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 In this paper, we consider the Euclidean continuous minimax location 
problem under uncertainty. We consider the single-facility and the multi-
facility case with uncertain location of demand points and uncertain 
transportation costs. We study these two problems under two kinds of 
uncertainty, the interval and the ellipsoidal uncertainty. Equivalent 
formulations of robust counterparts of the single facility and multi 
facility Euclidean continuous minimax location problems under interval 
and ellipsoidal uncertainty are given as conic optimization problems.  
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1. Introduction  

Location planning is one of the strategic and long-term decisions which decision makers are faced 

and concerned with finding a good location for one or several new facilities with respect to a given 

set of existing facilities. There are different kinds of facility location problem, capacitated and 

uncapacitated facility location problem, p-median problem, p-center problem, covering location 

problem, Weber location problem, minimax location problem, hub location problem, p-maxian 

location problem are the well-known among them [1-4]. Minimax location problem (MLP) is a type 

of facility location problems, in which new facilities are located under the minimax criteria. 

Applications of MLP are concerned with situations in which the new facility or facilities must be 

placed so that the largest weighted distance between existing and new facilities is minimized. The 

location of police and fire stations [5], the placement of detection stations [6], and siting service 

facilities in plants, offices, or warehouses are other applications.  In some applications, MLP is 

considered with Euclidean distances [7-9] while in some others with rectangular distances [10, 11]. 

One may consult [5, 6, 12-18] for further related results. 
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Due to the uncertainty of some problem parameters, in recent years, many researchers have focused 

on the robust optimization method which handles uncertainty of the parameters. Snyder [19], 

describes two types of uncertainty in location problems in his review paper, stochastic location 

problems and robust location problems. Baron et. al [20], applied robust optimization approach to 

the multi-period fixed-charge network location problem with uncertain demand over multiple 

periods. They used both box and ellipsoidal uncertainties on demands. Jamalian and Salahi [21], 

considered the multi-facility Weber location problem with uncertain location of demand points and 

transportation costs. They studied the problem with both the Euclidean and block norms and interval 

and ellipsoidal uncertainty sets. Equivalent formulations of robust counterparts of the problem is 

given as conic linear optimization problems. Nikoofal and Sadjadi [22], considered the p-median 

problem with interval uncertainty on edge lengths and proposed a model to obtain robust solution. 

Averbakh and Berman [23], studied a minimax-regret formulation of the weighted p-center problem 

on a network with interval uncertainty on weights. They also considered the minimax-regret 1-center 

problem with interval uncertainty on node weights and edge lengths [24]. In [25] they further 

considered the minimax-regret 1-median problem with interval uncertainty on demands and 

presented an efficient approach to solve it. Burkard and Dollani considered robust 1-median problem 

on a tree network with uncertain or dynamically changing edge lengths and node weights which can 

take negative values [26]. Carrizosa and Nickel [27] used an alternative definition of robustness in 

positioning a facility on the plane, which is defined as the minimal changes in the uncertain 

parameters such that a solution location becomes inadmissible with respect to a total cost constraint. 

In this paper, we present robust formulations for MLP with Euclidean norm in two cases, single 

facility and multi facility problems with uncertain costs and locations of existing facilities. The rest 

of the paper is organized as follows. In Section 2, we study the single facility MLP and give its 

robust counterparts for both interval and ellipsoidal uncertainty sets. In Section 3, the robust 

counterparts of multi facility MLP are given for both uncertainty sets. Finally, we present some 

conclusions and future research directions. 

 

2. The Single Facility MLP  

In this section, we study the single facility MLP with Euclidean norm as distance function. Let us 

first define some notations and state the problem modeling: 

�: number of existing facilities 

��: nonnegative weight between new facility and existing facility � by a unit distance 

∥ � − �� ∥: Euclidean distance between the location of new facility and existing facility � 

�� = �
��

��
�: the location coordinates of existing facility � 

� = �
��

��
�: the location coordinates of new facility. 

