Journal of Algebra and related topics

Vol. 1, No 1, (2013), pp 41-55

ON GRADED ALMOST SEMIPRIME SUBMODULES

F. FARZALIPOUR

Abstract

Let G be a group with identity e. Let R be a G graded commutative ring with a non-zero identity and M be a graded R-module. In this article, we introduce the concept of graded almost semiprime submodules. Also, we investigate some basic properties of graded almost semiprime and graded weakly semiprime submodules and give some characterizations of them.

1. Introduction

In the resent years a good deal of researches have done concerning graded ring and graded modules. Particularly, there is a wide variety of applications of graded algebras in geometry and physics (see [15]). Furthermore, in physical sense and in studying supermanifold, supersymmetries and quantizations of systems with symmetry, graded ring and modules play a key role (see [2]). Having the vast heritage of ring theory available, a number of authors have tried to extend and generalize many classical notions and definitions, see for example, [3]-[14]. Graded prime and graded primary ideals of a commutative graded ring R with a non-zero identity have been introduced and studied by M. Refai and K. Al-Zoubi in [17]. Graded prime and graded weakly prime submodules of a graded R-module have been studied by S. Ebrahimi Atani in [3] and [4]. Also, graded semiprime and graded weakly semiprime submodules of graded R-modules have been studied in [9] and [11]. Here we study a number of results of graded weakly

[^0]semiprime and graded almost semiprime submodules. First, we define the graded almost semiprime submodules of a graded R-module. We give some results concerning this class of graded submodules and some characterizations of them (see sec. 2). Also, we study and characterize other properties of graded weakly semiprime submodules (see sec. $3)$. Before we state some results let us introduce some notation and terminology. Let G be a group with identity e. A ring (R, G) is called a G-graded ring if there exists a family $\left\{R_{g}: g \in G\right\}$ of additive subgroups of R such that $R=\bigoplus_{g \in G} R_{g}$ such that $R_{g} R_{h} \subseteq R_{g h}$ for each g and h in G. In this case, R_{e} is a subring of R and $1_{R} \in R_{e}$. For simplify, we will denote the graded ring (R, G) by R. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M=\bigoplus_{g \in G} M_{g}$ such that for all $g, h \in G ; R_{g} M_{h} \subseteq M_{g h}$. Any element of R_{g} or M_{g} for any $g \in G$, is said to be a homogeneous element of degree g. A submodule $N \subseteq M$, where M is G-graded, is called G-graded if $N=\bigoplus_{g \in G}\left(N \cap M_{g}\right)=\bigoplus_{g \in G} N_{g}$ or if, equivalently, N is generated by homogeneous elements. Moreover, M / N becomes a G-graded module with g-component $(M / N)_{g}=\left(M_{g}+N\right) / N$ for $g \in G$. We write $h(R)=\cup_{g \in G} R_{g}$ and $h(M)=\cup_{g \in G} M_{g}$. A graded ring R is called graded integral domain, if whenever $a b=0$ for $a, b \in h(R)$, then $a=0$ or $b=0$. A graded ideal I of R is said to be graded maximal if $I \neq R$ and there is no graded ideal J of R such that $I \varsubsetneqq J \varsubsetneqq R$. A graded module M over a G-graded ring R is called graded finitely generated if $M=\sum_{i=1}^{n} R x_{g_{i}}$ where $x_{g_{i}} \in h(M)$. A graded R-module M is called graded cyclic if $M=R x_{g}$ where $x_{g} \in h(M)$. A graded R-module M is called a graded second module provided that for every element $r \in h(R)$, either $r M=M$ or $r M=0$. A graded R module M is called a graded multiplication module provided that, for every graded submodule N of M, there exists a graded ideal I of R so that $N=I M$ (or equivalently, $N=(N: M) M$). A graded submodule N of a graded R-module M is called a graded pure (graded RD-) submodule if $I N=N \cap I M(r N=N \cap r M)$ for any graded ideal I of R (for any $r \in h(R)$). A graded ideal I of a graded ring R is called graded multiplication, if it is multiplication as graded R modules. Graded multiplication modules and ideals have been studied extensively in [7] ,[8], [13] and [14]. A graded R-module M is called a graded cancellation module if for all graded ideals I and J of R, $I M=J M$ implies that $I=J$. Let N be a graded R-submodule of M, then $\left(N:_{R} M\right)=\{r \in R: r M \subseteq N\}$ is a graded ideal of R (see [3]). A graded R-module M is called faithful, if $\operatorname{Ann}(M)=(0: M)=0$. A proper graded submodule N of M is called graded prime, if whenever
$r m \in N$ where $r \in h(R)$ and $m \in h(M)$, then $m \in N$ or $r \in(N: M)$. A graded R-module M is said to be graded prime, if the zero graded submodule of M is a graded prime submodule. A proper graded submodule N of a graded R-module M is called graded semiprime if whenever $r \in h(R), m \in h(M)$ and $k \in \mathbb{Z}^{+}$such that $r^{k} m \in N$, then $r m \in N$. If R is a graded ring and M a graded R-module, the subset $T^{g}(M)$ of M is defined by $T^{g}(M)=\{m \in M: r m=0$ for some $0 \neq r \in h(R)\}$. If R is a graded integral domain, then $T^{g}(M)$ is a graded submodule of M [3]. We say that M is graded torsion, if $T^{g}(M)=M$ and we say that M is graded torsion free, if $T^{g}(M)=0$.

2. Graded Almost Semiprime Submodules

Definition 2.1. (i) Let R be a commutative G-graded ring. A proper graded ideal I of R is called graded almost semiprime if whenever $a_{g}^{k} b_{h} \in I_{g^{k} h}-I^{2} \bigcap R_{g^{k} h}$ for $a_{g}, b_{h} \in h(R)$ and $k \in \mathbb{Z}^{+}$, then $a_{g} b_{h} \in I_{g h}$. (ii) Let R be a commutative G-graded ring and M be a graded R module. A proper graded submodule N of M is called graded almost semiprime if whenever $r_{g} \in h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$such that $r_{g}^{k} m_{h} \in N_{g^{k} h}-(N: M) N \cap M_{g^{k} h}$, then $r_{g} m_{h} \in N_{g h}$.
(iii) Let N be a graded submodule of a graded R-module M. We say that N_{g} is a g-almost semiprime submodule of R_{e}-module M_{g}, if $N_{g} \neq M_{g}$ and whenever $r_{e}^{k} m_{g} \in N_{g}-\left(N_{g}:_{R_{e}} M_{g}\right) N_{g}$ for some $r_{e} \in R_{e}$, $m_{g} \in M_{g}$ and $k \in \mathbb{Z}^{+}$, then $r_{e} m_{g} \in N_{g}$.

The following Lemma is known, but we write it here for the sake of references.

Lemma 2.2. Let M be a graded module over a graded ring R. Then the following hold:
(i) If I and J are graded ideals of R, then $I+J$ and $I \bigcap J$ are graded ideals.
(ii) If N is a graded submodule, $r \in h(R)$ and $x \in h(M)$, then $R x$, $I N$ and $r N$ are graded submodules of M.
(iii) If N and K are graded submodules of M, then $N+K$ and $N \bigcap K$ are also graded submodules of M and $(N: M)$ is a graded ideal of R.
(iv) Let $\left\{N_{\lambda}\right\}$ be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodues of M.

