
Study on the stability for implicit second-order differential
equation via integral boundary conditions

Ahmed Mohamed Ahmed El-Sayed†, Hind Hassan Gaber Hashem‡,
Shorouk Mahmoud Al-Issa§∗

†Department of Mathematics, Alexandria University, Alexandria, Egypt
‡Department of Mathematics, College of Science, Qassim University, P.O. Box 6644 Buraidah 51452,

Saudi Arabia
§Department of Mathematics, Lebanese International University, Saida, Lebanon

§Department of Mathematics, The International University of Beirut, Beirut, Lebanon
Email(s): amasayed@alexu.edu.eg,3922@qu.edu.sa, shorouk.alissa@liu.edu.lb

Journal of Mathematical Modeling
Vol. 10, No. 2, 2022. pp. 331-348. Research Article JMM

�
�

�
�

�
�

�
�

Abstract. In this paper, the existence and the Ulam-Hyers stability of solutions for the implicit second-
order differential equations are investigated via fractional-orders integral boundary conditions by direct
application of the Banach contraction principle. Finally, we present some particular cases and two ex-
amples to illustrate our results.
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1 Introduction

We discuss a new class of implicit second-order nonlocal boundary value problems as follows

d2

dt2 y(t) = f
(
t,y(t),c Dξ y(t),

∫ t

0
θ(t,s)cDζ y(s)ds

)
, t ∈ I = (0,1), (1)

equipped with the two sets of nonlocal boundary conditions

y(0) = 0 and y(1) =
λ

Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,y(s))ds+

µ

Γ(γ)

∫
η

0
(η− s)γ−1L2(s,y(s))ds, (2)

y(0) =
λ

Γ(γ)

∫
τ

0
(τ− s)γ−1 L1(s,y(s)) ds, and y(1) =

µ

Γ(γ)

∫
η

0
(η− s)γ−1 L2(s,y(s)) ds, (3)
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where cDδ is Caputo fractional derivative of order δ ∈ {ξ ,ζ}, with 1 < ξ < ζ ≤ 2, 0 < γ < 1, f :
I×R3→ R, θ : I× I→ R are given functions satisfying some assumptions that will be specified later,
and Li : I×R→ R, (i = 1,2) are continuous. This type of boundary value problems appear in many
applications and real problems such as chemical diffusion, thermoelasticity, heat conduction processes,
population dynamics, vibration problems, nuclear reactor dynamics, inverse problems, control theory,
medical science, biochemistry and certain biological processes [3, 9, 10].

The theory of fractional differential equations is a branch of differential equations with a great phys-
ical foundation. Many significant and physical applications whose states are subject to rapid change
at particular points are modeled using impulsive differential equations (see, for example, the mono-
graphs [4, 8] and the references therein).

On the other hand, the stability analysis of integral and differential equations is critical in many
applications. Ulam [18] was the first to raise the issue of functional equation stability, followed by
Hyers [7]. Rassias [17] improved Ulam-Hyers stability in 1978, resulting in the so-called Ulam-Hyers-
Rassias (UHR). For essential results on Ulam stability of integral, we suggest the references [1, 5, 14].

In [6], Hu and Wang investigated the existence of solution of the nonlinear fractional differential
equation with integral boundary condition:

Dαu(t) = f
(
t,u(t),Dβ u(t)

)
, t ∈ (0,1),1 < α ≤ 2, 0 < β ≤ 1,

u(0) = u◦, u(1) =
∫ 1

0
g(s)u(s)) ds,

where Dα is the Riemann-Liouville fractional derivative. In [13], Murad and Hadid considered the
boundary value problem of the fractional differential equation:

Dαy(t) = f
(
t,y(t),Dβ y(t)

)
, t ∈ (0,1),1 < α ≤ 2, 0 < β ≤ 1,

y(0) = 0, y(1) = Iγ

0 y(s),

where Dα is the Riemann-Liouville fractional derivative, In [3], Chasreechai and Tariboon gave some
existence theorems for the positive solutions of problems of the following type:

u′′(t)+λg(t) f (u(t)) = 0, t ∈ (0,1),

u(0) = β1

∫
η

0
u(s) ds, u(1) = β2

∫
η

0
u(s) ds.

Galvis [9] applied the Schauder’s fixed point theorem to prove the existence of solutions of the nonlinear
second-order problem

u′′+u(t)g(t,u) = 0, 0≤ t ≤ r,

u(0) = 0, u(r) = β

∫ a

0
x(s)ds,

Several papers on fractional differential equations with integral boundary conditions can be found in
[12, 21–23].

In this paper, motivated by the above works, we consider implicit second-order nonlocal boundary
value problem (SNBVP) with integral boundary conditions (1)-(2) and (1)-(3). Moreover, some results
are obtained as special cases of the illustrated results in this paper (see Section 5).
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The remaining part of the paper is set as follows: In Section 2, we recall some concepts and demon-
strate a basic lemma that allows us to convert SNBVP’s (1)-(2) and (1)-(3) into their equivalent integral
equations. Section 3 establishes the main results, including the existence of a unique solution by applying
Banach’s contraction mapping principle. Also, we discuss the Ulam-Hyers-Rassias stability of our prob-
lem in Section 4. Section 5 contains particular cases of the results and two examples that demonstrate
the application of our main results. Finally, in Section 6 some concluding results are given.

