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 Fractional differential equations (FDEs) have recently attracted much 

attention. Fractional Mathieu equation is a well-known FDE. Here, a 

method based on operational matrix of triangular functions for fractional 

order integration is introduced for the numerical solution of fractional 

Mathieu equation.This technique is a successful method because of 

reducing the problem to a system of linear equations. By solving this 

system, an approximate solution is obtained. Illustrative examples 

demonstrate accuracy and efficiency of the method. 
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1. Introduction  

Fractional calculus as a significant theoretical branch of mathematical theories have recently 

attracted much attention and have become an increasingly important topic in the literature of 

differnet fields of science and engineering. A great deal of research has shown the beneficial 

application of the fractional calculus in a lot of real-life physical systems such as the nonlinear 

oscillations of bioengineering [1], signal processing [2], hydrologic [3], Viscoelasticity [4]. 

Fractional calculus is very important to study fractional differential equations (FDEs). As is well-

known, FDEs are obtained by replacing integer order derivatives by fractional ones. These equations 

are more advantageous than integer order differential equations because they are more accurate in 

simulating natural physical process and dynamic system. Many researches have led to improve and 

extend FDEs. Some examples of these works can be found in [5]. 
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Most FDEs cannot be solved analytically. Therefore, various other numerical techniques have been 

also proposed to solve this type of equations, including fractional-order Lagrange polynomials [6], 

fractional-order Taylor method [7], finite difference method [8], shifted Chebyshev polynomials 

[9], and so on. 

One well-known FDE which is widely used in physical phenomena such as electromagnetic, 

parametric oscillators, the motion of a quantum particle in a periodic potential, etc., is fractional 

Mathieu equation with the following general form [10]. 

𝐷𝛽𝑦(𝑡) + 𝑘𝐷𝛼𝑦(𝑡) + [𝑎 − 2𝑞𝑐𝑜𝑠(2𝑡)]𝑦(𝑡) = 𝑓(𝑡),                                                                                                                (1) 

where 𝐷𝛽 and 𝐷𝛼 represent Caputo derivative operators and 0 < 𝛼 ≤ 1, 0 < 𝛽 ≤ 2, 𝑎 and 𝑞 are the 

characteristic number and parameter, respectively, and 𝑓(𝑡) is a known function. In the case that 

𝛼 = 1 and 𝛽 = 2, 𝑓(𝑡) = 0, Eq. (1) represents the familiar damped Mathieu equation [11]. 

In the literature, this equation has been studied numerically by some authors. Saberi Najafi has 

solved it by generalized differential transform method [12]. Pirmohabbati et al. [11] used block-

pulse wavelets to solve Eq. (1). 

In 2006, Deb et al. introduced a complementary pair of orthogonal functions called triangular (TF) 

functions based on block pulse functions and used them to analyze dynamic systems [13]. Then, the 

TF approximation was successfully used to solve variational problems [14], integral equations [15], 

Volterra Fredholm integro-differential equations  [16], nonlinear constrained optimal control 

problems [17] and Voltterra-Fredelm integral equations [18]. The aim of this research is to apply 

triangular functions to approximate Eq. (1). 

This paper is organized as follows. In Section 2, some basic definitions of fractional calculus and 

triangular functions are recalled. In section 3, operational matrix of the fractional integration based 

on TFs is provided. In Section 4, our numerical method for solving the fractional Mathieu equation 

is presented. In Section 5, the numerical method is illustrated by some examples. Finally, 

conclusions are presented in Section 6.  

2. Priliminaries 

In this section, some basic definitions and properties of fractional integaral, derivatives and 

triangular functions are recalled. 

2.1 Fractional calculus 

The Riemman–Liouville fractional integral of order 𝛼 ≥ 0 of a function 𝑓 over [0, +∞] is defined 

as follows.  

𝐼𝛼𝑓(𝑡) =
1

Γ(𝛼)
∫
𝑡

0
(𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠 =

1

Γ(𝛼)
𝑥𝛼−1 ∗ 𝑓(𝑡),                                                                                                  (2) 

where Γ is the Gamma function and 𝑥𝛼−1 ∗ 𝑓(𝑡) is the convolution product of 𝑥𝛼−1 and 𝑓(𝑡) [19]. 

The Riemman–Liouville fractional integral has following properties.  

 𝐼𝛼𝐼𝛽𝑓(𝑡) = 𝐼𝛼+𝛽𝑓(𝑡). 
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 𝐼𝛼𝐼𝛽𝑓(𝑡) = 𝐼𝛽𝐼𝛼𝑓(𝑡).  