Lemma 2.3. Let N be a graded R-submodule of M and I a graded ideal of R. Then $\left(N:_{M} I\right)=\{m \in M \mid m I \subseteq N\}$ is a graded submodule of M.

Proof. We have $\left(N:_{M} I\right)_{g}=\left(N:_{M} I\right) \cap M_{g} \subseteq\left(N:_{M} I\right)$ for all $g \in G$. Then $\bigoplus_{g \in G}\left(N:_{M} I\right) \subseteq\left(N:_{M} I\right)$. Let $m=\sum_{g \in G} m_{g} \in\left(N:_{M} I\right)$. It is enough to show that $m_{g} I \subseteq N$ for all $g \in G$. So without loss of generality we may assume that $m=\sum_{i=1}^{n} m_{g_{i}}$ where $m_{g_{i}} \neq 0$ for all $i=1, \ldots, n$ and $m_{g_{i}}=0$ for all $g_{i} \notin\left\{g_{1}, \ldots, g_{n}\right\}$. Let $a \in I$. As I is a graded ideal, so $a=\sum_{i=1}^{k} a_{g_{i}}$ where $0 \neq a_{g_{i}} \in I \cap R_{g_{i}}$. Therefore, $\left(\sum_{i=1}^{n} m_{g_{i}}\right) a_{g_{i}} \in N(1 \leq i \leq m)$. Since N is a graded submodule we conclude that $m_{g_{i}} a_{g_{i}} \in N$, so $m_{g_{i}} I \subseteq N$. Hence $m_{g} I \subseteq N$ for all $g \in G$. So $\bigoplus_{g \in G}\left(N:_{M} I\right)=\left(N:_{M} I\right)$.

Let M be a graded R-module and N a graded submodule of M. N is called idempotent in M if $N=(N: M) N$. Thus any proper idempotent graded submodule of M is graded almost semiprime. If M is a graded multiplication R-module and $N=I M$ and $K=J M$ are two graded submodules of M, then the product $N K$ of N and K is defined as $N K=(I M)(J M)=(I J) M$, see [1]. In particular, we have $N^{2}=N N=[(N: M) M][(N: M) M]=(N: M)^{2} M$. If further, M is a graded cancellation R-module, then by using Lemma 2.11, $(N: M) N=((N: M) N: M) M=(N: M)^{2} M=N^{2}$. So in this case, a graded submodule N is idempotent in M if and only if $N=N^{2}$.
Example 2.4. It is clear that every graded semiprime submodule is graded almost semiprime. But the converse is not true in general. For example, let $R=\mathbb{Z}=R_{0}$ be as \mathbb{Z}-graded ring and $M=\mathbb{Z}_{24} \times \mathbb{Z}_{24}$ be the \mathbb{Z}-graded R-module with $M_{0}=\mathbb{Z}_{24} \times\{0\}$ and $M_{1}=\{0\} \times \mathbb{Z}_{24}$. Consider the graded submodule $N=<8>\times<8>$ with $N_{0}=<8>\times\{0\}$ and $N_{1}=\{0\} \times<8>$. Then $(N: M) N=N$, and so N is a graded almost semiprime submodule of M. But N is not graded semiprime in M, because $2^{2}(2,0) \in N_{0}$, but $2(2,0) \notin N_{0}$.

In the graded semiprime submodules case, N is a graded semiprime submodule of M, if and only if N / K is so in M / K for any graded submodule $K \subseteq N$ [9]. But the covers part may not be true in the case of graded almost semiprime submodules. For example, for any graded non almost semiprime submodule N of M, we have $N / N=0$ is a graded almost semiprime submodule of M / N. But we have the following Theorem:
Theorem 2.5. Let N and K be graded submodules of a graded R module M with $K \subseteq(N: M) N$. Then N is a graded almost semiprime submodule of M if and only if N / K is a graded almost semiprime submodule of the graded R-module M / K.
Proof. Let N be a graded almost semiprime submodule of M and assume that $r_{g} \in h(R), m_{h}+K \in h(M / K)$ and $k \in \mathbb{Z}^{+}$such that
$r_{g}^{k}\left(m_{h}+K\right) \in(N / K)_{g^{k} h}-(N / K: M / K) N / K \cap(M / K)_{g^{k} h}$. It is clear that $\left(N / K:_{R} M / K\right)=\left(N:_{R} M\right)$, and so $r_{g}^{k} m_{h} \in N_{g^{k} h}-(N: M) N \cap$ $M_{g^{k} h}$. Therefore $r_{g} m_{h} \in N_{g h}$ since N is graded almost semiprime. Therefore, $r_{g}\left(m_{h}+K\right) \in\left(N_{g h}+K\right) / K=(N / K)_{g h}$, hence N / K is a graded almost semiprime submodule. Conversely, let N / K be a graded almost semiprime submodule of M / K and assume that $r_{g}^{k} m_{h} \in$ $N_{g^{k} h}-(N: M) N \cap M_{g^{k} h}$ for some $r_{g} \in h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. Hence $r_{g}^{k}\left(m_{h}+K\right) \in(N / K)_{g^{k} h}-(N / K: M / K) N / K \cap(M / K)_{g^{k} h}$, because if, $r_{g}^{k}\left(m_{h}+K\right) \in(N / K: M / K) N / K \cap(M / K)_{g^{k} h}=(N:$ $M)(N / K) \cap(M / K)_{g^{k} h}=((N: M) N+K) / K \cap(M / K)_{g^{k} h}=(N:$ $M) N / K \cap(M / K)_{g^{k} h}$ since $K \subseteq(N: M) N$, so $r_{g}^{k} m_{h} \in(N: M) N$, a contradiction. Therefore $r_{g}\left(m_{h}+K\right) \in(N / K)_{g h}$, so $r_{g} m_{h} \in N_{g h}$, as required.

Let R be a G-graded ring and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fractions $S^{-1} R$ is a graded ring which is called the graded ring of fractions. Indeed, $S^{-1} R=\bigoplus_{g \in G}\left(S^{-1} R\right)_{g}$ where $\left(S^{-1} R\right)_{g}=\left\{r / s: r \in h(R), s \in S\right.$ and $g=(\text { degs })^{-1}($ degr $\left.)\right\}$.
Let M be a graded module over a graded ring R and $S \subseteq h(R)$ be a multiplicatively closed subset of R. The module of fraction $S^{-1} M$ over a graded ring $S^{-1} R$ is a graded module which is called the module of fractions, if $S^{-1} M=\bigoplus_{g \in G}\left(S^{-1} M\right)_{g}$ where $\left(S^{-1} M\right)_{g}=\{\mathrm{m} / \mathrm{s}$: $m \in h(M), s \in S$ and $g=(\text { degs })^{-1}($ degm $\left.)\right\}$. We write $h\left(S^{-1} R\right)=$ $\bigcup_{g \in G}\left(S^{-1} R\right)_{g}$ and $h\left(S^{-1} M\right)=\bigcup_{g \in G}\left(S^{-1} M\right)_{g}$. One can prove that the graded submodules of $S^{-1} M$ are of the form $S^{-1} N=\left\{\beta \in S^{-1} M\right.$: $\beta=m / s$ for $m \in N$ and $s \in S\}$ and that $S^{-1} N \neq S^{-1} M$ if and only if $S \cap(N: M)=\emptyset([13])$.