2 Preliminaries

Let us starting with some definitions relevant to our study.

Definition 1. [15] The Riemann-Liouville fractional integral of the function f ∈ L1(I) of order α ∈ R+

is defined by

Iα
a f (t) =

∫ t

a

(t− s)α−1

Γ(α)
f (s) ds,

and when a = 0, we have Iα f (t) = Iα
0 f (t), where Γ(.) is Eulers Gamma function.

Definition 2. [15] The Caputo fractional derivative of order α > 0 of function f ∈ Cn−1([a,b],R+),
with t ∈ [a,b] is given by

(cDα
a+ f )(t) = In−α

a
dn

dtn f (t) =
∫ t

a

(t− s)n−α−1

Γ(n−α)
f (n)(s)ds,

where n = [α]+1. If α ∈ (0,1], then

(cDα
a+ f )(t) = I1−α

a+
d
dt

f (t) =
∫ t

a

(t− s)−α

Γ(1 − α)
f ′(s)ds.

Lemma 1. [24] Let β > 0. Then the differential equation (cDβ

a+µ)(t) = 0 has the solution

µ(t) = α0 +α1t +α2t2 + · · ·+αn−1tn−1, αi ∈ R, i = 0,1,2, . . . ,n−1, n = [β ]+1.

Lemma 2. [24] Let α > 0. Then

Iα(cDβ
µ(t)) = µ(t)+α0 +α1t +α2t2 + · · ·+αn−1tn−1,

for arbitrary αi ∈ R, i = 0,1,2, . . . ,n−1, n = [β ]+1.

For the existence of a solution for SNBVP’s, we need the following auxiliary Lemma.

Lemma 3. Let 1<α < β ≤ 2 and u∈C(I,R). Then, SNBVP (1)-(2) is equivalent to the integral equation

y(t) = L(t,y(t))+
∫ 1

0
H(t,s)u(s)ds, (4)

and the SNBVP (1)-(3) is equivalent to the integral equation

y(t) = g(t,y(t))+
∫ 1

0
H(t,s)u(s)ds, (5)
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where u is the solution of the functional integral equation

u(t) = f
(

t,h(t)+
∫ 1

0
H(t,s)u(s)ds, I2−ξ u(t),

∫ t

0
θ(t,s)I2−ζ u(s)ds

)
.

Here H(t,s) is the Greens function defined by

H(t,s) =


(t− s)+ t(1− s), 0≤ s≤ t ≤ 1,

t(1− s), 0≤ t ≤ s≤ 1,

(6)

with H◦ := max{|H(t,s)|,(t,s) ∈ I× I}, where

L(t,y(t)) =
λ t

Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,y(s))ds+

µ t
Γ(γ)

∫
η

0
(η− s)γ−1L2(s,y(s))ds, (7)

and

g(t,y(t)) =
(1− t) λ

Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,y(s))ds+

µ t
Γ(γ)

∫
η

0
(η− s)γ−1L2(s,y(s))ds. (8)

Proof. From the definition of Caputo fractional derivative, we have

cDξ y(t) = I2−ξ d2

dt2 y(t) and cDζ y(t) = I2−ζ d2

dt2 y(t) for t ∈ I.

Hence, if y is a solution of equation (1), then

d2

dt2 y(t) = f
(

t,y(t), I2−ξ d2

dt2 y(t),
∫ t

0
θ(t,s)I2−ζ d2

dt2 y(s)ds
)
.

Letting d2

dt2 y(t) = u(t), we get

u(t) = f
(

t,y(t), I2−ξ u(t),
∫ t

0
θ(t,s)I2−ζ u(s)ds

)
,

and Lemma 2 implies that

y(t) = σ◦+σ1t +
∫ t

0
(t− s)u(s)ds. (9)

By virtue of (2), we get

y(0) = σ◦ = 0, (10)

y(1) = σ◦+σ1 +
∫ 1

0
(1− s)u(s)ds

=
λ

Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,y(s))ds+

µ

Γ(γ)

∫
η

0
(η− s)γ−1L2(s,y(s))ds. (11)



Study on the stability for implicit second-order differential equation 335

By solving Eqs. (10) and (11), it is easily to obtain that

σ1 =
λ

Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,y(s))ds+

µ

Γ(γ)

∫
η

0
(η− s)γ−1L2(s,y(s))ds−

∫ 1

0
(1− s)u(s)ds.

From Eqs. (10) and (11), the solution of the problem (1)-(2) is given by

y(t) =
λ t

Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,y(s))ds+

µ t
Γ(γ)

∫
η

0
(η− s)γ−1L2(s,y(s))ds

− t
∫ 1

0
(1− s)u(s)ds+

∫ t

0
(t− s) u(s)ds.

Consequently, from the fact that the integral of a function on [0,1] can be written as a sum of the integrals
on [0, t] and t,1, we get (4).

