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1. Introduction

The theory and application of integral and integro-differential equations is an important subject
within applied mathematics and engineering. Integro differential equations are used as mathematical
models for many branches of linear and nonlinear functional analysis and their applications in the
theory of engineering, mechanics, physics, chemistry, astronomy, biology, economics, potential
theory and electrostatics [1-4]. In recent years, numerous works have been focusing on the
development of more advanced and efficient methods for integro-differential equations such as
Legendre-collocation spectral approaches [5], homotopy perturbation method [6-8], rationalized
Haar functions method [9], Wavelet-Galerkin method [10], differential transform method [11],
variational iteration method [12, 13], Lagrange functions [14], Taylor polynomials [15], Chebyshev
polynomials [16], sine-cosine wavelets [17], new homotopy perturbation method [18, 19] and
Adomian decomposition method [20, 21]. In this paper, we present a simple high accuracy method
which is based on combination of the Laplace transform, perturbation technique and polynomial
series which have recently been for solving various types of integro-differential equations. The
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outline of this paper is as follows. Section 2 introduces the new approaches for integro-differential
equations. Section 3 presents several numerical examples to illustrate the performance and
efficiency of the proposed method and Section 4 includes some concluding remarks.

2. Method of Solution

A class of two-point boundary value problems for fourth order integro-differential equations can be
considered as follows:

v (2) = f@) + (@) + [ (gOy(t) + hOF(y())dt, 0 <z <Ly € R, (1)
subject to the boundary conditions

y(0) = a,y(1) = Bo,

y'(0) = ay,y'(1) = By,

where F' isarea nonlinear continuous function, ~, oy, 8y,q and 3, arerea constants, and f, g
and h are given functions and can be approximated by Taylor polynomials.

(2)

For solving the equation (1), we construct a following equation

¥ (w) = uo(w) — p{uole) = F@) = yy(a) — [ (o) + HOF (X)) dt }, ©)

where p isan artificial parameter, u,(x Z Yo P, () and g, v1,79,... areunknown coefficients

and Py(z),P(z), P(z),... arespecific ponnomlaI functions depending on the problem. Obvioudly,
when p = 1, from (3) we have original equation (1). By the perturbation technique, assumed that

the function y(x) can be expressed by an infinite series, y(z Z "y, (z) and nonlinear term

F(y(z)) can be decomposed into an infinite series of polynomlals glven by

oo

Z y()vyla 7yn) (4)

where H, (yo,91,---,y, ) aecaled Adomian’spolynomialsor He' s polynomials[22] and are defined
by

. n=0L12,.. (5)
p=0

Hn(y()vyh 7yn -

g

Now let us write the equation (3) in the following form
Y (z) = > 7Pl {Z Yo Z
n=0

o (n) 00 n 00
_Lf[) [Zgnf())tny(t) Z Z y()vyla 7y7z)]dt]’

n:() 71,:0 :

(6)
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where f(z) Zf " 9" 0 yn and h(z) = ih(n)@)

n=0 =
seriesof f(z),g(z) and h( ) respectlvely By applying Laplacetransform on both sides of (6), we

have

0 xz" are the Taylor

s* L{y(z)} — s’y(0) — s*'(0) — sy"(0) — y""(0) = £ i VP () - p{i VP (@)= vy()

n=0

(7)
—~ /0 [ 9"™(0) = AM(0) &
_nz::O n! ! _Lfo 7;) n! ty(t)+; n! t nz::OHn(yO)yla'“:yn) dt 5
or
83% + 52041 +sA+ B+
pnyn fE) o0 o0 .
Z 34 £{27n n _p[zf}/an($)—’yZp yn(x)]}
n=0 n=0
5~ 90 (®)
1 > £m(0) . Zgng)t”y(t)
L LD A N dt |,
st noo ! 0 s h(")(O) . o0
+z n! tZHn(y()aypayn)
n=0 : n=0

where A = y”(0) and B = 3" (0) areconstantsthat will be determined later by using the boundary
conditionsat x = 1. Comparing coefficients of terms with identical powersof p, leadsto

y()(l'):fl %a()—" 12@1+ A+ 4B+ E’YIZL{P ZE}
s s s =0
1 = f"(0)
y,(z) = fl{_j { 7, P () — vy,(z Z nf H
n=0 n=0
L e e, = H0(0) 9
B _4‘£{j; ”ZO ol yo(t)+Ho(yo(t))n§)Tt dtt, ( )
(n)
_ 1 n=0 _

bona(@) = L= L vyn(x)JrfO o 10 =123,

tll

+H, (Y, Yy - ,ynz

Now, let us determine 7,71, ¥2,... SO that 3, = 0, then from (9) we have y,, = 0,n = 2,3,....
Setting p = 1, resultsin the solution of equation (3) as the following:

y(x):yo(x):fl{la()‘f’ al"‘ A+ B"’ 427n£{RL }}

Therefore, in this method, only the first He's polynomialsis calculated, and does not need to solve
the differential equation in each iteration.