The Caputo fractional derivative of order 𝛼 ≥ 0 of a function 𝑓 over [0, +∞] is given by  

𝐷𝛼𝑓(𝑡) = {

𝐼𝑛−𝛼𝑓(𝑛)(𝑡),                        𝑛 − 1 < 𝛼 < 𝑛

𝑑𝑛

𝑑𝑡𝑛
𝑓(𝑡),                                 𝛼 = 𝑛,

                 (3) 

where 𝑛 = ⌈𝛼⌉ [20].  

For the Caputo derivative, we have   

 𝐷𝛼𝑥𝛽 = {

𝛤(𝛽 + 1)

𝛤(𝛽 + 1 − 𝛼)
𝑥𝛽−𝛼 ,            𝛽 ≥ ⌈𝛼⌉,

0,                                  𝛽 < ⌈𝛼⌉.

.  

 𝐷𝛼𝐼𝛼𝑓(𝑡) = 𝑓(𝑡).  

 𝐼𝛼𝐷𝛼𝑓(𝑡) = 𝑓(𝑡) −∑

𝑛−1

𝑖=0

𝑓(𝑖)(0+)
𝑡𝑖

𝑖!
, , 𝑡 > 0, , 𝑛 − 1 ≤ 𝛼 < 𝑛  .  

2.2 Triangular functions  

Triangular functions have been introuduced by Deb et al. [13].Two 𝑚-sets of Triangular functions 

are defined over the interval [0, 𝑇) as follows.  

𝑇1𝑖(𝑥) = {
1 −

𝑥−𝑖ℎ

ℎ
,             (𝑖 − 1)ℎ ≤ 𝑥 < 𝑖ℎ,

0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,    
                                                                                          (4) 

  

𝑇2𝑖(𝑥) = {
𝑥−𝑖ℎ

ℎ
,          (𝑖 − 1)ℎ ≤ 𝑥 < 𝑖ℎ,

0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,                 
                                                                                            (5) 

where 𝑖 = 1, . . . , 𝑚, with a positive integer value for 𝑚, and ℎ =
𝑇

𝑚
. TFs, are disjoint, orthogonal, 

and complete [16].  

2.2.1 Vector form 

Consider 𝑚-set TF vectors as  T1(t)=[T11(t),...,T1m(t)] T,  T2(t)=[T21(t),...,T2m(t)] T,  in which T1(t) 

and T2(t) are called left-handed triangular functions (LHTF) vector and right-handed triangular 

functions (RHTF) vector, respectively [21]. The product of these two TFs vectors are obtained as 

follows [16].   

𝐓𝟏(𝑡)𝐓𝟏𝑇(𝑡) ≃ (

𝑇10(𝑡) 0 … 0
0 𝑇11(𝑡) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑇1𝑚−1(𝑡)

) 
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𝐓𝟐(𝑡)𝐓𝟐𝑇(𝑡) ≃ (

𝑇20(𝑡) 0 … 0
0 𝑇21(𝑡) … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑇2𝑚−1(𝑡)

) 

 and  

𝐓𝟏(𝑡)𝐓𝟐𝑇(𝑡) ≃ 𝟎,                                                                                                                                   (6) 

𝐓𝟐(𝑡)𝐓𝟏𝑇(𝑡) ≃ 𝟎,                                                                                                                                 (7) 

where 0 is the zero 𝑚×𝑚 matrix. Also,   

∫
1

0
𝐓𝟏(𝑡)𝐓𝟏𝑇(𝑡)𝑑𝑡 = ∫

1

0
𝐓𝟐(𝑡)𝐓𝟐𝑇(𝑡)𝑑𝑡 ≃

ℎ

3
𝐼                                                                                          (8) 

∫
1

0
𝐓𝟏(𝑡)𝐓𝟐𝑇(𝑡)𝑑𝑡 = ∫

1

0
𝐓𝟐(𝑡)𝐓𝟏𝑇(𝑡)𝑑𝑡 ≃

ℎ

6
𝐼                                                                                                            (9) 

where 𝐼 is 𝑚×𝑚 identity matrix.  Now, define the 2𝑚-vector T(𝑡) as follows.  

T(t)=[T1(t),T2(t)] T,                                                                                                                                   (10) 

Then, 

 ∫  
1

0
𝐓(𝑡)𝐓𝑇(𝑡)𝑑𝑡 ≃ 𝐷,                                                                                                                                                  (11) 

where 𝐷 is the following 2𝑚 × 2𝑚 matrix.   