Theorem 2.6. Let $S \subseteq h(R)$ be a multiplicative closed subset of a graded ring R with $S \cap(N: M)=\emptyset$. Then $S^{-1} N$ is a graded almost semiprime submodule of the graded $S^{-1} R$-module $S^{-1} M$.

Proof. Let N be a graded almost semiprime submodule of M. Since $(N: M) \cap S=\emptyset$, then $S^{-1} N \neq S^{-1} M$.
Assume that $\left(r_{g_{1}} / s_{h_{1}}\right)^{k}\left(m_{g_{2}} / t_{h_{2}}\right) \in\left(S^{-1} N\right)_{\left(g_{1}^{k} g_{2}\right)\left(h_{1}^{k} h_{2}\right)^{-1}}-\left(S^{-1}:_{S^{-1} R}\right.$ $\left.S^{-1} M\right) S^{-1} N \bigcap\left(S^{-1} M\right)_{\left(g_{1}^{k} g_{2}\right)\left(h_{1}^{k} h_{2}\right)^{-1}}$ where $r_{g_{1}} / s_{h_{1}} \in h\left(S^{-1} R\right), m_{g_{2}} / t_{h_{2}} \in$ $h\left(S^{-1} M\right)$ and $k \in \mathbb{Z}^{+}$. Hence $r_{g_{1}}^{k} m_{g_{2}} / s_{h_{1}}^{k} t_{h_{2}}=n_{g_{1}^{k} g_{2}} / s_{h_{1}^{k} h_{2}}^{\prime}$ for some $n_{g_{1}^{k} g_{2}} \in N_{g_{1}^{k} g_{2}}$ and $s_{h_{1}^{k} h_{2}}^{\prime} \in S$, and so there exists $t_{h_{3}} \in S$ such that $r_{g_{1}}^{k} s_{h_{1}^{k} h_{2}}^{\prime} t_{h_{3}} m_{g_{2}}=s_{h_{1}}^{k} t_{h_{2}} t_{h_{3}} n_{g_{1}^{k} g_{2}} \in N$. If $r_{g_{1}}^{k} s_{h_{1}^{k} h_{2}}^{\prime} t_{h_{3}} m_{g_{2}} \in(N: M) N$, then $r_{g_{1}}^{k} m_{g_{2}} / s_{h_{1}}^{k} t_{h_{2}}=r_{g_{1}}^{k} s_{h_{1}^{k} h_{2}}^{\prime} t_{h_{3}} m_{g_{2}} / s_{h_{1}}^{k} t_{h_{2}} t_{h_{3}} s_{h_{1}^{k} h_{2}}^{\prime} \in S^{-1}\left(\left(N:_{R} M\right) N\right)=$ $S^{-1}\left(N:_{R} M\right) S^{-1} N \subseteq\left(S^{-1} N:_{S^{-1} R} S^{-1} M\right) S^{-1} N$, a contradiction. So
$r_{g_{1}}^{k}\left(s_{h_{1}^{k} h_{2}}^{\prime} t_{h_{3}} m_{g_{2}}\right) \in N_{g_{1}^{k} h_{1}^{k} h_{2} h_{3} g_{2}}-(N: M) N \bigcap M_{g_{1}^{k} h_{1}^{k} h_{2} h_{3} g_{2}}$, and hence $r_{g_{1}} s_{h_{1}^{k} h_{2}}^{\prime} t_{h_{3}} m_{g_{2}} \in N_{g_{1} h_{1}^{k} h_{2} h_{3} g_{2}}$ since N is graded almost semiprime. Therefore
$r_{g_{1}} m_{g_{2}} / s_{h_{1}} t_{h_{2}}=r_{g_{1}} s_{h_{1}^{k} h_{2}}^{\prime} t_{3} m_{g_{2}} / s_{h_{1}} t_{h_{2}} s_{h_{1}^{k} h_{2}}^{\prime} t_{3} \in\left(S^{-1} N\right)_{\left(g_{1} g_{2}\right)\left(h_{1} h_{2}\right)^{-1}}$, hence $S^{-1} N$ is a graded almost semiprime submodule of $S^{-1} M$.
Proposition 2.7. Let M be a graded R-module and N be a graded almost semiprime submodule of M. Then
(i) If M is a graded second R-module, then N is a graded second module.
(ii) If M is a graded second R-module, then N is a graded $R D$ submodule of M.
Proof. (i) Let N be a graded almost semiprime submodule of M. Let $r_{g} \in h(R)$. If $r_{g} M=0$, then $r_{g} N \subseteq r_{g} M=0$. Let $r_{g} M=$ M. Now It is enough to show that $N \subseteq r_{g} N$. First, we show that $(N: M) N=0$. Since N is a proper graded submodule of M, so for any $r \in(N: M)$, we have $r M=0$, because, we can write $r=\sum_{h \in G} r_{h}$. Since $(N: M)$ is a graded ideal of R, so $r_{h} \in(N: M)$ for any $h \in G$. Hence $r_{h} M \subseteq N$ and since M is graded second, we have $r_{h} M=0$, so $r_{h} N=0$ for any $h \in G$, and $(N: M) N=0$. Let $n=\sum_{i=1}^{n} n_{g_{i}} \in N$ where $n_{g_{i}} \neq 0$. Since $r_{g} M=M$, so for any $1 \leq i \leq n, n_{g_{i}}=r_{g} m_{g_{i} g^{-1}}$ for some $m_{g_{i} g^{-1}} \in h(M)$, and $m_{g_{i} g^{-1}}=r_{g} m_{g_{i}\left(g^{-1}\right)^{2}}^{\prime}$ for some $m_{g_{i}\left(g^{-1}\right)^{2}}^{\prime} \in$ $h(M)$. Hence $0 \neq n_{g_{i}}=\left(r_{g}\right)^{2} m_{g_{i}\left(g^{-1}\right)^{2}}^{\prime} \in N_{g_{i}}-(N: M) N \bigcap M_{g_{i}}$, as N is graded almost semiprime so $m_{g_{i} g^{-1}}=r_{g} m_{g_{i}\left(g^{-1}\right)^{2}}^{\prime} \in N$. Hence $n_{g_{i}}=r_{g} m_{g_{i} g^{-1}} \in r_{g} N$ for any $1 \leq i \leq n$, so $n \in r_{g} N$ and $N \subseteq r_{g} N$. Therefore $r_{g} N=N$, hence N is graded second.
(ii) Let $r_{g} \in h(R)$. If $r_{g} M=0$, then $r_{g} N=0$, so $r_{g} N=0=$ $N \cap r_{g} M$. Suppose that $r_{g} M=M$, so by (i), $r_{g} N=N$, therefore $r_{g} N=N \cap r_{g} M$.