3. lllustrative Examples

In this section, we apply the new method for solution of linear and nonlinear fourth-order integro-
diffrential equation.
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Example 1. Consider the linear fourth-order integro-diffrential equation

Y () = z + (z + 3)e® + y(z) — fo “y(t)dt,0 < 3t < 1, (10)
subject to the boundary conditions

y(0) =1, y(1) =1+e,
! / (12)
y'(0) =1, y'(1) = 2e.

which has the exact solution y(z) = 1+ ze”. To solve equation (10), by the new method we
construct the following equation

y(@) = up(@) = p{uo(@) — v = (@ + 3)e” —y(a) + [Ty(0)at}, (12)
By applying Laplace transform on both sides of (12), we have

£{y" @) = wp(@) + p{uo(@) 7 — (@ + 3 —y(@) + [ ywyat}} =0

Using the differential property of Laplace transform we have

L) = S| 000+ 250) +59'(0) +570)+ £} 3P
"= (13)

_p[Z%Pn(fﬂ) —z—(z+3)e" —y(z) + fo'/y(t)dt]H’
n=0
where 7g,71,72,--. aeunknown coefficients, P, (z) = z" are specific functions depending on the

problem, 3(0) = 1, 3'(0) = 1,3”(0) = A,5"'(0) = B and y(z) = Zp”yn(x)
n=0
By applying inverse Laplace transform on both sides of (13), we have

fj Py () = L H{s?’ S b sA+ B+ L{i P (2)
n=0 $ n=0 (14)
—p[z Yobu(z) =z — (z 4 3)e” = > p"y,(z) + f; > p"ya(t) dt”,
n=0 n=0 n=0

According to (9) and (14), we have

1 1 1 1 1 &
Yo(z) = fl{g+s—2+5—3A+s—43 +5—4;)%£{Pn($)}}

1 1 1 1 1 1 1
1 AR L B b et S P a6 T L 8
T AGAT A GBI YT T oM T gap 7 g B T g M T

y(z) =L ‘—s%ﬁ‘z v, P (z) =z — (z + 3)2% — yolz) + j;zyo(t) dtl]

n=0 """

6 240 91 1201 180 720 360 2

1 1 1 1
— —— A+ —B——n, |27 +-,
840 5040 5040 840
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If we set y(z) = 0 then we have

1 11 1

1
— A4~y = = = A4+2~, =1—>(A—B).yy = — ——B....
N =4m =57 =54+ 2 6( )4 51 91D

We consider the an approximation of y(z) asfollows

1 1 1 1 11
~ * :1 —A 2 _B 3 — 4 =0 = _A) 6
y(@) » yo(w) = 1+ o+ 5427 + e Br + o2t +opa + | ga+op A
1 1 11 1
+(84O 5040 ))x 120320 " 20320° )%

Imposing the boundary conditionsat = = 1 on y;(z) we obtain the following linear system

421 961 ) 49003
840 5760 | _ | 10320
145 421 ||B| |, 9671
144 840 5040
Solving the system (15) we have
34040140 58724761
~ 16905883 ° 16905883 1999658187,

927360 53258657

N _16905883e T 16905883 ~ 3.001193795.

Therefore, the approximate solution of equation (10) is
yo(z) = 1+ x + 0.9998322 + 0.500192% + 0.16667z* + 0.041672°
+ 0.008332° + 0.00139z" + 0.00020z°.

Some numerical results of these solutions are presented in Table 1 and Figure 1.