𝐷 = (

ℎ

3
𝐼𝑚×𝑚

ℎ

6
𝐼𝑚×𝑚

ℎ

6
𝐼𝑚×𝑚

ℎ

3
𝐼𝑚×𝑚

)   

2.2.2 Function expansion 

In general, a square integrable function f can be expanded into an m-set TF series as:  

  𝑓(𝑥) ≃ ∑  𝑚
𝑖=1 𝑐𝑖𝑇1𝑖(𝑡) + ∑  𝑚

𝑖=1 𝑑𝑖𝑇2𝑖(𝑡) = 𝐂
𝑇𝐓𝟏(𝑡)(𝑡) + 𝐃𝑇𝐓𝟐(𝑡)(𝑡) = 𝐅𝑇𝐓(𝑡)(𝑡)                                             (12) 

where, ci = f((i − 1)h), di = f(ih) for i = 1, . . . , m, 𝐂 = [c1, . . . , cm]
T, 𝐃 = [d1, . . . , dm]

T, and 𝐅 =

[𝐂, 𝐃] [39].  

3. Operational matrix of fractional integration  

In this section, the operational matrix of fractional integration based on TFs is presented.  The 

fractional integration of 𝑇(𝑡) can be approximated as follows.  

𝐼𝛼𝑇(𝑡) = 𝑃𝛼𝑇(𝑡),                                                                                                                                 (13) 

where 𝑃𝛼 is the fractional integration operational matrix of T(𝑡) as follows.   

𝑃𝛼 = (
𝑃1𝛼 𝑃2𝛼
𝑃3𝛼 𝑃4𝛼

) ,                                                                                                                              (14) 

where 𝑃1𝛼 , 𝑃2𝛼 , 𝑃3𝛼 and 𝑃4𝛼 are 𝑚×𝑚 matrices as follows.  
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𝑃1𝛼 =

(

 
 

0 𝜁1 𝜁2 … 𝜁𝑚−1
0 0 𝜁1 ⋯ 𝜁𝑚−2
0 0 0 ⋯ 𝜁𝑚−3
⋮
0

⋮
0

⋮
0

⋱
⋯

⋮
0 )

 
 
,                                                                                                                              (15) 

   

𝑃2𝛼 =

(

 
 

𝜁1 𝜁2 𝜁3 … 𝜁𝑚
0 𝜁1 𝜁2 ⋯ 𝜁𝑚−1
0 0 𝜁1 ⋯ 𝜁𝑚−2
⋮
0

⋮
0

⋮
0

⋱
⋯

⋮
𝜁1 )

 
 
,                                                                                                                            (16) 

  

𝑃3𝛼 =

(

 
 

0 𝜉1 𝜉2 … 𝜉𝑚−1
0 0 𝜉1 ⋯ 𝜉𝑚−2
0 0 0 ⋯ 𝜉𝑚−3
⋮
0

⋮
0

⋮
0

⋱
⋯

⋮
0 )

 
 
,                                                                                                                              (17) 

   

𝑃4𝛼 =

(

 
 

𝜉1 𝜉2 𝜉3 … 𝜉𝑚
0 𝜉1 𝜉2 ⋯ 𝜉𝑚−1
0 0 𝜉1 ⋯ 𝜉𝑚−2
⋮
0

⋮
0

⋮
0

⋱
⋯

⋮
𝜉1 )

 
 
,                                                                                                                             (18) 

 in which  

𝜁𝑟 =
ℎ𝛼

Γ(𝛼 + 2)
((𝛼 + 1)𝑟𝛼 − 𝑟𝛼+1 + (𝑟 − 1)𝛼+1),  

 and  

𝑟 =
ℎ𝛼

Γ(𝛼 + 2)
(𝑟𝛼+1 − (𝑟 − 1) 

𝛼+1
− (𝛼 + 1)(𝑟 − 1)𝛼).  

 So, from Eq. (12), the fractional integration of 𝑓(𝑡) can be approximated as:   

𝐼𝛼𝑓(𝑡) ≃ 𝐹𝑇𝑃𝛼𝑇(𝑡).                                                                                                                        (19) 

4. Discussion 

In this section, Tfs are employed to solve the fractional Mathieu equation. Consider Eq. (1) with 

following initial conditions.   