 Let � existing facilities be located at the known distinct points ��, … , ��, in the plane. In single 

facility MLP, the optimal location of new facility, �, is sought with respect to the set of existing 

facilities. The total transportation cost associated with new facility located at � is given by 
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�(�) = ���
���,…,�

�� ∥ � − �� ∥. (1) 

The MLP can be stated as the selection of �∗ for new facility such that total cost in (1) is minimized 

as follows [2-4]:  

��� ���
���,…,�

��‖� − ��‖, (2) 

 where ��’s are nonnegative. The problem (2) can be written as  

���  � 

�. �.   � ≥ ��‖� − ��‖,       � = 1, … , �. 
(3) 

In what follows, we consider two types of uncertainties on �� and �� for � = 1, … , �.  

Theorem 1. The robust counterpart of problem (3) with interval uncertainty on �, � ∈ � = [�, ��], 

and bounded uncertainty on ��’s, �� ∈ �′� = {��
� + ���: ‖���‖ ≤ ��}, for � = 1, … , �, is equivalent 

to  

���    � 

�. �.     � ≥ ���(�� + �′�),   � = 1, … , �, 

            �� ≥ �� − ��
��,      � = 1, … , �, 

            �′�/�� ≥ ��
�
1

�� ,   � = 1, … , �. 

(4) 

Proof. The uncertain single MLP with uncertainty sets �, �′� is as following:  

���   � 

�. �.    � ≥ ��‖� − ��‖,   � = 1, … , �, 

        � ∈ �, �� ∈ �′�,    � = 1, … , �. 

 

To have ��‖� − ��‖ ≤ �,   ∀�� ∈ �� for � = 1, … , �, it is sufficient to have  

���{��‖� − ��‖:   �� ∈ ��} ≤ �,     � = 1, … , �.  

From the triangular inequality, for uncertainty on ��s we have  

�� − (��
� + Δ��)� = �(� − ��

�) + (−Δ��)�

≤ �� − ��
�� + �(0, −Δ��) �

�
1

��

≤ �� − ��
�� + ‖(0, −Δ��)‖� ��

�
1

��

= �� − ��
�� + ‖−Δ��‖ ��

�
1

��

≤ �� − ��
�� +  �� ��

�
1

�� .

 (5) 

Now, for each � = 1, … , �, let  

[0, −Δ��] = ����, (6) 

where � = (0 0 1)� and  
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�� = �
��

� − ��
�

�� − ��
��

� − ��
� ≠ 0,

� �. �. ,

 (7) 

where � is any vector in ℝ� with ∥ � ∥= ��. The term �� − (��
� + Δ��)� which is bounded from 

above, takes its maximum with this rank one choice of [0, −Δ��], and  ‖[0, −Δ��]‖� =

‖[0, −Δ��]‖ = ��. Therefore, we can conclude that  

���
‖���‖���

  �� − (��
� + ���)� = �� − ��

�� + �� ��
�
1

��. (8) 

Hence, the robust counterpart of problem Eq. (3) using Eq. (8) is  

���   � 

�. �.    � ≥ �� ��� − ��
�� + �� ��

�
1

��� ,   � = 1, … , �, 

           � ∈ �, 

 

or equivalently  

���    � 

�. �.     � ≥ ��(�� + �′�),   � = 1, … , �, 

         �� ≥ �� − ��
��,      � = 1, … , �, 

         �′�/�� ≥ ��
�
1

�� ,   � = 1, … , �, 

         � ∈ �. 

(9) 

Moreover, to have ��(�� + �′�) ≤ �,    ∀� ∈ � for � = 1, … , �, it is sufficient to have: 

��� ���(�� + �′�):   �� ∈ [��, ��]� ≤ �,     � = 1, … , �. (10) 

Since, �� and �′� are nonnegative, Eq. (10) is equivalent to  

��(�� + �′�) ≤ � (11) 

By substituting Eq. (11) in Eq. (9), we get the model (4).   

Now, we consider ellipsoidal uncertainties on ��, ��’s for � = 1, … , �, in model (4) as follows:  

� = {�� + ��, ‖�‖ ≤ 1},

�′� = {��
� + �′��, ‖�‖ ≤ 1},

 (12) 

where �� = ��
� + ��

��, � = [��, … , ��],  �′� = [�′�
� , … , �′�

� ]. �, �′�’s are given matrices in ℝ�×� 

and ℝ�×�, respectively and ��
�, ��

�’s are the nominal values. The following technical lemma is 

crucial for the next theorem.   

