(I \land J) = V(I \land J) = V(I \cap J) = V(I) \lor V(J) = \varphi(I) \lor \varphi(J)$. Now, by [18, Lemma 1.1], φ is an anti-isomorphism. Hence by Theorem 2.16, $\nu\varphi \colon \mathcal{R}(R) \to \mathcal{V}(RM)$ given by $\nu\varphi(I) = V(IM)$ is a lattice anti-isomorphism.

Corollary 2.19. Let R be a ring and let M be a faithful primeful R-module. Then

- (1) The assignment $V(N) \mapsto \operatorname{rad}((N:M)M)$ is an anti-monomorphism from $\mathcal{V}(_RM)$ to $\mathcal{R}(_RM)$.
- (2) The assignment $N \mapsto V(N)$ is an anti-epimorphism from $\mathcal{R}(_RM)$ to $\mathcal{V}(_RM)$.

Proof. (1) By [12, Corollary 3.6], $\rho \colon \mathcal{R}(R) \to \mathcal{R}(_RM)$ defined by $\rho(I) = \operatorname{rad}(IM)$ is a lattice monomorphism and by Theorm 2.16, $\omega \colon \mathcal{V}(_RM) \to \mathcal{V}(R)$ defined by $\omega(V(N)) = V((N:M))$ is a lattice isomorphism. Also, let φ be as in the proof of Theorem 2.18. Then by Lemma 2.1, the mapping $\rho\varphi^{-1}\omega \colon \mathcal{V}(_RM) \to \mathcal{R}(_RM)$ which assigns V(N) to $\operatorname{rad}((N:M)M)$ is a lattice anti-monomorphism.

(2) By [12, Corollary 3.6], $\sigma \colon \mathcal{R}(_RM) \to \mathcal{R}(R)$ defined by $\sigma(N) = (N \colon M)$ is a lattice epimorphism and by Theorm 2.16, $\nu \colon \mathcal{V}(R) \to \mathcal{V}(_RM)$ defined by $\nu(I) = V(IM)$ is a lattice isomorphism. Now by Lemma 2.1(4), the mapping $\nu\varphi\sigma \colon \mathcal{R}(_RM) \to \mathcal{V}(_RM)$ which assigns N to V(N) is a lattice anti-epimorphism where φ is the anti-isomorphism given in the proof of Theorem 2.18.

Corollary 2.20. Let R be a ring and let M be a faithful primeful multiplication R-module. Then $\mathcal{V}(_RM)$ and $\mathcal{R}(_RM)$ are anti-isomorphic lattices.

Proof. By the proof of $(6) \Rightarrow (1)$ in [12, Theorem 3.8], the mapping $\rho \colon \mathcal{R}(R) \to \mathcal{R}(_RM)$ defined by $\rho(I) = \operatorname{rad}(IM)$ is a lattice isomorphism. Thus by Theorem 2.18, $\mathcal{V}(_RM)$ and $\mathcal{R}(_RM)$ are anti-isomorphic lattices.

Remark 2.21. Let \mathbb{V} be a vector space over a field F. Then, since every proper subspace of \mathbb{V} is prime, $\mathcal{R}(_F\mathbb{V})$ is the set of all subspaces of \mathbb{V} . In particular, for any subspace \mathbb{W} of \mathbb{V} , $V(\mathbb{W})$ is the set of all proper subspaces of \mathbb{V} , and hence $\mathcal{V}(_F\mathbb{V}) = \{\emptyset, \mathcal{L}(_F\mathbb{V}) \setminus \{\mathbb{V}\}\}$. Therefore the lattices $\mathcal{R}(_F\mathbb{V})$ and $\mathcal{V}(_F\mathbb{V})$ are isomorphic if and only if $\dim_F \mathbb{V} \leq 1$.

3. $\mathcal{V}(_RM)$ as a Boolean algebra

In this section, we find conditions for an R-module M for which $\mathcal{V}(_RM)$ is a Boolean algebra, and in particular, ν and ω are Boolean algebra homomorphisms.

