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Abstract.We investigate the eigenvalue distribution of banded Hankel matrices with non-zero
skew diagonals. This work uses push-forward of an arcsine density, block structures and gen-
erating functions. Our analysis is done by a combination of Chebyshev polynomials, Laplacian
determinant expansion and mathematical induction.
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1 Introduction

The computation of eigenvalues of large matrices is a matter of major importance in many
scientific and engineering applications such as quantum chemistry, structural dynamics, chemical
reactions, electrical networks, Markov chain techniques, control theory, magneto hydrodynamics,
combustion processes and cell biology [2, 7, 8]. A number of matrices which appear in most
applications have special structures than others, such as Toeplitz matrices, circulant matrices
and Hankel matrices. These are typically dense matrices, but their entries depend on fewer
limitations than size of matrices.

In [2], Angerer and Zamora analyzed the spectral of a statistical mechanics matrix which
appears in the context of a special toy model of contractile structures from cell biology. We try
to generalize this problem for special group of Hankel matrices. As in [7], we first introduce the
notation

f = f(ω) = ωn
k∑

m=1

fmω
m−1,
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where f ∈ L∞, fm is the mth Fourier coefficients of

F (z) =
∞∑
m=1

fmz
m, (1)

and the series in the right-hand side converges absolutely to F (z) on the open unit disk |z| < 1.
The purpose of this paper is to analyze an n × n banded Hankel matrices with non-zero skew
diagonals (n ≥ k) of the form

Hn(f) =



0 0 0 · · · 0 0 f1
0 0 0 · · · 0 f1 f2
...

...
...

. . .
...

...
...

0 0 0 f1 · · · fk−2 fk−1
0 0 f1 f2 · · · fk−1 fk
0 f1 f2 · · · fk−1 fk 0
f1 f2 · · · fk−1 fk 0 0


. (2)

Our aim is to study the eigenvalues of this matrix in the special case n → ∞. The main
reason to do this work is that the square of this matrix is almost Toeplitz. Eigenvalues for
banded Toeplitz matrices are given in [3, 5, 6, 9, 10]. Angerer [1] derives a weak limit law for
eigenvalues of Hankel matrices with three non-zero skew diagonals:

Hn(f) =



0 0 · · · 0 0 f1
0 0 · · · 0 f1 f2
0 0 · · · f1 f2 f3

0
... f1 f2 f3 0

...
...

. . .
...

...
...

0 f1 f2 · · · 0 0
f1 f2 f3 0 · · · 0


.

Let

ρn :=
1

n

n∑
k=1

δλk , (3)

be the empirical distribution of its eigenvalues, and

dρ(x)

dx
=

1

2π
√

1− x2
, (4)

be one-half of the arcsine distribution on (−1, 1). Then he proved that, in the sense of weak
convergence of measures, limn→∞ ρn =: ρ] exists, and decomposes into the push-forward of the
density (4) under the mapping

ϕ =
√

(f1 − f3)2 + f22 + 2f2(f1 + f3)x+ 4f1f3x2.
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In fact, we have

lim
n→∞

n∑
i=1

w(λi) =
1

2π

∫ 1

−1

w(ϕ(x))√
1− x2

dx+
1

2π

∫ 1

−1

w(−ϕ(x))√
1− x2

dx, (5)

for every continuous function w : C → C with the compact support. He also presented a
conjecture without proof for the eigenvalue distribution of Hankel matrices with more than
three non-zero skew diagonals, matrix Hn(f) in (2). This motivated us to present a proof for
this conjecture.

The paper is organized as follows. The conjecture is presented in Section 2. In Section
3, the proof of theorem is started by some of the elementary steps such as a block structure
for sub-skewtriagonal Hankel matrices. In Section 4, the determinant is expanded by Laplace
expansion and generating functions. Finally in Section 5 the theorem is proved by mathematical
induction.

2 Main theorem

In this section, we introduce the next theorem which has a main role in this paper.

Theorem 1. Let Hn(f), n ≥ k be an n × n (complex) Hankel matrix by symbol f = f(ω) =
ωn
∑k

m=1 fmω
m−1 for some k ≥ 1. Let

ρn :=
1

n

n∑
k=1

δλk , (6)

be the empirical distribution of its eigenvalues. We choose for ρ a measure so that its density is
introduced by

dρ(x)

dx
=

1

2π
√

1− x2
, (7)

which is one-half of the arcsine distribution on (−1, 1). Then limn→∞ ρn =: ρ] exists in the
sense of weak convergence of measures and decomposes into the push-forward of the density (7)
under each of the following mappings

ϕ+, ϕ− : [−1, 1]→ C, (8)

ϕk(x) := ϕ+(x) =
√
T × Jk ×Hk(f)× F t, ϕ− := −ϕ+,

F = (f1, f2, . . . , fk), T = (1, 2T1(x), 2T2(x), . . . , 2Tk−1(x)),

where Tk(x)’s are Chebyshev polynomials of the first kind, Jk is the appropriate exchange matrix
and Hk(f) is a k × k Hankel matrix,

Hk(f) =


0 0 · · · 0 f1
0 0 · · · f1 f2
...

