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 In this paper, unsteady thermal scrutiny of radiative-convective moving fin 

considering the influences of magnetic field and time-dependent boundary 

conditions is explored via Laplace transform method. The analytical solutions 

obtained are employed in the investigation of the impacts of Hartmann 

number, Peclet number, radiative and convective parameters on the transient 

thermal performance and effectiveness in the moving fin. The research 

outcomes establish that an increase in convective and porosity terms generates 

a corresponding increase in the fin’s heat transfer rate. This consequently 

augments the fin’s efficiency. Correspondingly, an increase in increases the 

magnitude of temperature distribution within the fin. It is also found that 

increasing the results in an increase in material mobility rate. Meanwhile, the 

exposure period of the material to its surrounding environmental conditions 

diminishes while fin losses more surface heat, hence the temperature of the fin 

intensifies. Finally, an increase in the fin’s internal heat generation and thermal 

conductivity reduces heat transfer rate. Thus, the controlling terms of the fin 

during operation should be prudently selected to make sure that it retains its 

principal function of heat removal from the main surface. 
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1. Introduction  

Enhancing heat transfer in thermal engines, electronic devices, mechanical practices and chemical 

procedures can be efficiently and passively accomplished through applications of fins and spines. 

The applications of fins to many industrial and engineering components have activated so many 

research works [2-18], just to mention a few. In the bid of theoretical investigation, the thermal 

damage problems and heat transfer enhancement by the extended surfaces, the controlling thermal 

models of the passive devices are always nonlinear. Although, there are various numerical and 

approximate-analytical schemes that have been used to solve the thermal problems [6-27]. In a 

recent work, Darvishi et al [28] studied steady state thermal performance in convective-radiative 
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porous radial fin while in the same year, Hoshyar [29] adopted HPM to developed series solution to 

steady state thermal performance of longitudinal fin with inconstant internal heat generation. In the 

following year, Sobamowo [30] applied GMWR to some simple but highly accurate analytical 

solutions for thermal performance of fin under variable internal heat generation and thermal 

conductivity. Also, with the use of various approximate analytical methods and the effects of 

magnetic term on steady state thermal performance of solid and porous fins were explored by Hashar 

et al. [31], Oguntala et al. [32], Patel and Meher [33].  Additionally, Sobamowo [34] examined with 

FEM the optimum thermal design and performances of cooling fins under radiative and convective 

conditions. The study of thermal behavior of continuous moving surfaces such as extrusion, hot 

rolling, glass sheet or wire drawing, casting, powder metallurgy techniques for the fabrication of 

rod and sheet have become an area of increasing research interests. In the processes such as rolling 

of strip, hot rolling, glass fiber drawing, casting, extrusion, drawing of sheets and wires, there is 

usually the presence of heat exchange between surrounding and the stationary or moving material 

as depicted in Fig. 1. 

                                           

Fig. 1 Schematic diagram of rolling and extrusion 

 

Since the schematic depicted in figure 1 satisfies the approximate working condition of a heat 

exchanging device, they can be modeled as fins moving uninterruptedly. Due to these adaptable and 

wide areas of applications, there have been extensive research works on the continuous moving fins. 

Moreover, in industrial processes, control of cooling rate of the sheets is very important to obtain 

desired material structure. As a result, numerous works on thermal investigation of moving fins 

have been offered in previous studies [35-42]. Aziz and Lopez [43] presented the numerical 

investigation of the convective-radiative moving fin. Torabi et al. [44] utilized DTM for analyzing 

continuously moving fin losing heat through both convection and radiation and having inconstant 

thermal conductivity. Various heat transfer techniques in variable thermal conductivity moving fin 

with and without heat generation have been presented [45-48]. Sun and Ma [49] used collocation 

spectral method to theoretically investigate the same problem. Singh et al. [50] used wavelet 

collocation approach for studying and understand convective-radiative traveling fins with varying 

thermal conductivities. With the application of simplex search method, Ranjan [51] scrutinized 

thermal performance of convective-conductive varying thermal conductivity fins. Yinusa and 

Sobamowo applied integral transform method to obtain the dynamic and stability responses of a 

nanotube in thermal and pressurized environments [52]. Recently, Oguntala et al. considered the 

thermal analysis of functionally graded longitudinal fin using integral transform. The obtain solution 

in their research was applied to improved electronic packaging. The review of the past studies shows 

that the analytical study of nonlinear transient heat transfer analysis in extended surfaces have not 

extensively been presented in literature. Moreover, the obvious advantages of generating exact 
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analytical solutions to the nonlinear problems are very much important. However, to the best of the 

authors’ knowledge, exact heat transfer analysis of a moving convective-radiative porous fin under 

temperature reliant thermal conductivity and subjected to magnetic effect hasn’t been carried out. 