Although $\mathcal{L}(_RM)$ is not necessarily distributive, the following theorem shows that $\mathcal{V}(_RM)$ is a distributive lattice for any R-module M.

Theorem 3.1. Let R be a ring and let M be an R-module. Then $\mathcal{V}(_RM)$ is a distributive lattice.

Proof. Let I, J and H be any ideals of R. Since $(I \cap J) + (I \cap H) \subseteq I \cap (J+H)$, we have $V(I \cap (J+H)) \subseteq V((I \cap J) + (I \cap H))$. For the

reverse inclusion, let p be a prime ideal of R containing $(I \cap J) + (I \cap H)$. If $p \not\supseteq I \cap (J+H)$, then there exist $i \in I, j \in J$ and $h \in H$ such that i = j+h and $i \notin p$. Therefore $i^2 \notin p$ and hence $ij+ih \notin p$, a contradiction. Thus $p \supseteq I \cap (J+H)$ and so $V(I \cap J+I \cap H) \subseteq V(I \cap (J+H))$. Hence V(R) is distributive. Now, since V(R) is isomorphic to a quotient of V(R) by Theorem 2.2, V(R) is a distributive lattice.

The following example shows that $\mathcal{R}(_RM)$ is not in general distributive.

Example 3.2. Let $\mathbb{V} = F \oplus F$ be a vector space over a field F and let $\mathbb{W}_1 = F \oplus 0$, $\mathbb{W}_2 = 0 \oplus F$ and $\mathbb{W}_3 = \{(x, x) \mid x \in F\}$. Then

$$\begin{aligned} (\mathbb{W}_1 \vee \mathbb{W}_2) \wedge \mathbb{W}_3 &= (\operatorname{rad}(\mathbb{W}_1 + \mathbb{W}_2)) \cap \mathbb{W}_3 = (\operatorname{rad} \mathbb{V}) \cap \mathbb{W}_3 \\ &= \mathbb{V} \cap \mathbb{W}_3 = \mathbb{W}_3 \end{aligned}$$

and

$$(\mathbb{W}_1 \wedge \mathbb{W}_3) \vee (\mathbb{W}_2 \wedge \mathbb{W}_3) = \operatorname{rad}((\mathbb{W}_1 \cap \mathbb{W}_3) + (\mathbb{W}_2 \cap \mathbb{W}_3))$$
$$= \operatorname{rad}((0,0)) = ((0,0)).$$

Hence $\mathcal{R}(_F\mathbb{V})$ is not a distributive lattice.

Corollary 3.3. Let R be a ring and let M be a faithful primeful multiplication R-module. Then $\mathcal{R}(_RM)$ is a distributive lattice.

Proof. By Corollary
$$2.20$$
 and Theorem 3.1 .

We recall that a distributive lattice (L, \vee, \wedge) is a Boolean algebra if there is a unary operation ' on L and two constants **0** and **1** such that $x \wedge x' = \mathbf{0}$ and $x \vee x' = \mathbf{1}$ for all $x \in L$.

Let M be a semisimple R-module and N be a submodule of M. Then, by definition, there is a submodule \tilde{N} of M such that $M = N \oplus \tilde{N}$. We define the unary operation ' on $\mathcal{V}(RM)$ by $(V(N))' = V(\tilde{N})$.

Theorem 3.4. Let M be a semisimple R-module and ' be as above. Then $\mathcal{V}(_RM)$ is a Boolean algebra with $\mathbf{0} = V(M)$ and $\mathbf{1} = V((0))$. In particular, if R is a semisimple ring, then $\mathcal{V}(R)$ is a Boolean algebra with $\mathbf{0} = V(R)$ and $\mathbf{1} = V((0))$.