...
. . .

...
...

0 f1 · · · fk−2 fk−1
f1 f2 · · · fk−1 fk

 . (9)
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The empirical distribution (6) of its eigenvalues, when n → ∞, will tend towards the push-
forward of the density (7) by the two mappings (8). Therefore for every continuous function
w : C→ C, we have

lim
n→∞

n∑
i=1

w(λi) =
1

2π

∫ 1

−1

w(ϕ+(x))√
1− x2

dx+
1

2π

∫ 1

−1

w(ϕ−(x))√
1− x2

dx. (10)

In other words, the majority of eigenvalues of a large matrix Hn(f) tends to cluster around the
set ϕ+([−1, 1]) ∪ ϕ−([−1, 1]) with the compact support.

We will give the proof in the Sections 3, 4 and 5.

3 A block structure for sub-skewtriagonal Hankel matrices

Let k = n and (n, n)-entry of the matrix Hn(f) in (9) be zero, namely

Gn(f) =


0 0 · · · 0 f1
0 0 · · · f1 f2
...

...
. . .

...
...

0 f1 · · · fn−2 fn−1
f1 f2 · · · fn−1 0

 .

We set

Jn ×Gn(f) =


f1 f2 · · · fn−1 0
0 f1 · · · fn−2 fn−1
...

...
. . .

...
...

0 0 · · · f1 f2
0 0 · · · 0 f1

 =

(
A C
0 f1

)
,

and

Jn ×Hn(f) =


f1 f2 · · · fn−1 fn
0 f1 · · · fn−2 fn−1
...

...
. . .

...
...

0 0 · · · f1 f2
0 0 · · · 0 f1

 =

(
A B
0 f1

)
.

These blocks help us to find two mappings in Theorem 1 with the compact forms

ϕn(x) =

√
(T ?, 2Tn−1(x))×

(
A B
0 f1

)
×
(
F ?

fn

)
, (11)
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where

T = (1, 2T1(x), 2T2(x), . . . , 2Tn−2︸ ︷︷ ︸
T ?

, 2Tn−1(x)),

F t = (f1, f2, . . . , fn−1︸ ︷︷ ︸
F ?t

, fn)t.

After some computations similar to (11) for the matrix Gn(f), we get

φn(x) =

√
(T ?, 0)×

(
A C
0 f1

)
×
(
F ?

0

)
. (12)

We compute the difference between ϕn(x)2 and φn(x)2

ϕn(x)2 − φn(x)2 = (T ?B + 2Tn−1(x)f1)fn

= [fn + 2T1(x)fn−1 + . . .+ 2Tn−1(x)f1]fn. (13)

Then

|ϕn(x)2 − φn(x)2| = |fn + 2T1(x)fn−1 + 2T2(x)fn−2 + . . .+ 2Tn−1(x)f1||fn|,

and we have

|ϕn(x)2 − φn(x)2| ≤ 2

n∑
i=1

|fi||fn|.

Since the series in Eq. (1) is absolutely convergent, we deduce

lim
n→∞

|ϕn(x)2 − φn(x)2| = 0. (14)

From Eqs. (13), (14) and for n ≥ k in the Hardy-Hilbert space [7], we write

lim
n→∞

φn(x) = lim
n→∞

ϕn(x). (15)

4 Determinant expansion

We find the determinants of the matrices Hn(f) and Gn(f) which are denoted by

Dn(λ) =

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 f1
0 −λ · · · f1 f2
...

...
. . .

...
...

0 f1 · · · fn−2 − λ fn−1
f1 f2 · · · fn−1 fn − λ

∣∣∣∣∣∣∣∣∣∣∣
,
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and

Sn(λ) =

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 f1
0 −λ · · · f1 f2
...

...
. . .

...
...