In the following Theorems, we give other characterizations of graded almost semiprime submodules.
Theorem 2.8. Let M be a graded R-module and N a proper graded submodule of M. Then the following are equivalent:
(i) N is a graded almost semiprime submodule of M.
(ii) For $r_{g} \in h(R)$ and $k \in \mathbb{Z}^{+}$; $\left(N_{h}:_{M} r_{g}^{k}\right)=\left(N_{h g^{1-k}}:_{M} r_{g}\right) \cup((N$: $\left.M) N \cap M_{h}:_{M} r_{g}^{k}\right)$.
(iii) For $r_{g} \in h(R)$ and $k \in \mathbb{Z}^{+} ;\left(N_{h}:_{M} r_{g}^{k}\right)=\left(N_{h g^{1-k}}:_{M} r_{g}\right)$ or $\left(N_{h}:_{M} r_{g}^{k}\right)=\left((N: M) N \cap M_{h}:_{M} r_{g}^{k}\right)$.

Proof. (i) \Rightarrow (ii) Let $m_{h g^{-k}} \in\left(N_{h}:_{M} r_{g}^{k}\right)$, then $r_{g}^{k} m_{h g^{-k}} \in N_{h}$. If $r_{g}^{k} m_{h g^{-k}} \notin\left(N:_{R} M\right) N \cap M_{h}$, as N is graded almost semiprime, $r_{g} m_{h g^{-k}} \in N_{h g^{1-k}}$, so $m_{h g^{-k}} \in\left(N_{h g^{1-k}}:_{M} r_{g}\right)$. Let $r_{g}^{k} m_{h g^{-k}} \in\left(N:_{R}\right.$ $M) N \cap M_{h}$, then $m_{h g^{-k}} \in\left(\left(N:_{R} M\right) N \cap M_{h}:_{M} r_{g}^{k}\right)$, hence $\left(N_{h}:_{M}\right.$ $\left.r_{g}^{k}\right) \subseteq\left(N_{h g^{-k}}:_{M} r_{g}\right) \cup\left((N: M) N \cap M_{h}:_{M} r_{g}^{k}\right)$. The other containment holds for any graded submodule N.
$(i i) \Rightarrow($ iii $)$ It is well known that if a graded submodule is the union of two graded submodules, then it is equal to one of them.
(iii) $\Rightarrow(i)$ Let $r_{g}^{k} m_{h} \in N_{g^{k} h}-\left(N:_{R} M\right) N \cap M_{g^{k} h}$ for some $r_{g} \in$ $h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. Hence $m_{h} \in\left(N_{g^{k} h}:_{M} r_{g}^{k}\right)$ and $m_{h} \notin$ $\left(\left(N:_{R} M\right) N \cap M_{g^{k} h}:_{M} r_{g}^{k}\right)$, so by assumption, $m_{h} \in\left(N_{g h}:_{M} r_{g}\right)$ and $r_{g} m_{h} \in N_{g h}$. Therefore N is graded almost semiprime.

Theorem 2.9. Let M be a graded R-module and N be a proper graded submodule of M. Then N is graded almost semiprime in M if and only if for any graded submodule $K=\bigoplus_{h \in G} K_{h}$ of $M, a_{g} \in h(R)$ and $k \in \mathbb{Z}^{+}$with $a_{g}^{k} K_{h} \subseteq N_{g^{k} h}$ and $a_{g}^{k} K_{h} \nsubseteq\left(N:_{R} M\right) N \cap M_{g^{k h}}$, we have $a_{g} K_{h} \subseteq N_{g h}$.

Proof. Assume that N is graded almost semiprime. Let $a_{g}^{k} K_{h} \subseteq N_{g^{k} h}$ and $a_{g}^{k} K_{h} \nsubseteq(N: M) N \cap M_{g^{k} h}$. Then $K_{h} \subseteq\left(N_{g^{k} h}: a_{g}^{k}\right)$. Since $K_{h} \nsubseteq\left((N: M) N \cap M_{g^{k} h}: a_{g}^{k}\right)$, so by Theorem $2.8, K_{h} \subseteq\left(N_{g h}: a_{g}\right)$, and hence $a_{g} K_{h} \subseteq N_{g h}$, as needed. Conversely, let $r_{g}^{k} m_{h} \in N_{g^{k} h}-(N$: $M) M \cap M_{g^{k} h}$ where $r_{g} \in h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. Hence $r_{g}^{k}\left(R_{e} m_{h}\right) \subseteq N_{g^{k} h}$ and $r_{g}^{k}\left(R_{e} m_{h}\right) \nsubseteq(N: M) N \cap M_{g^{k} h}$, so by hypothesis, $r_{g}\left(R_{e} m_{h}\right) \subseteq N_{g h}$, hence $r_{g} m_{h} \in N_{g h}\left(1 \in R_{e}\right)$, as needed.
Theorem 2.10. Let M be a graded finitely generated faithful graded multiplication R-module. Then M is a graded cancellation module.

Proof. Let I, J be graded ideals of R such that $I M \subseteq J M$. Let $a=$ $a_{g_{1}}+a_{g_{2}}+\ldots+a_{g_{n}} \in I$ where $0 \neq a_{g_{i}} \in I \cap R_{g_{i}}$. It suffices to show that for each $i, a_{g_{i}} \in J$. Let $a \in\left\{a_{g_{1}}, a_{g_{2}}, \ldots, a_{g_{n}}\right\}$, it is clear that $K=\{r \in R \mid r a \in J\}$ is a graded ideal of R. Suppose $K \neq R$. Then there exists a graded maximal ideal P of R such that $K \subseteq P$ by [5, Lemma 2.3]. If $P M=M$, then as M is graded finitely generated, we conclude $(1-p) M=0$ for some $p \in P$, which is a contradiction since M is faithful. Thus $M \neq P M$, so by [16, Theorem 7], there exist $m \in h(M)$ and $q \in h(R)-P$ such that $q M \subseteq R m$. In particular, $q a m \in q J M \subseteq J m$, so that there exists $c \in J$ such that $(q a-c) m=0$.

But $q \operatorname{Ann}(m) \subseteq A n n M=0$. Thus $q(q a-c)=0$ and this implies that $q^{2} a \in J$ so that $q^{2} \in K \subseteq P$. Hence $q \in P$ since every graded maximal is graded prime, a contradiction. So $K=R$ and hence $a \in J$. Therefore $I \subseteq J$.

Lemma 2.11. Let N be a graded submodule of a graded finitely generated faithful graded multiplication (so graded cancellation) R-module. Then $(I N: M)=I(N: M)$ for every graded ideal I of R.

Proof. As M is graded multiplication R-module, then $I(N: M) M=$ $I N=(I N: M) M$. The result follows because M is a graded cancellation module.

Theorem 2.12. Let $M=\bigoplus_{g \in G} M_{g}$ be a graded R-module and $N a$ graded submodule of M. Let M_{g} be a finitely generated faithful multiplication R_{e}-module and N_{g} a proper submodule of M_{g}. Then the following are equivalent:
(i) N_{g} is g-almost semiprime in M_{g}.
(ii) $\left(N_{g}:_{R_{e}} M_{g}\right)$ is almost semiprime in R_{e}.
(iii) $N_{g}=P_{e} M_{g}$ for some almost semiprime ideal P_{e} of R_{e}.