Proof. By Theorem 3.1, $\mathcal{V}(_RM)$ is distributive. Let $V(N) \in \mathcal{V}(_RM)$. Since M is semisimple, there is a submodule \tilde{N} of M such that $M = N \oplus \tilde{N}$. Hence we have $V(N) \wedge V(N)' = V(N) \wedge V(\tilde{N}) = V(N + \tilde{N}) = V(M) = \mathbf{0}$ and $V(N) \vee V(N)' = V(N) \vee V(\tilde{N}) = V(N \cap \tilde{N}) = V((0)) = \mathbf{1}$.

Corollary 3.5. Let R be a semisimple ring and M be an R-module. Then $\mathcal{V}(_RM)$ is isomorphic to the Boolean algebra of all subsets of some finite set X, and therefore its cardinal number is 2^n for some positive integer n.

Proof. Since R is a semisimple ring, R is Artinian and then it has only a finite number of prime ideals. Thus $\mathcal{R}(R)$ is finite and hence by Theorem 2.18, $\mathcal{V}(R)$ is finite. Hence by Theorem 2.2 and Theorem 3.4, $\mathcal{V}(RM)$ is a finite Boolean algebra. Now the result follows from [3, Corollary IV.1.10].

Corollary 3.6. Let R be a ring and M be a semisimple R-module. Then $\mathcal{V}(_RM)$ is a Boolean ring with the following operations:

$$V(L) + V(N) = V((L + \tilde{N}) \cap (\tilde{L} + N))$$
 and $V(L) \cdot V(N) = V(L + N)$
where $M = L \oplus \tilde{L} = N \oplus \tilde{N}$.

Proof. Follows from [3, Theorem IV.2.3].

Let A and B be Boolean algebras. A mapping $f: A \to B$ is called a Boolean algebra homomorphism if f is a lattice homomorphism, $f(\mathbf{0}) = \mathbf{0}$, $f(\mathbf{1}) = \mathbf{1}$ and f(a') = f(a)' for all $a \in A$. One can easily see that a lattice homomorphism $f: A \to B$ between Boolean algebras A and B respects the complementary operation ' if and only if $f(\mathbf{0}) = \mathbf{0}$ and $f(\mathbf{1}) = \mathbf{1}$.

As usual, a Boolean algebra homomorphism $f: A \to B$ is called a Boolean algebra isomorphism if $f: A \to B$ is a bijection.

Theorem 3.7. Let R be a semisimple ring. Then

- 1. ν is a Boolean algebra homomorphism.
- 2. If M is a faithful primeful R-module, then ω is a Boolean algebra isomorphism.

Proof. (1) By Theorem 3.4, $\mathcal{V}(_RM)$ and $\mathcal{V}(R)$ are Boolean algebras and by Theorem 2.2, ν is always a lattice homomorphism. Also, $\nu(\mathbf{0}) = \nu(V(R)) = V(RM) = V(M) = \mathbf{0}$ and $\nu(\mathbf{1}) = \nu(V(0)) = V(0M) = V(0) = \mathbf{1}$. Hence, as noted above, ν is a Boolean algebra homomorphism.

(2) By Theorem 2.16,
$$\omega$$
 is a lattice isomorphism. Also, we have $\omega(\mathbf{0}) = \omega(V(M)) = V((M:M)) = V(R) = \mathbf{0}$ and $\omega(\mathbf{1}) = \omega(V((0))) = V((0:M)) = V((0)) = \mathbf{1}$, as required.

Corollary 3.8. Let R be a semisimple ring. Then

(1) $\mathcal{L}(R)$ is a Boolean algebra with the least element $\mathbf{0} = (0)$, greatest element $\mathbf{1} = R$ and the unary operation I' = J where $RR = I \oplus J$.

(2) If M is a faithful primeful R-module, then $\mathcal{V}(_RM)$ and $\mathcal{L}(R)$ are anti-isomorphic Boolean algebras.