Lemma 1. Uncertain inequality ‖�� − �‖ ≤ �,   ∀(�, �) ∈ � = {(�, �) = (��, ��) +

∑�
��� ��(��, ��): ‖�‖ ≤ 1}, is equivalent to 
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⎝

⎜
⎛

� − � 0 … 0 (��� − ��)�

0 � … 0 (��� − ��)�

⋮ ⋱ ⋮
0 0 … � (��� − ��)�

��� − �� ��� − �� … ��� − �� �� ⎠

⎟
⎞

≽ 0  

where (�, �, �) ∈ ℝ���.   

Proof. See [28].  

 

Theorem 2. The robust counterpart of problem (3) with ellipsoidal uncertainty sets (12) is 

equivalent to the following conic optimization problem:  

���     � 

�. �.     (��
� + ‖��‖)�� ≤ �,                                                     � = 1, … , �, 

          

⎝

⎜⎜
⎛

�� − �� 0 … 0 (� − ��
�)�

0 �� … 0 (−�′�
� )�

⋮ ⋱ ⋮
0 0 … �� (−�′�

� )�

� − ��
� −�′�

� … −�′�
� ��� ⎠

⎟⎟
⎞

≽ 0,   � = 1, … , �. 

(13) 

 

Proof. The robust counterpart of problem (3) can be written as follows:  

���    � 

�. �.    � ≥ ����,              � = 1, … , �, 

          �� ≥ ‖� − ��‖,     � = 1, … , �, 

          � ∈ �, �� ∈ �′�   � = 1, … , �. 

 

Let � ∈ ℝ� is given, then to have ���� ≤ �,   ∀� ∈ �, � = 1, … , �, it is sufficient to have  

���{����:  � ∈ �} ≤ �. (14) 

Since ���� = (��
�)�� + (��

��)��, thus we have 

���
�∈�

���� = (��
�)�� + ‖��‖��. (15) 

Therefore, Eq. (14) holds if  

(��
� + ‖��‖)�� ≤ �. (16) 

Moreover, by Lemma 1, ‖� − ��‖ ≤ ��,    ∀�� ∈ �′� is equivalent to  

⎝

⎜⎜
⎛

�� − �� 0 … 0 (� − ��
�)�

0 �� … 0 (−�′�
� )�

⋮ ⋱ ⋮
0 0 … �� (−�′�

� )�

� − ��
� −�′�

� … −�′�
� ��� ⎠

⎟⎟
⎞

≽ 0,     � = 1, … , �. (17) 
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Thus, with Eq. (16) and Eq. (17), we get model (13).   

 

3. The Multi Facility MLP 

In this section, we study the multi facility MLP. Let us first define some notations and state the 

problem modeling: 

�� = �
��

��
� ∶ The location coordinates of existing facility �, (� = 1, … , �) 

�� = �
���

���
� ∶ The location coordinates of new facility �, (� = 1, … , �) 

��� ∶ The nonnegative weight between new facility � and existing facility � by a unit distance, (� =

1, … , �, � = 1, … , �) 

��� ∶ The nonnegative weight between new facilities � and � by a unit distance, (�, � = 1, … , �) 

∥ �� − �� ∥: The Euclidean distance between the location of new facility � and existing facility � 

∥ �� − �� ∥: The Euclidean distance between the location of new facilities � and � 

 Let � existing facilities be located at the known distinct points ��, … , ��, in the plane. The problem 

is to select � = (��, … , ��) to minimize the largest weighted distance between facilities [29, 30]. 

The transportation costs between facilities are  

��(��, … , ��) = ��� {��� ∥ �� − �� ∥ :   � = 1, … , �, � = 1, … , �}, 

��(��, … , ��) = ��� {��� ∥ �� − �� ∥ :  1 ≤ � < � ≤ �}. 
 

The total cost to be minimized is given by  

�(��, … , ��) = ���{��(��, … , ��), ��(��, … , ��)}. (18) 

Thus the problem is  

��� �(��, … , ��), (19) 

which can be reformulated as follows:  

���  � 

�. �.   � ≥ ������ − ���,     � = 1, … , �, � = 1, … , �, 

       � ≥ ������ − ���,     1 ≤ � < � ≤ �. 