Conversely, if y satisfies the equation (4) then clearly the problem (1)-(2) holds true. This completes
the proof of the equivalence between SNBVP (1)-(2) and the integral equation (4).

By a similar way, the solution of the problem (1)-(3) is given by

y(t) =
(1− t) λ

Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,y(s))ds+

µ t
Γ(γ)

∫
η

0
(η− s)γ−1L2(s,y(s))ds

− t
∫ 1

0
(1− s)u(s)ds+

∫ t

0
(t− s) u(s)ds.

This completes the proof.

3 The main result

Consider the following assumptions, in aim of proving the existence of solutions for SNBVP’s (1)-(2)
and (1)-(3).

(H1) Li : I×R→ R, i = 1,2, are continuous and there exist constants `i ∈ [0,1) such that

|Li(t,u)−Li(t,v)| ≤ `i|u− v|, ∀ u,v ∈ R.

(H2) f : I×R3→ R is continuous and there exists ψ ∈C(I,R+), with norm ‖ψ‖, such that:

|f(t,µ1,µ2,µ3)− f(t,ν1,ν2,ν3)| ≤ ψ(t)
(
|µ1−ν1|+ |µ2−ν2|+ |µ3−ν3|

)
,

∀ t ∈ I, µi,vi ∈ R, (i = 1,2,3).

(H3) θ(t,s) is continuous for all (t,s) ∈ I× I, and there is a positive constant Θ such that

max
t,s∈[0,1]

|θ(t,s)|= Θ.

Remark 1. From assumptions (H1) and (H2), we have

|Li(t,µ)|− |Li(t,0)| ≤ |Li(t,µ)−Li(t,0)| ≤ `i|µ−0|,
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|f(t,µ1,µ2,µ3)|− |f(t,0,0,0)| ≤ |f(t,µ1,µ2,µ3)− f(t,0,0,0)| ≤ ψ(t)(|µ1|+ |µ2|+ |µ3|),

then

|Li(t,µ)| ≤Ωi + `i|µ|, where Ωi = sup
t∈I
|li(t,0)|, i = 1,2,

and
|f(t,µ1,µ2,µ3)| ≤ ‖ψ‖(|µ1|+ |µ2|+ |µ3|)+F, where F = sup

t∈I
|f(t,0,0,0)|.

Lemma 4. The function L : I×R→ R satisfies the Lipschitz condition ‖L(t,µ)−L(t,ν)‖ ≤ c‖µ−ν‖.

Proof. For arbitrary u,v ∈ R and for each t ∈ I, we have

|L(t,µ(t))−L(t,ν(t))| ≤
∣∣ λ t
Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,µ(s))ds+

µ t
Γ(γ)

∫
η

0
(η− s)γ−1L2(s,ν(s))ds

− λ t
Γ(γ)

∫
τ

0
(τ− s)γ−1L1(s,µ(s))ds− µ t

Γ(γ)

∫
η

0
(η− s)γ−1L2(s,ν(s))ds|

≤ λ t
Γ(γ)

∫
τ

0
(τ− s)γ−1∣∣L1(s,µ(s))−L1(s,ν(s))

∣∣ds

+
µ t

Γ(γ)

∫
η

0
(η− s)γ−1∣∣L2(s,µ(s))−L2(s,ν(s))

∣∣ds

≤ t(λ +µ)

Γ(γ +1)
‖µ−ν‖.

Therefore, ‖L(t,µ)−L(t,ν)‖ ≤ c‖µ − ν‖, where c = t(λ+µ)
Γ(γ+1) . Thus L is Lipschitzian function with a

Lipschitz constant c. In the same way, we can prove that g is a Lipschitzian function with a the Lipschitz
constant c.

Our result is based on the Banach’s fixed point theorem to obtain the existence of a unique solution
of SNBVPs (1)-(2) and (1)-(3).

Theorem 1. Let the assumptions (H1)− (H3) be satisfied. Then the SNBVP (1)-(2) has a unique
solution on C(I,R), provided that

c+
H◦ ‖ψ‖ T

M
< 1, M = 1−‖ψ‖

( 1
Γ(3−ξ )

+
Θ

Γ(3−ζ )

)
. (12)

Proof. The SNBVP (1)-(2) can be reduced to a fixed point problem. Define the operator A : C(I,R)→
C(I,R) by:

A y(t) = L(t,y(t))+
∫ 1

0
H(t,s)v(s)ds, (13)

where v ∈C(I,R) satisfies the implicit functional equation

v(t) = f
(
t,y(t), I2−ξ v(t),

∫ t

0
θ(t,s)I2−ζ v(s)ds

)
,

with H and L are the functions defined by (6) and (7), respectively.
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We choose

ρ ≥
(

λ Ω1 +µ Ω2

Γ(γ +1)
+

F H◦
M

)(
1−
[
‖ψ‖ H◦

M
+

λ`1 +µ`2

Γ(γ +1)

])−1

,

where M = 1−‖ψ‖
( 1

Γ(3−ξ )
+ Θ

Γ(3−ζ )

