| تعداد نشریات | 32 |
| تعداد شمارهها | 813 |
| تعداد مقالات | 7,873 |
| تعداد مشاهده مقاله | 36,513,597 |
| تعداد دریافت فایل اصل مقاله | 8,285,503 |
Discrete cosine transform LSQR methods for multidimensional ill-posed problems | ||
| Journal of Mathematical Modeling | ||
| دوره 10، شماره 1، فروردین 2022، صفحه 21-37 اصل مقاله (1.14 M) | ||
| نوع مقاله: Research Article | ||
| شناسه دیجیتال (DOI): 10.22124/jmm.2021.19303.1659 | ||
| نویسندگان | ||
| Mohamed El Guide1؛ Alaa El Ichi2؛ Khalide Jbilou* 3 | ||
| 1Centre for Behavioral Economics and Decision Making(CBED), FGSES, Mohammed VI Polytechnic University, Green City, Morocco | ||
| 2Laboratoire de Mathématiques, Informatique et Applications, Securite de l'Information LABMIA-SI, University Mohamed V, Rabat Morocco; University Littoral Cote d'Oplae, France | ||
| 3LMPA, 50 rue F. Buisson, ULCO Calais, France; Mohammed VI Polytechnic University, Green City, Morocco | ||
| چکیده | ||
| We propose new tensor Krylov subspace methods for ill-posed linear tensor problems such as color or video image restoration. Those methods are based on the tensor-tensor discrete cosine transform that gives fast tensor-tensor product computations. In particular, we will focus on the tensor discrete cosine versions of GMRES, Golub-Kahan bidiagonalisation and LSQR methods. The presented numerical tests show that the methods are very fast and give good accuracies when solving some linear tensor ill-posed problems. | ||
| کلیدواژهها | ||
| Discrete cosine product؛ Golub-Kahan bidiagonalisation؛ GMRES؛ LSQR؛ tensor Krylov subspaces | ||
|
آمار تعداد مشاهده مقاله: 1,992 تعداد دریافت فایل اصل مقاله: 1,498 |
||