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ARENS REGULARITY AND DERIVATIONS OF
HILBERT MODULES WITH THE CERTAIN PRODUCT

A. SAHLEH ∗ AND L. NAJARPISHEH

Abstract. Let A be a C∗-algebra and E be a left Hilbert A-
module. In this paper we define a product on E that making it into
a Banach algebra and show that under the certain conditions E is
Arens regular. We also study the relationship between derivations
of A and E.

1. Introduction and preliminaries

The notion of Hilbert C∗-module is a natural generalization that
of Hilbert space arising by replacing of the field of scalars C by a
C∗-algebra. For commutative C∗-algebras, such generalization was de-
scribed for the first time in the work of I. Kaplansky [6] and the general
theory of Hilbert C∗-modules appeared in the basic papers of W. L.
Paschke [10] and M. A. Rieffel [11]. Let us recall these notions with
more details.

Let A be a C∗-algebra and E be a linear space which is a left A-
module with a compatible scalar multiplication. The space E is called
a left pre-Hilbert A-module if there exists an A-valued inner product

E
〈., .〉 : E × E −→ A with the following properties:

(i)
E
〈x, x〉 ≥ 0 and

E
〈x, x〉 = 0 if and only if x = 0;

(ii)
E
〈λx+ y, z〉 = λ

E
〈x, z〉+

E
〈y, z〉;

(iii)
E
〈a.x, y〉 = a

E
〈x, y〉;

(iv)
E
〈x, y〉∗ =

E
〈y, x〉 for all x, y, z ∈ E, a ∈ A, λ ∈ C.
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From the validity of a useful version of the classical Cauchy-Schwartz
inequality it follows that ||x|| = ||

E
〈x, x〉|| 12 is a norm on E making it

into a normed left A-module [7]. The left pre-Hilbert module E is
called left Hilbert A-module if it is complete with respect to the above
norm. One interesting example of left Hilbert C∗-modules is any C∗-
algebra A as a left Hilbert A-module via

A
〈a, b〉 = ab∗(a, b ∈ A).

The left Hilbert A-module E is called full if the closed linear span

E
〈E,E〉 of all elements of the form

E
〈x, y〉 (x, y ∈ E) is equal to A.

Likewise, a right Hilbert A-module with an A-valued inner product
〈., .〉

E
can be defined. The reader is referred to [7] for more details on

Hilbert C∗-modules .
For a normed space X, we denote by X ′ the topological dual of X.

Now, let X, Y and Z be normed spaces and let f : X × Y −→ Z be a
bounded bilinear map. In [2], R. Arens showed that f has two natural
but different extensions f ′′′ and f r ′′′r from X ′′×Y ′′ to Z ′′. The adjoint
f ′ : Z ′ ×X −→ Y ′ of f is defined by < f ′(z′, x), y >=< z′, f(x, y) >
for all x ∈ X, y ∈ Y, z′ ∈ Z ′, which is also a bounded bilinear map.
By setting f ′′ = (f ′)′ and continuing in this way, the mapping f ′′ :
Y ′′ × Z ′ −→ X ′, f ′′′ : Y ′′ × Z ′ −→ X ′ may be defined similarly.
We also denote by f r the reverse map of f , that is, the bounded bilinear
map f r : Y ×X −→ Z defined by f r(y, x) = f(x, y) for all x ∈ X, y ∈
Y , and it may be extended as above to f r ′′′r : X ′′ × Y ′′ −→ Z ′′.

The map f is called Arens regular when the equality f ′′′ = f r ′′′r

holds. Two natural extensions of the multiplication map π : X×X −→
X of a Banach algebra X, π′′′ and πr ′′′r, are actually the so-called
first and second Arens products, which will be denoted by � and ♦,
respectively. The Banach algebra X is said to be Arens regular if the
multiplication map π is Arens regular. For example L1(G) is Arens
regular if and only if G is finite [13].

A derivation of an algebra A is a linear mapping D from A into itself
such that D(ab) = D(a)b + aD(b) for all a, b ∈ A. For a fixed b ∈ A,
the mapping a 7−→ ba − ab is clearly a derivation, which is called an
inner derivation implemented by b.