)
. Define the ball Bρ = {y ∈ C(I,R) : ‖y‖ ≤ ρ}. The proof is

divided into two steps:
Step 1: We first show that A (Bρ)⊂Bρ . Let y ∈Bρ and t ∈ I, we have

|A y(t)| ≤ |L(t,y(t))|+
∫ 1

0
|H(t,s)||v(s)|ds, (14)

where v(t) = f
(
t,y(t), I2−ξ v(t),

∫ t
0 θ(t,s)I2−ζ v(s)ds

)
, and

|v(t)|=
∣∣f(t,y(t), I2−ξ v(t),

∫ t

0
θ(t,s)I2−ζ v(s)ds

)∣∣
≤ F + |ψ(t)|

(
|y(t)|+

∫ t

0

(t− s)1−ξ

Γ(2−ξ )
|v(s)| ds+

∫ t

0
|θ(t,s)|

∫ s

0

(s− τ)1−ζ

Γ(2−ξ )
|v(τ)| ds dτ

)
≤ F +‖ψ‖

(
‖y‖+ s2−ξ

Γ(3−ξ )
‖v‖+Θ

s2−ζ

Γ(3−ζ )
‖v‖
)
.

Hence,

‖v‖ ≤ F +‖ψ‖
(
‖y‖+ ‖v‖

Γ(3−ξ )
+

Θ ‖v‖
Γ(3−ζ )

)
.

So

‖v‖ ≤ ρ ‖ψ‖+F
M

.

And

|L(t,y(t))| ≤ λ t
Γ(γ)

∫
τ

0
(τ− s)γ−1 |L1(s,y(s))|ds+

µ t
Γ(γ)

∫
η

0
(η− s)γ−1 |L2(s,y(s))|ds

≤ λ t
Γ(γ)

∫
τ

0
(τ− s)γ−1[Ω1 + `1|y(s)|]ds+

µ t
Γ(γ)

∫
η

0
(η− s)γ−1[Ω2 + `2|y(s)|]ds

≤ λ t[Ω1 + `1‖y‖]
Γ(γ +1)

+
µ t[Ω2 + `2‖y‖]

Γ(γ +1)

≤ λ Ω1 +µ Ω2 +ρ[λ`1 +µ`2]

Γ(γ +1)
.

Hence (14) implies that

|A y(t)| ≤ λ Ω1 +µ Ω2 +ρ[λ`1 +µ`2]

Γ(γ +1)
+

(ρ ‖ψ‖+F)H◦
M

≤ ρ,

for each t ∈ I. Taking supremum over t ∈ I, we have ‖A y‖ ≤ ρ . This proves that A y ∈Bρ for every
y ∈Bρ .
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Step 2: We only need to show that the operator A which is defined by (15) is a contraction. Taking
x,y ∈C(I,R), for t ∈ I, we have

A x(t)−A y(t) = L(t,x(t))+
∫ 1

0
H(t,s)u(s)ds−L(t,y(t))−

∫ 1

0
H(t,s)v(s)ds, (15)

where u,v ∈C(I,R) such that

u(t) = f
(
t,x(t), I2−ξ u(t),

∫ t

0
θ(t,s)I2−ζ u(s)ds

)
,

v(t) = f
(
t,y(t), I2−ξ v(t),

∫ t

0
θ(t,s)I2−ζ v(s)ds

)
.

Then, for t ∈ I

|A x(t)−A y(t)| ≤ |L(t,x(t))−L(t,y(t))|+
∫ 1

0
H(t,s) |u(s)− v(s)|ds, (16)

but by assumption (H2), we have

|vn(t)− v(t)|

=
∣∣ f (t,x(t), I2−ξ u(t),

∫ t

0
θ(t,s)I2−ζ u(t)ds

)
− f
(
t,y(t), I2−ξ v(t),

∫ t

0
θ(t,s)I2−ζ v(s)ds

)∣∣
≤ ψ(t)

(
|x(t)− y(t)|+

∫ t

0

(t− s)1−ξ

Γ(2−ξ )
|u(s)− v(s)|ds+

∫ t

0
θ(t,s)

∫
τ

0

(s− τ)1−ζ

Γ(2−ζ )
|u(τ)− v(τ)|dsdτ

)
≤ |ψ(t)|

(
‖x− y‖+ s2−ξ

Γ(3−ξ )
‖u− v‖+Θ

s3−ζ

Γ(3−α)
‖u− v‖

)
≤ ‖ψ‖

(
‖x− y‖+ ‖u− v‖

Γ(3−ξ )
+

Θ ‖u− v‖
Γ(3−ζ )

)
.

Thus

‖u− v‖ ≤ ‖ψ‖
M
‖x− y‖.

From (16) and by Lemma 4, we have

|A x(t)−A y(t)| ≤ c‖x− y‖+ H◦ |ψ‖
M

‖x− y‖ ≤
(
c+

H◦ ‖ψ‖
M

)
‖x− y‖.

Taking supermum for t ∈ I, we have

‖A x−A y‖ ≤
(
c+

H◦ ‖ψ‖
M

)
‖x− y‖.