𝑦(𝑡0) = 𝑦0,     𝑦
′(𝑡0) = 𝑦1                                                                                                                                            (20) 

Assume that  

𝐷𝛽𝑦(𝑡) = 𝐹𝑇𝑇(𝑡).                                                                                                                                                        (21) 

According to definitions and Eq. (18), 𝐷𝛼𝑦(𝑡) can be written as  

𝐷𝛼𝑦(𝑡) = 𝐹𝑇𝑃(𝛽−𝛼)𝑇(𝑡) + 𝑦1.                                                                                                                                     (22) 

So  
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𝑦(𝑡) = 𝐹𝑇𝑃𝛽𝑇(𝑡) + 𝑦0 + 𝑦1𝑡.                                                                                                                                         (23) 

Now, integrating from both sides of Eq. (23) with initial conditions leads to  

𝐹𝑇𝑇(𝑡) + 𝑘𝐹𝑇𝑃𝛽−𝛼𝑇(𝑡) + 𝑘𝑦1 + (𝑎 − 2𝑞cos(2𝑡))(𝐹
𝑇𝑃𝛽𝑇(𝑡) + 𝑦0 + 𝑦1𝑡) = 𝑓(𝑡).                                                 (24) 

By substituting (21)- (24) into (1) following equation is obtained.   

𝐹𝑇𝑇(𝑡) + 𝑘𝐹𝑇𝑃𝛽−𝛼𝑇(𝑡) + (𝑎 − 2𝑞cos(2𝑡)𝐹
𝑇𝑃𝛽𝑇(𝑡) = 𝑔(𝑡),                                                                                    (25) 

where 𝑔(𝑡) = 𝑓(𝑡) − 𝑘𝑦1 − (𝑎 − 2𝑞cos(2𝑡))(𝑦0 + 𝑦1𝑡) The matrix form of Eq. (25) is    

𝐹𝑇(𝐼 + 𝑘𝑃(𝛽−𝛼) + (𝑎 − 2𝑞cos(2𝑡))𝑃(𝛽))𝑇(𝑡) = 𝑔(𝑡).                                                                                                           (26) 

Using collocation points 𝑡𝑖 =
(𝑖−1)

2𝑚
 for 𝑖 = 1, . . . ,2𝑚 in (26), a system of linear equations is 

obtained. Unknown coefficients vector can be determined by solving the resulted system . 

5. Numerical experiments 

In order to test the proposed method, consider Eq. (1) with 𝑓(𝑡) = 𝑒−𝑡 , 𝑘 = 1, 𝑎 = 1, 𝑞 = 0 and 

initial values 𝑦(0) = 1 and 𝑦′(0) = 1. In this case, the exact solution is 𝑦(𝑡) = 𝑒−𝑡. In table 1, the 

absolute error of numerical solution with 𝛼 = 1 and 𝛽 = 2 is presented.  This Table shows the 

absolute error, the difference between the exact and the approximate solution of the method for 

different values of 𝑡 and 𝑚 = 10 and 𝑚 = 40. Comparison of errors shows that with increasing 

sub-intervals, the accuracy of the method also increases.  

 Now, by keeping the previous coefficients constant, we change 𝛼 and 𝛽 from 2 and 1 to 1.9 and 0.8 

first and then 1.8 and 0.7, respectively. The changes are compared in Figure 1. According to this 

figure, although the values of the 𝛼 and 𝛽 derivatives in the equation have changed from integer to 

fractional, it is clear that more accurate solutions are achieved with increasing number of operating 

subintervals for the triangular functions. 

 

Figure1: Comparison of numerical solutions with exact solution for different values of 𝛼 and 𝛽 
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Table 1. Absolute error of the proposed method for 𝑚 = 10 and 𝑚 = 40 

 t 𝑚 = 10 𝑚 = 40  

 0.1 0.0061 0.0013 

 0.2 0.0101 0.0023 

 0.3 0.0137 0.0033 

 0.4 0.0168 0.0041 

 0.5 0.0194 0.0048 

 0.6 0.0217 0.0053 

 0.7 0.0235 0.0058 

 0.8 0.0249 0.0062 

 0.9 0.0259 0.0065 

6. Conclusions  

This paper presents a computational method based on the TFs for solving the fractional Mathieu 

equation. A system of linear equations is derived by using the operational matrix of the TF for 

fractional integration. Unknown coefficients can be obtained by solving this system. The numerical 

results for differnet values of fractional orders have been compared with each other. The results 

show that this method has a very good accuracy. Because of simplicity of this method, it can be 

suitable for solving nonlinear equtions such as the Duffing, Bratu, and other similar equations 
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