Proof. (1) Since R is semisimple, $\mathcal{L}(R)$ is a distributive lattice by [7, Exercise 1.2.5]. It is easily seen that $\varphi \colon \mathcal{L}(R) \to \mathcal{V}(R)$ defined by $\varphi(I) = V(I)$ is an anti-isomorphism. Also, we have

$$\mathbf{0} = \varphi^{-1}(\mathbf{1}) = \varphi^{-1}(V((0))) = (0),$$

$$\mathbf{1} = \varphi^{-1}(\mathbf{0}) = \varphi^{-1}(V(R)) = R$$

and for every $I \in \mathcal{L}(R)$, $I' = \varphi^{-1}(V(I)') = \varphi^{-1}(V(J)) = J$ where $RR = I \oplus J$. Hence $\mathcal{L}(R)$ is a Boolean algebra which is anti-isomorphic to the Boolean algebra $\mathcal{V}(R)$.

(2) By (1) and Theorem
$$3.7(2)$$
.

Acknowledgments

We would like to thank the referee for careful reading of our paper and useful comments.

References

- 1. T. Albu, C. Nastasescu, *Modules arithmetiques*, Acta Math. Acda. Sci. Hungar. **25** (1974), 299-311.
- 2. M. F. Atiyah, I. G. Macdonald, *Introduction to Commutative Algebra*, Addison-Wesley, London, 1969.
- S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York, 1981.
- Z. A. El-Bast, P. F. Smith, Multiplication Modules, Comm. Algebra, (4) 16 (1988), 755-799.
- J. B. Harehdashti, H. F. Moghimi, Complete homomorphisms between the lattices of radical submodules, Math. Rep. (70) 20 (2018), 187-200.
- 6. J. Jenkins, J., P. F. Smith, On the Prime Radical of a Module over a Commutative Ring, Comm. Algebra, (12) 20 (1992), 3593-3602.
- T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
- 8. C. P. Lu, *Prime Submodules of Modules*, Comment. Math. Univ. St. Paul. (1) **33** (1984), 61-69.
- C. P. Lu, A Module whose Prime Spectrum has the Surjective Natural Map, Houston J. Math. (1) 33 (2007), 125-143.
- R. L. McCasland, M. E. Moore, *Prime Submodules*, Comm. Algebra, (6) 20 (1992), 1803-1817.
- 11. R. L. McCasland, M. E. Moore, On the spectrum of a module over a commutative ring, Comm. Algebra, (1) 25 (1997), 79-103.
- H. F. Moghimi, J. B. Harehdashti, Mappings between lattices of radical submodules, Int. Electr. J. Alg. 19 (2016), 35-48.

- 13. M. E. Moore, S. J. Smith, *Prime and Radical Submodulels of Modulels over Commutative Rings*, Comm. Algebra, (10) **30** (2002), 5037-5064.
- 14. M. Noferesti, H. F. Moghimi and M. H. Hosseini, *Mappings between the lattices of saturated submodules with respect to a prime ideal*, Hacet. J. Math. Stat. (1) **50** (2021), 243-254.
- P. F. Smith, Some remarks on multiplication modules, Arch. Math. 50 (1988), 223-235.
- P. F. Smith, Mappings between Module Lattices, Int. Electr. J. Alg. 15 (2014), 173-195.
- 17. P. F. Smith, Complete homomorphisms between Module Lattices, Int. Electr. J. Alg. 16 (2014), 16-31.
- 18. P. F. Smith, Anti-homomorphisms between Module Lattices, J. Commut. Algebra, 7 (2015), 567-591.
- 19. W. Stephenson, Modules whose lattice of submodules is distributive, Proc. London Math. Soc. (3) 28 (1974), 291-310.

Hosein Fazaeli Moghimi

Department of Mathematics, University of Birjand, P.O.Box 97175-615, Birjand, Iran.

Email: hfazaeli@birjand.ac.ir

Morteza Noferesti

Department of Mathematics, University of Birjand, P.O.Box 97175-615, Birjand, Iran.

Email: morteza_noferesti@birjand.ac.ir