Proof. $(i) \Rightarrow$ (ii) Suppose that N_{g} is a g-almost semiprime submodule of M_{g}. Let $a_{e}, b_{e} \in R_{e}$ and $k \in \mathbb{Z}^{+}$such that $a_{e}^{k} b_{e} \in\left(N_{g}:_{R_{e}}\right.$ $\left.M_{g}\right)-\left(N_{g}:_{R_{e}} M_{g}\right)^{2}$. Then $a_{e}^{k}\left(b_{e} M_{g}\right) \subseteq N_{g}$ and $a_{e}^{k}\left(b_{e} M_{g}\right) \nsubseteq\left(N_{g}\right.$: $\left.M_{g}\right) N_{g}$. Indeed, if $a_{e}^{k}\left(b_{e} M_{g}\right) \subseteq\left(N_{g}: M_{g}\right) N_{g}$, then by Lemma 2.11, $a_{e}^{k} b_{e} \in\left(\left(N_{g}: M_{g}\right) N_{g}: M_{g}\right)=\left(N_{g}: M_{g}\right)^{2}$, a contradiction. Now, N_{g} g-almost semiprime implies that $a_{e}\left(b_{e} M_{g}\right) \subseteq N_{g}$ by Theorem 2.9, so $a_{e} b_{e} \in\left(N_{g}: M_{g}\right)$, hence $\left(N_{g}: M_{g}\right)$ is almost semiprime in R_{e}.
(ii) $\Rightarrow(i)$ Let $r_{e}^{k} m_{g} \in N_{g}-\left(N_{g}: M_{g}\right) N_{g}$ where $r_{e} \in R_{e}, m_{g} \in M_{g}$ and $k \in \mathbb{Z}^{+}$. Then $r_{e}^{k}\left(R_{e} m_{g}: M_{g}\right) \subseteq\left(R_{e}\left(r_{e}^{k} m_{g}\right): M_{g}\right) \subseteq\left(N_{g}: M_{g}\right)$. Moreover, $r_{e}^{k}\left(R_{e} m_{g}: M_{g}\right) \nsubseteq\left(N_{g}: M_{g}\right)^{2}$ because otherwise, if $r_{e}^{k}\left(R_{e} m_{g}\right.$: $\left.M_{g}\right) \subseteq\left(N_{g}: M_{g}\right)^{2}=\left(\left(N_{g}: M_{g}\right) N_{g}: M_{g}\right)$, then $r_{e}^{k}\left(R_{e} m_{g}\right)=r_{e}^{k}\left(R_{e} m_{g}:\right.$ $\left.M_{g}\right) M_{g} \subseteq\left(N_{g}: M_{g}\right) N_{g}$, a contradiction. As $\left(N_{g}: M_{g}\right)$ is an almost semiprime ideal of R_{e}, then $r_{e}\left(R_{e} m_{g}: M_{g}\right) \subseteq\left(N_{g}: M_{g}\right)$ by Theorem 2.9. Therefore $r_{e}\left(R_{e} m_{g}\right)=r_{e}\left(R_{e} m_{g}: M_{g}\right) M_{g} \subseteq\left(N_{g}: M_{g}\right) M_{g}=N_{g}$, and so $r_{e} m_{g} \in N_{g}$, as required.
$(i i) \Rightarrow($ iii $)$ We choose $P_{e}=\left(N_{g}:_{R_{e}} M_{g}\right)$.
(iii) \Rightarrow (ii) Let $N_{g}=P_{e} M_{g}$ for some almost semiprime ideal P_{e} of R_{e}. Then $N_{g}=P_{e} M_{g}=\left(N_{g}: M_{g}\right) M_{g}$, since M_{g} is cancellation, we conclude $P_{e}=\left(N_{g}: M_{g}\right)$.

Lemma 2.13. Every graded cyclic R-module is a graded multiplication module.

Proof. Let $M=R x_{g}$ for some $x_{g} \in h(M)$. Let N be a graded submodule of M and let $n \in N$. Then $n=r x_{g} \in N$ for some $r \in R$, and so $r \in\left(N: x_{g}\right)=(N: M)$. Hence $n \in(N: M) M$, so $N=(N: M) M$. Therefore M is a graded multiplication module.

We know that [9], if N is a graded semiprime submodule of M, then $\left(N:_{R} M\right)$ is a graded semiprime ideal of R. But it may not be true in the case of graded almost semiprime submodules.

Example 2.14. Consider the \mathbb{Z}-graded ring $R=R_{0}=\mathbb{Z}$ and the graded \mathbb{Z}-module $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ with $M_{0}=\mathbb{Z}_{4} \times\{0\}$ and $M_{1}=\{0\} \times \mathbb{Z}_{4}$. Take $N=\{0\} \times\{0\}$. Certainly, N is graded almost semiprime, but $\left(N:_{R} M\right)=4 \mathbb{Z}$ is not a graded almost semiprime ideal of \mathbb{Z}. Because $2^{2} \in(N: M)_{0}-(N: M)^{2} \cap R_{0}$, but $2 \notin(N: M)_{0}$.

Theorem 2.15. Let M be a faithful graded cyclic (graded multiplication) R-module and N a proper graded submodule of M. Then the following are equivalent:
(i) N is graded almost semiprime in M.
(ii) $\left(N:_{R} M\right)$ is graded almost semiprime in R.
(iii) $N=P M$ for some graded almost semiprime ideal P of R.