Such solutions provide proper physical insights and effective predictions to extended surfaces’ 

thermal performances. Therefore, in this study, using Laplace transformation, exact analytical 

solution is developed for such problem with time-dependent boundary conditions. The developed 

symbolic thermal models are employed for investigating the influences of radiative term, convective 

term, Hartmann and Peclet numbers on the transient thermal performance, effectiveness in the 

moving fin, and other thermal geometric and thermo-physical fin properties.  

 

2. Problem formulation 

Consider a longitudinal straight fin with inconstant thermal conductivity and in a convective-

radiative environment at temperature T and convective co-efficient h as in Fig.1. The fin is exposed 

to uniform magnetic field that is applied in y-direction. Assuming that the extended surface is 

porous, isotropic, homogeneous and saturated, i.e having a single-phase fluid with constant thermo-

physical properties. There is a thermal equilibrium between the fluid and the solid. It is taken that 

heat transfer along fin length is one-dimensional. The prime surface is perfectly in thermal contact 

with the fin base and no heat gain or loss through the tip of the fin.   

 

 

 

Fig. 2 Schematic of the convective-radiative moving longitudinal straight fin. 

 

Using the energy balance, thermal model of the fin is developed as  

 

  2 24 44 ( ) ( )4
( )
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Material thermal conductivity can be stated as being in linear relationship with temperature; 

 

  [1 ( )]a ak T k T T                                                                                                                    (2)            

 

Substituting Eq. (2) into Eq. (1), we have  
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                                                                                                                                                       (3)            

The initial condition is given as 

 

0, , 0t T T x b   
                                                                                                        (4)

 

with boundary conditions 

 

' '0, 0, (1 ), 0bt x T T t     
                                                                                   (5a)

 

 

0, , 0
T

t x b
x


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                                                                                                                 (5b)                                                                                            
 

 

When there is a small deferential in temperature within the material during the heat flow, the term 

T4 may be stated as linear temperature function. Therefore, we have 

 

   
24 4 3 2 3 44 6 ... 4 3a a a a a a aT T T T T T T T T T T                                                                       (6) 

 

On substituting Eq. (6) into Eq. (3), we arrived at; 
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On introducing the following dimensionless parameters in Eq. (8) into Eq. (7),  
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And taking magnetic term to linearly-dependent on temperature such as    m mo aT T T   , 

gives the dimensionless form of the governing Eq. (7) as  

 

 
2

2

2
1 4Rd M Nr Ha Pe
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
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                                                               (9) 

 

The dimensionless forms of the boundary and initial conditions are  

 

0, 0, 0 1X    
                                                                                                        (10)

 

 

0, 0, 1 , 0X       
                                                                                      (11a)

 

 

0, 1, 0X
X





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                                                                                                             (11b)                                                                                                
 

 

3. Method of Solution: Laplace Transform Method (LTM) 

Laplace Transform Method is applied over the time in the transient thermal model. The merit of this 

method is that it can generate close form solutions to partial differential equations. Also, unlike 

numerical schemes, the method has no error due to discretization. Furthermore, the method 

generates close form solution with the controlling parameters adequately preserved. This makes the 

obtained solution using this method ready for parametric studies. Further merits associated with the 
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employed method can be found in our previously published work [52]. The LTM of a real function 

f(t) and its inversion formulas are defined as  

 

                                                                                                                    (12a) 

 

                                                                                                          (12b) 

 

where s=a+ib (a, b  R) is a complex number. 

 

The integral transform scheme may be applied if we eliminate the first derivative in the governing 

equation and also, change the non-homogeneous equation to a homogenous equation. In order to 

achieve this, we adopt change of variables techniques.  

 

Applying the transformation of the form 
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Eq. (9) reduces to 
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The boundary and initial conditions becomes  
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With the application of Laplace transform to Eq. (14) and the boundary conditions, we have  
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The corresponding boundary conditions in Laplace domain are 
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On solving Eq. (17) with the boundary conditions in Eq. (18), we have 
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                                                                                                                                                     (19) 

Eq. (19) could be written in exponential form as 

 

 
 

 

 
 

   

 

   

 

(2 )
1 4 1 42

2

(2 )
1 4

2
2

2

1

4 1 4
,

1 4

2 1 4 1 44 1 4

s s
X X

Rd Rd

s
X

Rd

e ePe
s M Nr Ha

Rd Pe
X s

Rd
e

Pe sPe
s M Nr Ha

Rd RdRd








   
     

       

 
  

  

 
   
     
      

   
   

                         







 
 
 
 
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On applying the inverse LTM of Eq. (20) and substituting the resulting solution in Eq. (13), the 

following solution are developed  
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where 

               
1 

 
 

4. Results and Discussion 

The developed analytical models are simulated in MATLAB and the results are given in Fig. 3-14. 