Now if
(
c+ G◦ ‖ψ‖

M

)
< 1, then the operator A is contraction. Hence, by Banach’s contraction principle,

A has a unique fixed point which is a solution of the SNBVP (1)-(2) on I.

By a similar way as done above we can prove the following theorem.

Theorem 2. Let the assumptions (H1)− (H3) be satisfied, if condition (12) holds. Then the SNBVP
(1)-(3) has a unique continuous solution.
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4 Stability of solutions

Now, we study the Ulam stability for SNBVP’s (1)-(2) and (1)-(3). Let ε > 0 and Φ : I → R+ be a
continuous function. We consider the following inequalities:∣∣∣∣ d2

dt2 y(t)− f
(
t,y(t),c Dξ y(t),

∫ t

0
θ(t,s)cDζ y(s)ds

)∣∣∣∣≤ ε, t ∈ I (17)

∣∣∣∣ d2

dt2 y(t)− f
(
t,y(t),c Dξ y(t),

∫ t

0
θ(t,s)cDζ y(s)ds

)∣∣∣∣≤Φ(t), t ∈ I (18)

∣∣∣∣ d2

dt2 y(t)− f
(
t,y(t),c Dξ y(t),

∫ t

0
θ(t,s)cDζ y(s)ds

)∣∣∣∣≤ ε Φ(t), t ∈ I. (19)

Definition 3. [7] The SNBVPs (1)-(2) and (1)-(3) are Ulam−Hyers stable if there exists a real number
c f > 0 such that there exists a solution x ∈C(I,R) of (1)-(2) and (1),-(3), respectively, stasfying

|y(t)− x(t)| ≤ ε c f , t ∈ I,

for each solution y ∈C(I,R) of the inequality (17).

Definition 4. [7] The SNBVPs (1)-(2) and (1)-(3) are generalized Ulam−Hyers stable if there is c f ∈
C(R+,R+) with c f (0) = 0 so that there is a solution x ∈ C(I,R) of (1)-(2) and (1)-(3) respectively,
satisfying |y(t)− x(t)| ≤ c f (ε), t ∈ I, for each ε > 0 and for each solution y ∈C(I,R) of the inequality
(17).

Definition 5. [7] The SNBVPs (1)-(2) and (1)-(3) are Ulam−Hyers−Rassias stable with respect to Φ if
there exists a real number c f ,Φ > 0 such that there is a solution x ∈C(I,R) of (1)-(2) and (1)-(3) with

|y(t)− x(t)| ≤ ε c f ,ΦΦ(t), t ∈ I.

for each ε > 0 and for each solution y ∈C(I,R) of the inequality (19).

Definition 6. [7] The SNBVPs (1)-(2) and (1)-(3) are generalized Ulam−Hyers−Rassias stable with
respect to Φ if the actual number c f ,Φ > 0 exists in such a way that for each solution y ∈C(I,R) of the
inequality (18) there is a solution x ∈C(I,R) of (1)-(2) and (1)-(3) with the solution x ∈C(I,R) of the
inequality |y(t)− x(t)| ≤ c f ,ΦΦ(t), t ∈ I.

4.1 Ulam-Hyers Stability

Next, we present the following Ulam−Hyers stable result.

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Then SNBVP (1)-(2) is Ulam−Hyers stable.
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Proof. Let ε > 0 and let z ∈C(I,R) be a function which satisfies the inequality (17), i.e.,∣∣∣∣ d2

dt2 z(t)− f
(
t,z(t),c Dξ z(t),

∫ t

0
θ(t,s)cDζ z(s)ds

)∣∣∣∣≤ ε, t ∈ I,

and let y ∈C(I,R) be the unique solution of SNBVP (1)-(2), which is by Lemma 3, the unique solution
of integral equation

y(t) = L(t,y(t))+
∫ 1

0
H(t,s)u(s)ds,

where u is the solution of the functional integral equation

u(t) = f
(
t,y(t), I2−ξ u(t),

∫ t

0
θ(t,s)I2−ζ u(s)ds

)
.

Operating by I2 on both sides of (17), and then integrating, we get∣∣∣∣z(t)−L(t,z(t))−
∫ 1

0
H(t,s)v(s)ds

∣∣∣∣≤ ε

2
. (20)

For each t ∈ I, we have

|z(t)− y(t)| =
∣∣z(t)−L(t,y(t)−

∫ 1

0
H(t,s)u(s)ds

∣∣
≤
∣∣z(t)−L(t,z(t)+

∫ 1

0
H(t,s)v(s)ds

∣∣
+
∣∣L(t,z(t)+∫ 1

0
H(t,s)v(s)ds−L(t,y(t)−

∫ 1

0
H(t,s)u(s)ds

∣∣
≤ ε

2
+
∣∣L(t,z(t))−L(t,y(t))

∣∣+∫ 1

0
H(t,s)|v(s)−u(s)|ds

≤ ε

2
+ c |z(t)− y(t)|+

∫ 1

0
H(t,s)|v(s)−u(s)|ds

≤ ε

2
+ c ‖z− y‖+H◦‖u− v‖.