Proof. Let $M=R m_{g}$ for some homogeneous element $m_{g} \in h(M)$.
$(i) \Rightarrow(i i)$ Suppose that N is a graded almost semiprime submodule of M. Let $a_{g^{\prime}}, b_{h} \in h(R)$ and $k \in \mathbb{Z}^{+}$such that $a_{g^{\prime}}^{k} b_{h} \in(N: M)_{g^{\prime k} h}-$ $(N: M)^{2} \cap R_{g^{\prime k} h}$. Then $a_{g^{\prime}}^{k}\left(b_{h} M\right) \subseteq N$ and $a_{g^{\prime}}^{k}\left(b_{h} M\right) \nsubseteq(N: M) N$. Indeed, if $a_{g}^{k} b_{h} M \subseteq(N: M) N$, then by Lemma 2.11, $a_{g^{\prime}}^{k} b_{h} \in((N:$ $M) N: M)=(N: M)^{2}$, a contradiction. So $a_{g^{\prime}}^{k} b_{h} m_{g} \in N_{g^{\prime k} h g}$ and $a_{g^{\prime}}^{k} b_{h} m_{g} \notin(N: M) N \cap M_{g^{\prime k} h g}$, because if $a_{g^{\prime}}^{k} b_{h} m_{g} \in(N: M) N$, then $a_{g^{\prime}}^{k} b_{h} \in\left((N: M) N: m_{g}\right)=((N: M) N: M)$, a contradiction. Thus $a_{g^{\prime}} b_{h} m_{g} \in N_{g^{\prime} h g} \subseteq N$ and so $a_{g^{\prime}} b_{h} M \subseteq N$. Hence $a_{g} b_{h} \in(N: M) \cap$ $R_{g h}=(N: M)_{g h}$, so $(N: M)$ is graded almost semiprime in R.
$(i i) \Rightarrow(i)$ Assume that $(N: M)$ is a graded almost semiprime ideal of R. Let $r_{g^{\prime}}^{k} m_{h} \in N_{g^{\prime k} h}-(N: M) M \cap M_{g^{\prime k} h}$ where $r_{g^{\prime}} \in h(R)$, $m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. Then $m_{h}=r_{h g^{-1}} m_{g}$ for some $r_{g^{-1} h} \in h(R)$. So $r_{g^{\prime}}^{k} r_{h g^{-1}} m_{g} \in N$, hence $r_{g^{\prime}}^{k} r_{h g^{-1}} \in\left(N: m_{g}\right)=(N: M) \cap R_{g^{\prime k} h g^{-1}}=$ $(N: M)_{g^{\prime k} h g^{-1}}$. Thus $r_{g^{\prime}} r_{h g^{-1}} \in(N: M)_{g^{\prime} h g^{-1}}$ since $(N: M)$ is graded almost semiprime. Hence $r_{g^{\prime}} r_{h g^{-1}} M \subseteq N$, and so $r_{g^{\prime}} m_{h}=r_{g^{\prime}} r_{h g^{-1}} m_{g} \in$ $N_{g^{\prime} h}$, as required.
(ii) $\Leftrightarrow($ iii $)$ We choose $P=(N: M)$ and the fact M is graded cancellation module.

Let I be a proper graded ideal of R. Then the G-radical of I, denoted by $\operatorname{Gr}(I)$, is defined to be the intersection of all graded prime ideals of R containing I.

Let N be a proper graded submodule of M. Then the G-radical of N, denoted by $\operatorname{Gr}(N)$, is defined to be the intersection of all graded prime submodules of M containing N. It is shown in [16], that if N is a proper graded submodule of a graded multiplication R-module M, then $\operatorname{Gr}(N)=\left(G r\left(N:_{R} M\right)\right) M$.
Lemma 2.16. For every proper graded ideal I of $R, G r(I)$ is a graded almost semiprime ideal of R.

Proof. Since $(G r(I))^{2}=G r(I)$, so the proof is hold.
Theorem 2.17. Let M be a faithful graded cyclic R-module. Then for every proper graded submodule N of $M, \operatorname{Gr}(N)$ is a graded almost semiprime submodule of M.

Proof. Let N be a proper graded submodule of M. Hence by Lemma 2.16, $\operatorname{Gr}\left(N:_{R} M\right)$ is a graded almost semiprime ideal of R. Therefore by Theorem 2.15, $G r(N)=G r((N: M) M)=\left(G r\left(N:_{R} M\right)\right) M$ is a graded almost semiprime submodule of M.

3. Graded Weakly Semiprime Submodules

Definition 3.1. (i) Let R be a commutative G-graded ring. A proper graded ideal I of R is called graded weakly semiprime if whenever $0 \neq a_{g}^{k} b_{h} \in I_{g^{k} h}$ for some $a_{g}, b_{h} \in h(R)$ and $k \in \mathbb{Z}^{+}$, then $a_{g} b_{h} \in I_{g h}$.
(ii) Let M be a graded R-module. A proper graded submodule N of M is called graded weakly semiprime if whenever $0 \neq$ $r_{g}^{k} m_{h} \in N_{g^{k} h}$ for some $r_{g} \in h(R), m_{h} \in h(M)$ and $k \in Z^{+}$; then $r_{g} m_{h} \in N_{g h}$.
(iii) Let N be a graded submodule of a graded R-module M. We say that N_{g} is a g-weakly semiprime submodule of R_{e}-module M_{g}, if $N_{g} \neq M_{g}$ and whenever $0 \neq r_{e}^{k} m_{g} \in N_{g}$ for some $r_{e} \in R_{e}$, $m_{g} \in M_{g}$ and $k \in \mathbb{Z}^{+}$, then $r_{e} m_{g} \in N_{g}$.
Remark 3.2. Let M be a graded module over a graded ring R. Then graded semiprime submodules \Rightarrow graded weakly semiprime submodudules \Rightarrow graded almost semiprime submodules.

Theorem 3.3. Let M be a graded R-module and N a proper graded submodule of M. Then N is a graded almost semiprime submodule of M if and only if $N /(N: M) N$ is a graded weakly semiprime submodule of the graded R-module $M /(N: M) N$.

Proof. Assume that N is a graded almost semiprime submodule of M. Let $r_{g} \in h(R), m_{h}+(N: M) N \in h(M /(N: M) N)$ and $k \in \mathbb{Z}^{+}$ such that $0 \neq r_{g}^{k}\left(m_{h}+(N: M) N\right) \in(N /(N: M) N)_{g^{k} h}$. Hence $r_{g}^{k} m_{h} \in N_{g^{k} h}-(N: M) N \cap M_{g^{k} h}$, and so $r_{g} m_{h} \in N_{g h}$. Therefore $r_{g}\left(m_{h}+(N: M) N\right) \in(N /(N: M) N)_{g h}$, as needed.
Conversely, assume that $N /(N: M) N$ is graded weakly semiprime in $M /(N: M) N$. Let $r_{g}^{k} m_{h} \in N_{g^{k} h}-(N: M) N \cap M_{g^{k} h}$ where $r_{g} \in$ $h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. Then $0 \neq r_{g}^{k}\left(m_{h}+(N: M) N\right) \in$ $(N /(N: M) N)_{g^{k} h}$, and hence $r_{g}\left(m_{h}+(N: M) N\right) \in(N /(N: M) N)_{g h}$. Therefore $r_{g} m_{h} \in N_{g h}$, as required.

Proposition 3.4. Let R be a graded integral domain and M be a graded torsion free R-module. Then every graded weakly semiprime submodule of M is graded semiprime.

Proof. Let N be a graded weakly semiprime submodule of M. Let $r_{g} \in$ $h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$such that $r_{g}^{k} m_{h} \in N_{g^{k} h}$. If $0 \neq r_{g}^{k} m_{h}$, then N graded weakly semiprime gives that $r_{g} m_{h} \in N_{g h}$. Suppose that $r_{g}^{k} m_{h}=0$. If $r_{g}^{k} \neq 0$, then $m_{h} \in T^{g}(M)=0$, so $r_{g} m_{h} \in N_{g h}$. If $r_{g}^{k}=0$, then $r_{g}=0$, and hence $r_{g} m_{h} \in N_{g h}$. Therefore N is graded semiprime.

Proposition 3.5. Let M be a graded prime R-module. Then every graded weakly semiprime submodule of M is graded semiprime.

