| تعداد نشریات | 32 | 
| تعداد شمارهها | 814 | 
| تعداد مقالات | 7,880 | 
| تعداد مشاهده مقاله | 36,728,902 | 
| تعداد دریافت فایل اصل مقاله | 8,308,072 | 
Nearrings of functions without identity determined by a single subgroup | ||
| Journal of Algebra and Related Topics | ||
| دوره 9، شماره 1، شهریور 2021، صفحه 121-129 اصل مقاله (257.4 K) | ||
| نوع مقاله: Research Paper | ||
| شناسه دیجیتال (DOI): 10.22124/jart.2021.15730.1190 | ||
| نویسندگان | ||
| G. Alan Cannon* 1؛ V. Enlow2 | ||
| 1Department of Mathematics, Southeastern Louisiana University, SLU 10687 Hammond, LA 70402, USA | ||
| 2Department of Mathematics, Southeastern Louisiana University Hammond, LA 70402, USA | ||
| چکیده | ||
| Let $(G, +)$ be a finite group, written additively with identity 0, but not necessarily abelian, and let $H$ be a nonzero, proper subgroup of $G$. Then the set $M = \{f : G \to G\ |\ f(G) \subseteq H \ \hbox{and}\ f(0) = 0 \}$ is a right, zero-symmetric nearring under pointwise addition and function composition. We find necessary and sufficient conditions for $M$ to be a ring and determine all ideals of $M$, the center of $M$, and the distributive elements of $M$. | ||
| کلیدواژهها | ||
| Abelian؛ distributive؛ center؛ ideal؛ zero-symmetric | ||
| 
			 آمار تعداد مشاهده مقاله: 717 تعداد دریافت فایل اصل مقاله: 740 			 | 
		||