0 f1 · · · fn−2 − λ fn−1
f1 f2 · · · fn−1 −λ

∣∣∣∣∣∣∣∣∣∣∣
,

respectively. Our aim is to find a relationship between determinants as the coefficients of rational
generating functions. This helps us to recover a linear system of recursion equations [11]. These
generating functions are

h(z) =

∞∑
n=0

Dn(λ)zn, g(z) =

∞∑
n=0

Sn(λ)zn. (16)

Now, via Laplace expansion with respect to the their last rows, the following results are
deduced:

Dn(λ) =

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 f1
0 −λ · · · f1 f2
...

...
. . .

...
...

0 f1 · · · fn−2 − λ fn−1
f1 f2 · · · fn−1 fn − λ

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+1f1

∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 0 f1
−λ · · · 0 f1 f2
...

...
. . .

...
...

0 f1 · · · fn−3 fn−2
f1 · · · fn−3 fn−2 − λ fn−1

∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+ (−1)2n−1fn−1

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 f1
0 −λ · · · f1 f2
...

...
. . .

...
...

0 0 · · · fn−4 − λ fn−2
0 f1 · · · fn−3 fn−1

∣∣∣∣∣∣∣∣∣∣∣
+(fn − λ)

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 0
0 −λ · · · 0 f1
...

...
. . .

...
...

0 0 · · · fn−4 − λ fn−3
0 f1 · · · fn−3 fn−2 − λ

∣∣∣∣∣∣∣∣∣∣∣
and

Sn(λ) =

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 f1
0 −λ · · · f1 f2
...

...
. . .

...
...

0 f1 · · · fn−2 − λ fn−1
f1 f2 · · · fn−1 −λ

∣∣∣∣∣∣∣∣∣∣∣
= (−1)n+1f1

∣∣∣∣∣∣∣∣∣∣∣

0 · · · 0 0 f1
−λ · · · 0 f1 f2
...

...
. . .

...
...

0 f1 · · · fn−3 fn−2
f1 · · · fn−3 fn−2 − λ fn−1

∣∣∣∣∣∣∣∣∣∣∣
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+ . . .+ (−1)2n−1fn−1

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 f1
0 −λ · · · f1 f2
...

...
. . .

...
...

0 0 · · · fn−4 − λ fn−2
0 f1 · · · fn−3 fn−1

∣∣∣∣∣∣∣∣∣∣∣
+ (−λ)

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 0
0 −λ · · · 0 f1
...

...
. . .

...
...

0 0 · · · fn−4 − λ fn−3
0 f1 · · · fn−3 fn−2 − λ

∣∣∣∣∣∣∣∣∣∣∣
.

The difference between these determinants are given by

Dn(λ) = Sn(λ) + fn

∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 0
0 −λ · · · 0 f1
...

...
. . .

...
...

0 0 · · · fn−4 − λ fn−3
0 f1 · · · fn−3 fn−2 − λ

∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
E

. (17)

After expanding E with respect to the first row, we get

Dn(λ) = Sn(λ)− λfnDn−2(λ). (18)

Multiplying the Eq. (18) by zn and zk and summing up from n, k = 2 to infinity, gives

∞∑
n=2

∞∑
k=2

Dnz
nzk =

∞∑
n=2

∞∑
k=2

(Sn − λfnDn−2)z
nzk,

which results in
∞∑
n=2

Dnz
n
∞∑
k=2

zk =
∞∑
n=2

Snz
n
∞∑
k=2

zk − λ
∞∑
n=2

fnz
n
∞∑
k=2

Dk−2z
k.

Then
∞∑
n=0

[Dnz
n −D0 −D1z]

∞∑
k=0

[zk − 1− z] =
∞∑
n=0

[Snz
n − S0 − S1z]

∞∑
k=0

[zk − 1− z]

−λ
∞∑
n=0

[fnz
n − f0 − f1z]z2

∞∑
k=2

[Dk−2z
k−2].

Without loss of generality, we set D0(λ) = S0(λ) = 1, D1(λ) = f1 − λ, S1(λ) = −λ for n ≥ 2.
Then

[h(z)−D0 −D1z][
1

1− z
− 1− z] = [g(z)− S0 − S1z][

1

1− z
− 1− z]− λz2[F (z)− f0 − f1z]h(z),
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and

h(z) =
g(z) + f1z

1 + λ(1− z)[F (z)− f0 − f1z]
. (19)

We know that F (z)−f0−f1z
z2

is ordinary power series generating function (ops) for the sequence
{an+2}∞0 and it converges on |z| < 1 for Eq. (1),

F (z)− f0 − f1z
z2

ops↔ {an+2}∞0 .

For more details on the ordinary power series generating function see [11]. This ordinary power
series will be used in next section.