Proof. Let N be a graded weakly semiprime submodule of M. Let $r_{g} \in$ $h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$such that $r_{g}^{k} m_{h} \in N_{g^{k} h}$. If $0 \neq r_{g}^{k} m_{h}$, then N graded weakly semiprime gives that $r_{g} m_{h} \in N_{g h}$. Suppose that $r_{g}^{k} m_{h}=0$, then $r_{g} m_{h}=0$ or $r_{g}^{k-1} M=0$ since M is a graded prime module. By following this method, we get $r_{g} m_{h}=0 \in N_{g h}$, hence N is a graded semiprime submodule of M.

Proposition 3.6. Let M be a graded second R-module and N a proper graded submodule of M. Then N is graded almost semiprime if and only if N is graded weakly semiprime.

Proof. We know that every graded weakly semiprime is graded almost semiprime. Let N be a graded almost semiprime submodule of M and $0 \neq r_{g}^{k} m_{h} \in N_{g^{k} h}$ for some $r_{g} \in h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. By Proposition 2.7, we have $(N: M) N=0$, hence $r_{g}^{k} m_{h} \in N_{g^{k} h}-(N$:
$M) N \cap M_{g^{k} h}$, and so $r_{g} m_{h} \in N_{g h}$. Therefore N is a graded weakly semiprime submodule of M.

Now, we get other characterizations of graded weakly semiprime submodules.

Theorem 3.7. Let M be a graded R-module and N a proper graded submodule of M. Then the following are equivalent:
(i) N is a graded weakly semiprime submodule of M.
(ii) For $r_{g} \in h(R)$ and $k \in \mathbb{Z}^{+} ;\left(N_{h}:_{M} r_{g}^{k}\right)=\left(0:_{M} r_{g}^{k}\right) \cup\left(N_{h g^{1-k}}:_{M}\right.$ r_{g}).
(iii) For $r_{g} \in h(R)$ and $k \in \mathbb{Z}^{+} ;\left(N_{h}:_{M} r_{g}^{k}\right)=\left(0:_{M} r_{g}^{k}\right)$ or $\left(N_{h}:_{M}\right.$ $\left.r_{g}^{k}\right)=\left(N_{h g^{1-k}}:_{M} r_{g}\right)$.
Proof. $(i) \Rightarrow$ (ii) Let $m_{h g^{-k}} \in\left(N_{h}:_{M} r_{g}^{k}\right)$, then $r_{g}^{k} m_{h g^{-k}} \in N_{h}$. If $r_{g}^{k} m_{h g^{-k}} \neq 0$, then since N is graded weakly semiprime implies $r_{g} m_{h g^{-k}} \in N_{h g^{1-k}}$, so $m_{h g^{-k}} \in\left(N_{h g^{1-k}}:_{M} r_{g}\right)$. Let $r_{g}^{k} m_{h g^{-k}}=0$, then $m_{h g^{-k}} \in\left(0:_{M} r_{g}^{k}\right)$, hence $\left(N_{h}:_{M} r_{g}^{k}\right) \subseteq\left(N_{h g^{1-k}}:_{M} r_{g}\right) \cup\left(0:_{M} r_{g}^{k}\right)$. The other containment holds for any graded submodule N.
$(i i) \Rightarrow(i i i)$ It is straightforward .

$$
(i i i) \Rightarrow(i) \text { Let } 0 \neq r_{g}^{k} m_{h} \in N_{g^{k} h} \text { where } r_{g} \in h(R), m_{h} \in h(M)
$$ and $k \in \mathbb{Z}^{+}$. Hence $m_{h} \in\left(N_{g^{k} h}:_{M} r_{g}^{k}\right)$ and $m_{h} \notin\left(0:_{M} r_{g}^{k}\right)$, so by assumption, $m_{h} \in\left(N_{g h}:_{M} r_{g}\right)$ and $r_{g} m_{h} \in N_{g h}$. Therefore N is graded weakly semiprime.

Theorem 3.8. Let M be a graded R-module and N be a proper graded submodule of M. Then N is graded weakly semiprime in M if and only if for any graded submodule $K=\bigoplus_{h \in G} K_{h}$ of $M, a_{g} \in h(R)$ and $k \in \mathbb{Z}^{+}$with $0 \neq a_{g}^{k} K_{h} \subseteq N_{g^{k} h}$, we have $a_{g} K_{h} \subseteq N_{g h}$.
Proof. Assume that N is graded weakly semiprime. Let $0 \neq a_{g}^{k} K_{h} \subseteq$ $N_{g^{k} h}$, for some graded submodule K of $M, a_{g} \in h(R)$ and $k \in \mathbb{Z}^{+}$. Then $K_{h} \subseteq\left(N_{g^{k} h}: a_{g}^{k}\right)$. Since $K_{h} \nsubseteq\left(0: a_{g}^{k}\right)$, so by Theorem 3.7, $K_{h} \subseteq\left(N_{g h}:\right.$ g_{g}), and hence $a_{g} K_{h} \subseteq N_{g h}$. Conversely, let $0 \neq r_{g}^{k} m_{h} \in N_{g^{k} h}$ where $r_{g} \in h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. Hence $0 \neq r_{g}^{k}\left(R_{e} m_{h}\right) \subseteq N_{g^{k} h}$, so by hypothesis, $r_{g}\left(R_{e} m_{h}\right) \subseteq N_{g h}$, hence $r_{g} m_{h} \in N_{g h}$, as needed.
Theorem 3.9. Let $M=\bigoplus_{g \in G} M_{g}$ be a graded R-module and N a graded submodule of M. Let M_{g} be a finitely generated faithful multiplication R_{e}-module and N_{g} a proper submodule of M_{g}. Then the following are equivalent:
(i) N_{g} is g-weakly semiprime in M_{g}.
(ii) $\left(N_{g}:_{R_{e}} M_{g}\right)$ is weakly semiprime in R_{e}.
(iii) $N_{g}=P_{e} M_{g}$ for some weakly semiprime ideal P_{e} of R_{e}.

Proof. $(i) \Rightarrow(i i)$ In this direction, we need M_{g} to be just a faithful module. Suppose that N_{g} is a g-weakly semiprime submodule of M_{g}. Let $a_{e}, b_{e} \in R_{e}$ and $k \in \mathbb{Z}^{+}$such that $0 \neq a_{e}^{k} b_{e} \in\left(N_{g}:_{R_{e}} M_{g}\right)$. Then $0 \neq a_{e}^{k}\left(b_{e} M_{g}\right) \subseteq N_{g}$ since M_{g} is faithful. Now, $N_{g} g$-weakly semiprime implies that $a_{e}\left(b_{e} M_{g}\right) \subseteq N_{g}$ by Theorem 3.8, so $a_{e} b_{e} \in\left(N_{g}: M_{g}\right)$, hence ($N_{g}: M_{g}$) is weakly semiprime in R_{e}.
(ii) $\Rightarrow(i)$ In this direction, we need M_{g} to be just a multiplication module. Let $0 \neq r_{e}^{k} m_{g} \in N_{g}$ where $r_{e} \in R_{e}, m_{g} \in M_{g}$ and $k \in \mathbb{Z}^{+}$. Then $r_{e}^{k}\left(R_{e} m_{g}: M_{g}\right) \subseteq\left(R_{e}\left(r_{e}^{k} m_{g}\right): M_{g}\right) \subseteq\left(N_{g}: M_{g}\right)$. Moreover, $r_{e}^{k}\left(R_{e} m_{g}: M_{g}\right) \neq 0$ because otherwise, if $r_{e}^{\bar{k}}\left(R_{e} m_{g}: M_{g}\right)=0$, then $r_{e}^{k}\left(R_{e} m_{g}\right)=r_{e}^{k}\left(R_{e} m_{g}: M_{g}\right) M_{g}=0$, a contradiction. As $\left(N_{g}: M_{g}\right)$ is a weakly semiprime ideal of R_{e}, then $r_{e}\left(R_{e} m_{g}: M_{g}\right) \subseteq\left(N_{g}: M_{g}\right)$. Therefore $r_{e}\left(R_{e} m_{g}\right)=r_{e}\left(R_{e} m_{g}: M_{g}\right) M_{g} \subseteq\left(N_{g}: M_{g}\right) M_{g}=N_{g}$, and so $r_{e} m_{g} \in N_{g}$, as required.