(20) 

In the sequel, we consider various uncertainties on ���, ��� and �� for � = 1, … , �, 1 ≤ � < � ≤ � 

and give the robust counterparts of problem (20). 

Theorem 3. The robust counterpart of problem (20) with interval uncertainties on � and �, � ∈

�� = [�, ��], � ∈ �� = [�, �̅] and bounded uncertainty on ��’s, �� ∈ �′� = {��
� + ���: ‖���‖ ≤

��}, for � = 1, … , �, is equivalent to  

���    �  (21) 
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�. �.     � ≥ ����(��� + �′′��),   � = 1, … , �, � = 1, … , �, 

            � ≥ �̅���′��,                  1 ≤ � < � ≤ �, 

            ��� ≥ ��� − ��
��,         � = 1, … , �, � = 1, … , �, 

            �′�� ≥ ��� − ���,       1 ≤ � < � ≤ �, 

            �′′��/�� ≥ ��
��

1
�� ,    � = 1, … , �, � = 1, … , �. 

Proof. The uncertain multi-facility MLP with uncertainty sets ��, ��, �′� is as follows:  

���  � 

�. �.   � ≥ ������ − ���,                � = 1, … , �, � = 1, … , �, 

         � ≥ ������ − ���,                1 ≤ � < � ≤ �, 

         � ∈ ��, � ∈ ��, �� ∈ �′�,    � = 1, … , �. 

 

To have ������ − ��� ≤ �,   ∀�� ∈ �′� for � = 1, … , �, it is sufficient to have: 

���������� − ���:   �� ∈ �′�� ≤ �,     � = 1, … , �, � = 1, … , �.  

Similar to the interval uncertainty case in the single facility MLP, from the triangular inequality for 

uncertainty on ��s we have 

��� − (��
� + Δ��)� ≤ ��� − ��

�� +  �� ��
��

1
�� . (22) 

For each � = 1, … , �, let  

[0, −Δ��] = ����, (23) 

where � = (0 0 1)� and  

�� = �
��

�� − ��
�

��� − ��
��

�� − ��
� ≠ 0,

� �. �. ,

 (24) 

where � is any vector ∈ ℝ� of norm ��. The term ��� − (��
� + Δ��)� takes its maximum with this 

rank one choice of [0, −Δ��]. Therefore, we can conclude that  

���
‖���‖���

  ��� − (��
� + ���)� = ��� − ��

�� + �� ��
��

1
��. (25) 

  Hence, the robust counterpart of problem (20) using Eq. (25) is  

���  � 

�. �.   � ≥ ��� ���� − ��
�� + �� ��

��

1
��� ,    � = 1, … , �, � = 1, … , � 

          � ≥ ������ − ���,                                  1 ≤ � < � ≤ �, 

          � ∈ ��, � ∈ ��,  

 

or equivalently  

���    �  

�. �.     � ≥ ���(��� + ���
��),   � = 1, … , �, � = 1, … , �, 

(26) 
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            � ≥ ����′��,                 1 ≤ � < � ≤ �, 

            ��� ≥ ��� − ��
��,        � = 1, … , �, � = 1, … , �, 

            �′�� ≥ ��� − ���,      1 ≤ � < � ≤ �, 

            ���
��/�� ≥ ��

��

1
�� ,   � = 1, … , �, � = 1, … , �, 

            � ∈ ��, � ∈ ��. 

Moreover, to have ���(��� + ���
��) ≤ �,    ∀� ∈ �� and ����′�� ≤ �, ∀� ∈ �� for all �, � and �, it is 

sufficient to have  

��� ����(��� + ���
��):   � ∈ [���, ���]� ≤ �,    � = 1, … , �, � = 1, … , �, (27) 

��� �����′��:   � ∈ [���, ���]� ≤ �,    1 ≤ � < � ≤ �. (28) 

Since, ���, �′�� and ���
��  are nonnegative, Eq. (27) and Eq. (28) are equivalent to  

���(��� + ���
��) ≤ �, (29) 

����′�� ≤ �. (30) 

By substituting Eq. (29) and Eq. (30) in (26), we get model (21).   