Indeed, from proof of Theorem 1, we have

‖u− v‖ ≤ ‖ψ‖
1−‖ψ‖

(
Θ

1
Γ(3−ζ )

+ 1
Γ(3−ξ )

)‖z− y‖.

Then, for each t ∈ I

‖z− y‖ ≤ ε

2
+ c ‖z− y‖+ H◦ ‖ψ‖

1−‖ψ‖
(
Θ

1
Γ(3−α) +

1
Γ(3−ξ )

)‖z− y‖.

Thus

‖z− y‖ ≤ ε

2

[
1−
(

c +
H◦ ‖ψ‖

1−‖ψ‖
(
Θ

1
Γ(3−ζ )

+ 1
Γ(3−ξ )

))]−1

= Λ ε,
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where

Λ =
1
2

[
1−
(

c +
H◦ ‖ψ‖

1−‖ψ‖
(
Θ

1
Γ(3−ζ )

+ 1
Γ(3−ξ )

))]−1

.

Then, SNBVP (1)-(2) is Ulam-Hyers stable. By putting Φ(ε) = Λ ε, Φ(0) = 0, we deduce that SNBVP
(1)-(2) is generalized Ulam-Hyers stable.

By similar calculation as done before, we can prove the following theorem.

Theorem 4. Let the assumptions of Theorem 1 be satisfied. Then SNBVP (1)-(3) is generalized Ulam-
Hyers stable.

4.2 Ulam-Hyers-Rassias Stability

In aim of proving some Ulam−Hyers−Rassias stability results, we consider the following assumption.

(H4) The function Φ ∈C(I,R+) is increasing and there exists λΦ > 0 such that, for each t ∈ J, we have
I2 Φ(t)≤ λΦ Φ(t).

Theorem 5. Let the assumptions (H1)−(H3) and (H4) be satisfied. Then SBVP (1)-(2) is Ulam-Hyers-
Rassias stable with respect to Φ.

Proof. Let z ∈C(I,R) be a solution of the inequality (19), i.e.,∣∣∣∣ d2

dt2 z(t)− f
(
t,z(t),c Dξ z(t),

∫ t

0
θ(t,s)cDζ z(s)ds

)∣∣∣∣≤ ε Φ, t ∈ I

and let us assume that y is a solution of the problem (1)−(2). Thus, we have

y(t) = L(t,y(t))+
∫ 1

0
H(t,s)u(s)ds,

where u ∈C(I,R) such that

u(t) = f
(
t,y(t), I2−ξ u(t),

∫ t

0
θ(t,s)I2−ζ u(s)ds

)
.

Operating by I2 on both sides of the inequality (19) and then integrating, we get∣∣∣∣z(t)−L(t,z(t))−
∫ 1

0
H(t,s)v(s)ds

∣∣∣∣≤ ε

∫ t

0
(t− s) Φ(s)ds≤ ελΦΦ(t),

where v ∈C(I,R) such that

v(t) = f
(
t,z(t), I2−ξ v(t),

∫ t

0
θ(t,s)I2−ζ v(s)ds

)
.
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For each t ∈ I, we have

|z(t)− y(t)| =
∣∣z(t)− ∣∣f(t,y(t))+∫ 1

0
H(t,s)u(s)ds

∣∣
≤
∣∣z(t)−L(t,z(t))+

∫ 1

0
H(t,s)v(s)ds

∣∣
+
∣∣L(t,z(t))+∫ 1

0
H(t,s)v(s)ds−L(t,y(t))−

∫ 1

0
H(t,s)u(s)ds

∣∣
≤ ε λΦ Φ(t)+

∣∣L(t,z(t))−L(t,y(t))
∣∣+∫ 1

0
H(t,s)|v(s)−u(s)|ds

≤ ε λΦ Φ(t)+ c |z(t))− y(t)|+
∫ 1

0
H(t,s)|v(s)−u(s)|ds

≤ ε λΦ Φ(t)+ c ‖z− y‖+H◦‖v−u‖ T.

Indeed, from proof of Theorem 1, we have

‖u− v‖ ≤ ‖ψ‖
1−‖ψ‖

(
Θ

1
Γ(3−ζ )

+ 1
Γ(3−ξ )

)‖z− y‖.

Then, for each t ∈ I

‖z− y‖ ≤ ε λΦ Φ(t)+ c ‖z− y‖+ H◦ ‖ψ‖
1−‖ψ‖

(
Θ

1
Γ(3−ζ )

+ 1
Γ(3−ξ )

)‖z− y‖.

Thus

‖z− y‖ ≤
[

1−
(

c+
H◦ ‖ψ‖

1−‖ψ‖
(
Θ

1
Γ(3−ζ )

+ 1
Γ(3−ξ )

))] ε λΦ Φ(t) = cΦε Φ(t),

where

cΦ =

[
1−
(

c+
H◦ ‖ψ‖

1−‖ψ‖
(
Θ

1
Γ(3−ζ )

+ 1
Γ(3−ξ )

))] λΦ.

Then, the problem SNBVP (1)-(2) is Ulam-Hyers-Rassias stable with respect to Φ.