5 An inductive proof of the main theorem

We can prove the theorem in Section 2 by mathematical induction. In the first step of induction,
we see that Theorem 1 is true for k = 3, since the matrix takes the form:

Hn(f) =



0 0 · · · 0 0 f1
0 0 · · · 0 f1 f2
0 0 · · · f1 f2 f3

0
... f1 f2 f3 0

...
...

. . .
...

...
...

0 f1 f2 · · · 0 0
f1 f2 f3 0 · · · 0


,

see [1]. Namely, if ρn := 1
n

∑n
k=1 δλk is the empirical distribution of its eigenvalues [1, 2], then

limn→∞ ρn =: ρ] exists in the sense of weak convergence of measures and decomposes into the
push-forward of the density (7) under each of mappings

ϕ3(x) =
√

(f1 − f3)2 + f22 + 2f2(f1 + f3)x+ 4f1f3x2,

and

−ϕ3(x) = −
√

(f1 − f3)2 + f22 + 2f2(f1 + f3)x+ 4f1f3x2.

In other words, we have Eq. (5) for every continuous function w : C → C with the compact
support. It shows that the function w(X) generally has a different distribution from X.

Now, we assume that the theorem is true for k = n − 1 in (2) or matrix Gn(f) in Section
3. Then we will show that it is also true for k = n. By our hypothesis in the last section,
there exists a function ϕn−1 = φn that Eq. (10) is true for it. It is easy to see that Sn(λ) is
non-zero for sufficiently large values of λ. We show that (−λ)nSn(λ−1) is a polynomial of degree
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n in λ. It is nonzero for sufficiently small value of λ. Also, log((−λ)nSn(λ−1)) is analytic and
single-valued in a small neighbourhood of 0. We have

−∂ log((−λ)nSn(λ−1))

∂λ
=

n∑
k=1

λk
1− λkλ

=

∞∑
r=0

(
n∑
k=1

λr+1
k

)
λr, (20)

see [1, 2].
n∑
k=1

λr+1
k is n times the (r + 1)-th empirical moment of the measure ρn. Its moment

generating function is shown by

mn(λ) :=
∞∑
r=0

(
1

n

n∑
k=1

λrk

)
λr = −λ

∂ log n
√

(−1)nSn(λ−1)

∂λ
.

Since everything is analytic here, then

m](λ) := lim
n→∞

mn(λ) = −λ
∂ log

(
limn→∞

n
√

(−1)nSn(λ−1)
)

∂λ
= −λ∂ log σ(λ)

∂λ
|λ=λ−1 , (21)

that limn→∞
n
√

(−1)nSn(λ−1) is the reciprocal radius of convergence of the generating function
g(z) in Section 4. Also, limn→∞

n
√

(−1)nSn(λ−1) is a zero of denominator g(z) in λ−1 and

lim
n→∞

n
√
Sn(λ) =

1

σ(λ)
→ lim

n→∞
n
√
Sn(λ−1) =

1

σ(λ−1)
= σ−1(λ−1).

m](λ) is the moment generating function of the measure ρ]. Set w(z) = zr in the Theorem 1,

m](λ) = lim
n→∞

∞∑
r=0

1

π

∫ 1

−1

λ2rφ2rn (x)√
1− x2

dx = lim
n→∞

1

π

∫ 1

−1

1

1− λ2φ2n(x)

1√
1− x2

dx. (22)

On the other hand, by Eq. (21), we deduce

lim
n→∞

1

π

∫ 1

−1

1

1− λ2φ2n(x)

1√
1− x2

dx = −λ∂ log σ(λ)

∂λ
|λ=λ−1 . (23)

The proof will be completed, if we show that Eq. (23), for the function ϕn, is true. Then, we
need the zero σD(λ). Now, from the Section 4, we obtain

h(z) =
g(z) + f1z

1 + λ(1− z)[F (z)− f0 − f1z]
,

namely the denominator of both generating functions are approximately similar except for the
zero 1 + λ(1− z)[F (z)− f0 − f1z],

1 + λ(1− z)[F (z)− f0 − f1z] = 0→ 1

λ
= (1− z)[F (z)− f0 − f1z],

and σD(λ) = σS(λ) ∩ σF (λ). Therefore, Eqs. (1) and (19) show that F (z) is convergent on the
open unit disk |z| < 1. Then, it is a zero of the denominator g(z) which is closest to the origin.

Eq. (15) shows that limn→∞ φn(x) = limn→∞ ϕn(x), therefore

lim
n→∞

1

π

∫ 1

−1

1

1− λ2ϕ2
n(x)

1√
1− x2

dx = −λ∂ log σ(λ)

∂λ
|λ=λ−1 .

Thus, the inductive step is proved. 2
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