Now, we consider ellipsoidal uncertainties on ���, ���, ��’s for � = 1, … , �, � = 1, … , �, � = 1, … , � 

in problem (20) with the following uncertainty sets: 

� = {�� + ��, ‖�‖ ≤ 1},

�′ = {�� + �′�, ‖�‖ ≤ 1},

�′′� = {��
� + �′′��, ‖�‖ ≤ 1},

 (31) 

where ��� = ���
� + ���

� �, � = [��, … , ���], ��� = ���
� + �′��

� �, �′ = [�′�, … , �′��] and  �′′� =

[�′′�
� , … , �′′�

� ]. We assume that ��� is the (�� − � + �)-th element of � and ��� is the (�� − � +

�)-th row of vector �. �, �′ and �′′�’s are given matrices in ℝ��×��, ℝ��×��
 and ℝ�×�, 

respectively and ���
�  and ���

� , ��
�’s are the nominal values.   

Theorem 4. The robust counterpart of problem (20) with ellipsoidal uncertainty sets (31) is 

equivalent to the following conic optimization problem:  

���      � 

�. �.    (∥ ��� ∥ +���
� )��� ≤ �,             � = 1, … , �, � = 1, … , �, 

           (∥ �′�� ∥ +���
� )�′�� ≤ �,         �, � = 1, … , �, 

              ∥ �� − �� ∥≤ �′��,                    �, � = 1, … , �, 

          

⎝

⎜
⎜
⎛

��� − ��� 0 … 0 (�� − ��
�)�

0 ��� … 0 (−�′′�
� )�

⋮ ⋱ ⋮
0 0 … ��� (−�′′�

� )�

�� − ��
� −�′′�

� … −�′′�
� ���� ⎠

⎟
⎟
⎞

≽ 0,   
� = 1, … , �,
� = 1, … , �. 

(31) 

Proof. Robust counterpart of problem (20) can be written as follows  

���      � 

�. �.    � ≥ ������,                                  � = 1, … , �, � = 1, … , �, 
(32) 
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           � ≥ ����′��,                                 �, � = 1, … , �, 

           ��� ≥ ��� − ���,                         � = 1, … , �, � = 1, … , �, 

              �′�� ≥ ��� − ���,                      �, � = 1, … , �, 

           � ∈ �, � ∈ �′, �� ∈ �′′�, � = 1, … , �. 

Let �, �′ ∈ ℝ�� and ℝ��
 are given, then to have ������ ≤ �,   ∀� ∈ �, and ����′�� ≤ �,   ∀� ∈ �′, it 

is sufficient to have  

���
�∈�

  ������ ≤ �, (33) 

���
�∈��

  ����′�� ≤ �. (34) 

Since  

������ = ���
� ��� + (���

� �)���, (35) 

����′�� = ���
� �′�� + (�′��

� �)�′��, (36) 

thus we have  

���
�∈�

������ = ���
� ���+∥ ���

� ��� ∥,

���
�∈��

����′�� = ���
� �′��+∥ �′��

� �′�� ∥.
 (37) 

  Therefore, Eq. (33) and Eq. (34) hold if  

∥ ������ ∥≤ � − ���
� ���,

∥ �′���′�� ∥≤ � − ���
� �′��.

 (38) 

  Moreover, by Lemma 1, ��� − ��� ≤ ���,    ∀�� ∈ �′′� is equivalent to  

⎝

⎜
⎜
⎛

��� − ��� 0 … 0 (�� − ��
�)�

0 ��� … 0 (−�′′�
� )�

⋮ ⋱ ⋮
0 0 … ��� (−�′′�

� )�

�� − ��
� −�′′�

� … −�′′�
� ���� ⎠

⎟
⎟
⎞

≽ 0,     
� = 1, … , �,
� = 1, … , �. (39) 

 Thus, by Eq. (38) and Eq. (39), we get model (31).   

 

Conclusions 

In this paper, the robust counterpart of single facility and multi-facility MLP for both interval and 

ellipsoidal uncertainty sets are discussed. Depending on the uncertainty sets, it leads to an equivalent 

conic optimization problem with second-order cone constraints or positive semi-definite constraints. 

The extension of our approach to the other kinds of MLPs like multi-period and capacitated 

problems are left for interested readers. 
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