In a similar way, we can prove the following theorem.

Theorem 6. Assume that the assumptions (H1)− (H3) and the condition (H4) are satisfied. Then
SNBVP (1)-(3) is Ulam-Hyers-Rassias stable with respect to Φ.

5 Particular cases and examples

In this section, we introduce some existence results for some boundary value problems as particular cases
of our main result.

• By taking B1(s) =
(τ−s)γ

Γ(γ+1) and B2(s) =
(η−s)γ

Γ(γ+1) , we obtain second order nonlocal boundary value
problems with nonlocal boundary conditions involving Riemann-Stieltjes integrals

d2

dt2 y(t) = f
(
t,y(t),c Dξ y(t),

∫ t

0
θ(t,s)cDζ y(s)ds

)
, t ∈ (0,1),
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equipped with the two sets of boundary conditions

y(0) = 0 and y(1) = λ

∫
τ

0
L1(s,y(s))dB1(s)+µ

∫
η

0
L2(s,y(s))dB2(s),

y(0) = λ

∫
τ

0
L1(s,y(s)) dB1(s), and y(1) = µ

∫
η

0
L2(s,y(s)) dB2(s).

This type of boundary conditions are studied in many papers, for example [19].

• Letting ζ → 2, θ(t,s) = 1, λ = 0, µ = 1, L2(s,y) = y, γ → 0 and

f (t,y(t),u(t),v(t)) = f (t,y(t),y′(t))− e(t),

we obtain the following three points boundary value problem

d2

dt2 y(t) = f
(
t,y(t),y′(t)

)
− e(t), t ∈ (0,1)

y(0) = 0 and y(1) = y(η),

which is studied in [10]. In the case of f (t,y(t),u(t)) = p0(t) + p1(t)y + p2(t)y′, where pk :
(0,1)→ R, k = 0,1,2 are locally integrable, see [11].

• Taking γ → 0, λ = 0, L1(s,y(s)) = L2(s,y(s)) = y(s), f (t,y(t),u(t),v(t)) = −a(t) f (y(t)), we
obtain

d2

dt2 y(t)+a(t) f (y(t)) = 0, t ∈ (0,1)

y(0) = 0 and y(1) = µy(η),

which is studied in [16].

• Letting λ = 0, µ = η = 1, L2(s,y) = g(s)y(s), γ → 1 and f (t,y(t),u(t),v(t)) = − f (t,y(t)),
we get the following two points boundary value problem

d2

dt2 y(t) =−f(t,y(t)), t ∈ (0,1)

y(0) = 0 and y(1) =
∫ 1

0
g(s)y(s)ds,

which is studied in [2].

• Letting γ→ 1, τ = η , f (t,y(t),u(t),v(t)) =−λ1g(t) f (y(t)), L1(s,y(s)) = L2(s,y(s)) = y(s), we
obtain a nonlocal value problem with integral condition

d2

dt2 y(t)+λ1g(t) f (y(t)) = 0, t ∈ (0,1)

y(0) = λ

∫
η

0
y(s)ds and y(1) = µ

∫
η

0
y(s)ds,

which is studied in [3].
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• Letting γ→ 1, τ =η = 1, f (t,y(t),u(t),v(t))=− f (t,y)−ω2y(t), L1(s,y(s))= L2(s,y(s))= sy(s),
then we obtain the following boundary value problem [20]

d2

dt2 y(t)+ω
2y(t) =− f (t,y(t)), t ∈ (0,1)

y(0) = λ

∫ 1

0
s y(s)ds and y(1) = µ

∫ 1

0
s y(s)ds,

Finally, we give some examples to support the main results.

Example 1. Consider the following SNBVP:

d2

dt2 y(t) =
e−t

et +8

(
|y(t)|

1+ |y(t)|
− |cD

4
3 y(t)|

1+ |cD
4
3 y(t)|

−
|
∫ 1

0 ln(t + s)cD
5
3 y(t)|

1+ |
∫ 1

0 ln(t + s)cD
5
3 y(t)|

)
, (21)

y(0) = 0, y(1) =
1

Γ(1
2)

∫ 3
4

0
(
3
4
− s)

1
2−1 cosy(s)

20
ds+

1
Γ(1

2)

∫ 1
4

0
(
1
4
− s)

1
2−1 e−y(s)

30
ds. (22)

Set

f(t,µ,ν ,w) =
e−t

et +8

(
|µ(t)|

1+ |µ(t)|
− |ν(t)|

1+ |ν(t)|
− |w(t)|

1+ |w(t)|

)
,

Clearly, the function f is continuous. In fact, for any µi.νi,ωi,∈ R (i = 1,2) and t ∈ (0,1)

|f(t,µ1,ν1,w1)− f(t,µ2,ν2,w2)| ≤
e−t

et +8
(
|µ1−µ2|+ |ν1−ν2|+ |w1−w2|

)
≤ 1

9
(
|µ1−µ2 + |ν1−ν2|+ |w1−w2|

)
.

Hence the condition (H2) holds with ‖ψ‖= 1
9 .