Table 1. Numerical values of solutions of Example 1

Ynumerical

Yezact

| Yezact — Ynumerical

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

1.000000000
1.110515582
1.244275308
1.404947632
1.596715260
1.824342723
2.093252450
2.409610279
2.780421517
3.213638629
3.718281830

1.000000000
1.110517092
1.244280552
1.404957642
1.596729879
1.824360636
2.093271280
2.409626895
2.780432742
3.213642800
3.718281828

0.0

1.5E-6
5.2E-6
1.0E-5
1.4E-5
1.7E-5
1.8E-5
1.6E-5
1.1E-5
4.1E-6
2.0E-9

61

(15)
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Figure 1. The plot of approximate and exact solutions of example 1

Example 2. Consider the nonlinear fourth-order integro-diffrential equation
WM@:1+L%ﬂmmwuogng (16)
subject to the boundary conditions

y(0) =1, y(1) =

SO =1, y1) = e )

which has the exact solution y(z) = e”. To solve equation (16), by the new method we construct
the following equation

¥ (@) = wpl@) — puo@) — 1 - [e ) dt }, (18)
By applying Laplace transform on both sides of (18), we have
.E{y(“’)(x) —up(z) + p{uo(x) —-1- fox e ! (y(t))” dt}} =0

Using the differential property of Laplace transform we have

L) = S| 000+ 250) +55'(0) +570)+ £} 3P0
"= (19)
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where 7g,71,72,-.. aeunknown coefficients, P, (z) = =" are specific functions depending on the

problem, y(0) = 1, '(0) = 1,3"(0) = A,5"(0) = B and y(z) = Zp"yn(m).
n=0
By applying inverse Laplace transform on both sides of (19), we have

Zp”yn(x) =L {%{83 +s2+sA+ B+ £{Z%Pn(at)
n=0 n=0

% o (20)
S un -1 [t )
n=0 n=0
According to (9) and (20), we have
1 1 1 1 1 &
s s S S  aowrt
1 1 1 1 . 1 1
— ZA 2 ZB 3 — 4 - 5 - 6 - 7 8
B e e N BT R T VT MR T AR
1 = v
n(z) = fl{—jf{Z%Pn(x)—l—f e (3o ()’ dtH
s n=0 0
L [ o P [ R I
“lag T 2q 0 120 120 720 360 °
1 1 1 1 1 1
e Ay —— 4T ( B— __) 8 ...,
+(2520 840 3 5040)x 20160~ ~ 1680 “30320)" T
If we set y(z) = 0 then we have
1 1 1 1 1
Yo = 1771 - 17/72 - 57/73 - gA_g7’y4 - EB_ﬂa
We consider the an approximation of y(z) asfollows
~ (1) — Lyppilps Lo o5 1o
y(m)Nyo(a:)—1+x+2A$ +6B:): to7% t130% T70?
1 1 1 1
— A - — 7 ( B — 8
+(2520 5040)9” \20160" " 20320)"
Imposing the boundary conditionsat = 1 on y;(z) we obtain the following linear system
1261 3361 A e_82703
2520 20160 | _| 40320 (21)
@ 1261 || B e_1531
360 2520 1260

Solving the system (21) we have

16952040 83705719

1227791 ¢ sansaaz < 0999962575,
25522560 ot 147211569
4227721 8455442

~ 1.00013068

Therefore, the approximate solution of equation (16) is
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yo(z) = 1+ z + 0.499982% + 0.166692> 4 0.04167z* + 0.00833z°
+ 0.001392% + 0.00020z7 + 0.00002z°.

Some numerical results of these solutions are presented in Table 2 and Figure 2.

Table 2. Numerical values of solutions of Example 2

Z; Ynumerical Yezact | Yezact — Ynumerical
0.0 1.000000000 1.000000000 0.0
0.1 1.105170752 1.105170918 1.6E-7
0.2 1.221402186 1.221402728 5.7E-7
0.3 1.349857711 1.349858808 1.0E-6
04 1.491823097 1.491824698 1.6E-6
05 1.648719310 1.648721271 1.9E-6
0.6 1.822116739 1.822118800 2.0E-6
0.7 2.013750888 2.013752707 1.8E-6
0.8 2.225539701 2.225540928 1.2E-6
0.9 2.459602656 2459603111 4.5E-7
1.0 2.718281830 2.718281828 2.0E-9

26 ]

24 )

22 ]

5

181

161

14 ]

12 -

o
0 0.2 04 06 0.8 1

4. Conclusion

In this paper, we have proposed the new efficient method to solve a class of two-point boundary
value problems for fourth order integro-differential equations. This approach was based on Laplace

F.4
I—Numerical - Exact|

Figure 2. The plot of approximate and exact solutions of example 1



H. Aminikhah / Computational Sciences and Engineering 1(1) (2021) 57-65 65

transform, perturbation technique and polynomial series. We demonstrate the efficiency and
accuracy of the proposed method with some numerical examples. For linear and non-linear fourth
order integro-differential we usually derive very good approximationsto the solutions. The accuracy
of the numerical results indicates that the method is well suited for the solution of such type of
problems.
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