$$
(i i) \Leftrightarrow(i i i) \text { We choose } P_{e}=\left(N_{g}:_{R_{e}} M_{g}\right)
$$

Theorem 3.10. Let M be a faithful graded cyclic R-module and N be a proper graded submodule of M. Then the following are equivalent:
(i) N is graded weakly semiprime in M.
(ii) $\left(N:_{R} M\right)$ is graded weakly semiprime in R.
(iii) $N=Q M$ for some graded weakly semiprime ideal Q of R.

Proof. Let $M=R m_{g}$ for some homogeneous element $m_{g} \in h(M)$.
$(i) \Rightarrow(i i)$ Suppose that N is a graded weakly semiprime submodule of M. Let $a_{g^{\prime}}, b_{h} \in h(R)$ and $k \in \mathbb{Z}^{+}$such that $0 \neq a_{g^{\prime}}^{k} b_{h} \in(N: M)_{g^{\prime k} h}$. Then $a_{g^{\prime}}^{k}\left(b_{h} M\right) \subseteq N$ and $a_{g^{\prime}}^{k} b_{h} M \neq 0$. Indeed, if $a_{g}^{k} b_{h} M=0$, then $a_{g^{\prime}}^{k} b_{h} \in(0: M)=0$, a contradiction. So $0 \neq a_{g^{\prime}}^{k} b_{h} m_{g} \in N_{g^{\prime k} h g}$, then $a_{g^{\prime}} b_{h} m_{g} \in N_{g^{\prime} h g} \subseteq N$ and so $a_{g^{\prime}} b_{h} M \subseteq N$. Hence $a_{g} b_{h} \in(N$: $M) \cap R_{g h}=(N: M)_{g h}$, so $(N: M)$ is graded weakly semiprime in R.
(ii) $\Rightarrow(i)$ Assume that $(N: M)$ is a graded weakly semiprime ideal of R. Let $0 \neq r_{g^{\prime}}^{k} m_{h} \in N_{g^{\prime k} h}$ where $r_{g^{\prime}} \in h(R), m_{h} \in h(M)$ and $k \in \mathbb{Z}^{+}$. Then $m_{h}=r_{h g^{-1}} m_{g}$ for some $r_{g^{-1} h} \in h(R)$. So $0 \neq r_{g^{\prime}}^{k} r_{h g^{-1}} m_{g} \in N$, hence $r_{g^{\prime}}^{k} r_{h g^{-1}} \in\left(N: m_{g}\right)=(N: M) \cap R_{g^{\prime k} h g^{-1}}=(N: M)_{g^{\prime k} h g^{-1}}$. Thus $r_{g^{\prime}} r_{h g^{-1}} \in(N: M)_{g^{\prime} h g}$, since $(N: M)$ is graded weakly semiprime.

Hence $r_{g^{\prime}} r_{h g^{-1}} M \subseteq N$, and so $r_{g^{\prime}} m_{h}=r_{g^{\prime}} r_{h g^{-1}} m_{g} \in N_{g^{\prime} h}$, as required.
$(i i) \Leftrightarrow(i i i)$ We choose $P=(N: M)$.

Acknowledgments

I would like to thank the referee(s) for valuable comments and suggestions which have improved the paper.

References

1. R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci., 27(2003), 1715-1724.
2. P. Deligne, Quantum Fields and Strings, A course for Mathematicians, A.M.S., 1999.
3. S. Ebrahimi Atani, On graded prime submodules, Chiang Mai J. Sci., 33(2006), 3-7.
4. S. Ebrahimi Atani, On graded weakly prime submodules, Int. Math. Forum, 2(2006), 61-66.
5. S. Ebrahimi Atani and F. Farzalipour, Notes on the graded prime submodules, Int. Math. Forum, 38(2006), 1871-1880.
6. S. Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Turkish J. Math., 31(2007), 371-378.
7. J. Escoriza and B. Torrecillas, Multiplication graded rings, Lecture Notes in Pure and Applied Mathematics, 208(2000), 127-137.
8. J. Escoriza and B. Torrecillas, Multiplication rings and graded rings, Comm. in Algebra, (12) 24(1999), 6213-6232.
9. F. Farzalipour and P. Ghiasvand, On graded semiprime submodules, Word Academy of Science Engineering and technology, 43(2012), 694-697.
10. F. Farzalipour and P. Ghiasvand, On graded semiprime and grade weakly semiprime ideals, International Electronic J. of Algebra, 13(2013),15-22.
11. F. Farzalipour and P. Ghiasvand, On graded weakly semiprime submodules, Thai J. of Math., 43(2012), 694-697.
12. F. Farzalipour and P. Ghiasvand, On graded weak multiplication modules, Tamkang J. of Math., 43(2012),171-177.
13. P. Ghiasvand and F. Farzalipour, Some properties of graded multiplication modules, Far East J. of Math. Sci., 34(2009), 341-352.
14. H. A. Khashan, Some Properties of Gr-Multiplication Ideals, Turkish J. Math., 33(2009), 205-213.
15. I. Kolár̆, P. W. Michor and J. Slovák, Natural operations in differential geometry, Springer-verlag, 2010.
16. K. H. Oral, U. Tekir and A. G. Ağargün, On graded prime and primary submodules, Turkish J. Math., 35(2011), 159-167.
17. M. Refai and K. Al-Zoubi, On graded primary ideals, Turkish J. Math., 28(2004), 217-229.

F. Farzalipour

Department of Mathematics, University of Payame Noor, P.O.Box 19395-3697,
Tehran, Iran.
Email: f_farzalipour@pnu.ac.ir

Journal of Algebra and related topics
Vol. 1, No 1, (2013), pp 82

زير مدول هاى تقريباً نيم اول مدرج

فرخنده فرضعلى پور
دانشگاه پيام نور، تهران، ايران

> چچكيده
> فرض كنيد - R

[^0]: MSC(2010): Primary: 13A02; Secondary: 16W50
 Keywords: graded almost semiprime, graded multiplication module, graded weakly semiprime.
 Received: 13 August 2013, Accepted: 7 October 2013.