Set L1(t,x(t)) =
cosx(t)

20 and L2(t,x(t)) = e−x(t)

30 . We can easily verify the condition (H1) with `1 =
1
20

and `2 =
1

30 . On the other hand, we have

|L(t,x(t))−L(t,y(t))| ≤ 1
Γ(1

2)

∫ 3
4

0
(
3
4
− s)

1
2
|cosx(s)− cosy(s)|

20
ds

+
1

Γ(1
2)

∫ 1
4

0
(
1
4
− s)

1
2
|e−x(s)− e−y(s)|

30
ds

≤ 0.0258587 |x(s)− y(s)|.

This inequality shows that Lemma 4 holds, which means that L is Lipschitz with constant c= 0.0258587.
Clearly H0 < 2. We shall check condition (12)(

c+
H◦ ‖ψ‖

M

)
≈ 0.3069135234 < 1,

where
M = 1−‖ψ‖

( 1
Γ(5

3)
+

Θ

Γ(4
3)

)
= 0.7906721526,
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which satisfied with ξ = 4
3 , ζ = 5

3 , c = 0.0258587, ‖ψ‖= 1
9 , and Θ = ln(2). It follows from Theorem 1

that the SNBVP (21)-(22) has a unique solution on I.
Also, assumption (H4) is satisfied with Φ(t) = e2, and λΦ = 2√

π
. Indeed, for each t ∈ (0,1), we get

I2
Φ(t)≤ e2 2√

π
= λΦ Φ(t).

As a result, Theorem 5 implies that the SNBVP (21)-(22) is generalized Ulam-Hyers-Rassias stable.

Example 2. Consider the following SNBVP:

d2

dt2 y(t) =
2+ y(t)+c D

4
3 y(t)+

∫ 1
0 et−s cD

3
2 y(s)ds

2et+1
(
1+ y(t)+c D

4
3 y(t)+

∫ 1
0 et−s cD

3
2 y(s)ds

) , (23)

with

y(0) =
1

Γ(1
2)

∫ 1
3

0
(
1
3
− s)

1
2

es−2 |y|
20(1+ |y|)

ds, and y(1) =
1

Γ(1
2)

∫ 1
4

0
(
1
4
− s)

1
2

siny
40(s+3)

ds. (24)

Set

f(t,µ,ν ,ω) =
2+ |µ|+ |ν |+ |ω|

2et+1
(
1+ |µ|+ |ν |+ |ω|

) .
Clearly, the function f is continuous. In fact, for any µ1.ν1,ω1,u2,ν2,ω2 ∈ R and t ∈ (0,1)

|f(t,µ1,ν1,ω1)− f(t,µ2,ν2,ω2)| ≤
1

2e2

(
|µ1−µ2|+ |ν1−ν2|+ |ω1−ω2|

)
.

Hence the condition (H2) holds with with ψ(t) = 1
2et+1 . Also, we have,

|f(t,µ,ν ,ω)|= 1
2et+1

(
2+ |µ|+ |ν |+ |ω|

)
,

where f(t,0,0,0) = 1
et+1 , and ‖ψ‖= 1

2e2 .

Set L1(t,x(t)) =
et−2|x|

20(1+|x|) , and L2(t,x(t)) = sinx
40(t+3) . We can easily verify the condition (H1) with

`1 =
1

20e , and `2 =
1
40 . On the other hand, we have

|g(t,x(t))−g(t,y(t))| ≤ 1
2 Γ(1

2)

∫ 1
3

0
(
1
3
− s)

1
2
∣∣ |x|
20e−t+2(1+ |x|)

− |y|
20e−t+2(1+ |y|)

∣∣ ds

+
1

2 Γ(1
2)

∫ 1
4

0
(
1
4
− s)

1
2
∣∣ sinx
40(t +3)

− siny
40(t +3)

∣∣ ds

≤ 0.01292934462 |x(t)− y(t)|.

It follows from the above inequality that Lemma 4 holds, which means that g is Lipschitz with constant
c = 0.01292934462.
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Clearly H0 < 2. We shall check condition (12)

(
c+

H◦ ‖ψ‖
M

)
≈ 0.1069266327 < 1

where
M = 1−‖ψ‖

( 1
Γ(5

3)
+

Θ

Γ(3
2)

)
= 0.7198892968

which is satisfied with ξ = 4
3 , ζ = 3

2 , c = 0.01292934462, ‖ψ‖ = 1
2e2 , and Θ = e. It follows from

Theorem 2 that the the SNBVP (21)-(22) has a unique solution on I.

6 Conclusion

We have investigated existence and uniqueness of the solutions as well as the HyersUlam stability for
some boundary value problems with integral boundary conditions. The given problems were converted
into an analogous fixed point problem, which was solved using typical functional analysis tools to get
uniqueness results for the original problem. Finally, we have provided some examples to demonstrate
the validity of our theoretical conclusions and by setting the parameters involved in the integral boundary
conditions, our results lead to some additional results as special cases which were studied before. We
believe that the proposed boundary value problems are general, and that it may be applied to a wide range
of fractional dynamical equations as particular cases in physics and other applied sciences.
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