Also, parametric studies are carried out as presented and discussed.  

Effects of Pe on temperature history in the moving fin are shown in Fig. 3 and 4.  An increase in Pe 

resulted in increasing values of thermal distribution within the extended surface. This is expected 

because increasing Pe augments material motion and reduces exposure time to environment. Hence, 

fin temperature history intensifies.  

Fig. 5-12 present the impacts of radiation, convective, Hartmann and radiative-conduction numbers 

on temperature histories within the moving extended surface.  

 

     Fig. 3 Effects of Peclet numeber on the temeperature distribution          Fig. 4 Effects of Peclet numeber on the temeperature history 

               along fin lenght  

 

 

Fig. 5 Effects of Radiation numeber on the temeperature distribution          Fig. 6 Effects of Radiation numeber on the temeperature history 
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           along the fin  

                                                                                  

 

  Fig. 7 Effects of convective numeber on the temeperature distribution          Fig. 8 Effects of convective numeber on the temeperature history 

           along the fin  

 

 

Fig. 9 Effects of Hartmann numeber on the temeperature distribution          Fig. 10 Effects of Hartmann numeber on the temeperature history 

           along the fin                                                                                   
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Fig. 11 Effects of Radiation parameter on the temeperature distribution          Fig. 12 Effects of radiation parameter on the temeperature history 

           along the fin  

 

 

Fig. 13 Effects of  dimensionless time on the temeperature distribution              Fig. 14 Impacts of boundary condition  parameter              

             along the fin                                                                                                  on the temeperature history                                                                                  

  
 

From the figures, it is demonstrated that as the radiation, convective, Hartmann and radiative-

conduction parameters increase, fin temperature history declines rapidly. The swift reduction in 

temperature as a result of the increase in radiation, convective, Hartmann and radiative-conduction 

parameters is because as these parameters increase, more heat is lost from the fin because the heat 

transfer rate is enhanced and more cooling of the fin occurs which shows a decrease in the 

temperature profile. Consequently, fin thermal performance is increased.  

Influence of dimensionless time on moving fin thermal distribution is shown in Fig. 13.  The 

temperature history increases with increasing time value. This is expected because with increasing 

heat transfer rate, the solid fin conducts more heat, thus temperature increases. The influence of the 

time-dependent boundary condition parameter,   on the temperature history in the fin  is presented 

in Fig. 14. It is clear from the figure that as the time-dependent boundary condition parameter is 

increased, the temperature distribution along the fin decreases. Physically speaking, the effect of an 

increase in the time-dependent boundary condition parameter, shows the decreases in the base 

temperature with time which results in decrease in the local temperature of the fin.  

 

5. Conclusion 

The present study considered heat transfer in porous moving fin with time dependent boundary 

condition under magnetic and non-constant thermal conductivity influences. Using LTM, analytical 

solution for such problem was obtained. Thereafter, parametric studies were carried out. The results 

revealed that increasing the radiative and convective terms improve fin efficiency and heat transfer 

rate. Also, an increase in Pe resulted in increasing values of thermal distribution within the extended 

surface. It was established that an augmentation in Pe augments material motion and reduces 

exposure time to environment. Hence, fin temperature history intensifies. Consequently, the 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

X



 

 

tau=0.5

tau=0.7

tau=0.9



150 M. G. Sobamowo et al./ Computational Sciences and Engineering 1(2) (2021) 139-152 150 

 

controlling terms of the fin during operation should be prudently selected to make sure that it retains 

its principal function of heat removal from the main surface. 

 

Nomenclature 

A    Fin cross sectional area, (m2). 

h    Heat transfer coefficient, ( Wm-2k-1). 

Tb   Temperature at the base of the fin, (K). 

U   Velocity of fin (m/s). 

vw   velocity of fluid passing through the fin at any point (m/s). 

w    Width of the fin (m). 

x     Axial length measured from fin tip (m). 

X    Dimensionless axial length of the fin. 

 

Greek Symbols 

β     Thermal conductivity parameter or non-linear parameter. 

θ     Dimensionless temperature. 

ρ     Density of the fluid(kg/m3). 
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