Throughout this paper A denotes a C∗-algebra. We recall that ev-
ery Hilbert module is a Banach space but the algebraic properties of
Hilbert modules are our interesting subject. So in this note we utilize
the A-valued inner product of Hilbert module E and define a product
on E that making it into a Banach algebra. Our goal is finding the
conditions under which E is Arens regular. We also study derivations
of E and give some conditions under which innerness of derivations on
A implies the innerness of derivations on E and vice-versa. Finally we
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give a necessary and sufficient condition under which every derivation
of C(X,H) is zero.

2. Arens regularity of Hilbert modules

In this section we introduce a product on a left Hilbert A-module
that making it into a Banach algebra and study Arens regularity of
this Banach algebra.

Let E be a left Hilbert A-module, and let e be an arbitrary element in
E with ||e|| = 1. Then by a direct calculation the map πe : E×E −→ E
defined by πe(x, y) =

E
〈x, e〉.y is a product on E that making it into a

Banach algebra. We denote this Banach algebra by (E, πe).

Example 2.1. Let X be a compact Hausdorff space and H be a
Hilbert space. Then E = C(X,H), the space of all continuous H-
valued functions on X, is a Banach space and it is a left Banach C(X)-
module with the module action defined by πl(f,Λ)(x) = f(x)Λ(x) for
all f ∈ C(X),Λ ∈ E, x ∈ X. Also we define a C(X)-valued inner prod-
uct

E
〈., .〉 on E by

E
〈Λ,Γ〉(x) =

H
〈Λ(x),Γ(x)〉for all Λ,Γ ∈ E, x ∈ X.

It is easy to verify that E is a left C(X)-Hilbert module.
Now let h be an arbitrary element of Hilbert space H with ||h|| = 1.

The map Λ0 : X −→ H defined by Λ0(x) = h for all x ∈ X is a
continuous H-valued function on X, therefore we have Λ0 ∈ E and it
is easy to see that

E
〈Λ0,Λ0〉 = 1C(X). So πΛ0 is a product on E that

making it into a Banach algebra denoted by (E, πΛ0).

Theorem 2.2. [8] For a bounded bilinear map f : X × Y −→ Z the
following statements are equivalent:

(i) f is regular;
(ii) f ′′′′ = f r ′′′′′r;

(iii) f ′′′′(Z ′, X ′′) ⊆ Y ′;
(iv) the linear map x 7−→ f ′(z′, x) : X −→ Y ′ is weakly compact for

every z′ ∈ Z ′.

Theorem 2.3. Let E be a left Hilbert A-module and let for all x′ ∈ E ′
the bounded linear map Tx′ : A −→ E ′ defined by Tx′(a) = π′l(x

′, a) be
weakly compact . Then the Banach algebra (E, πe) is Arens regular.

Proof. Let ϕ : E −→ A be defined by ϕ(x) =
E
〈x, e〉, then ϕ is a

bounded linear map and let πl : A×E −→ E be the left module action
of A on E, thus πe(x, y) = πl(ϕ(x), y). Now suppose that x, y ∈ E, x′ ∈
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E ′, x′′ and y′′ ∈ E ′′. So we have:

< π′e(x
′, x), y) >=< x′, πe(x, y) > = < x′, πl(ϕ(x), y) >

= < π′l(x
′, ϕ(x)), y > .

< π′′e (x′′, x′), x) >=< x′′, π′e(x
′, x) > = < x′′, π′l(x

′, ϕ(x)) >

= < π′′l (x′′, x′), ϕ(x) >

= < ϕ∗(π′′l (x′′, x′)), x > .

< π′′′e (x′′, y′′), x′ > = < x′′, π′′e (y′′, x′) >

= < x′′, ϕ∗(π′′l (y′′, x′)) >

= < ϕ∗∗(x′′), π′′l (y′′, x′) >

= < π′′′l (ϕ∗∗(x′′), y′′), x′ > .

Therefore π′′′e (x′′, y′′) = π′′′l (ϕ∗∗(x′′), y′′) (1). Now

< πr
e
′(x′, x), y >=< x′, πe(y, x) > = < x′, πl(ϕ(y), x) >

= < x′, πr
l (x, ϕ(y)) >

= < πr
l
′(x′, x), ϕ(y) >

= < ϕ∗(πr
l
′(x′, x)), y > .

< πr
e
′′(x′′, x′), x >=< x′′, πr

e
′(x′, x) > = < x′′, ϕ∗(πr

l
′(x′, x)) >

= < ϕ∗∗(x′′), πr
l
′(x′, x) >

= < πr
l
′′(ϕ∗∗(x′′), x′), x > .

< πr
e
′′′r(x′′, y′′), x′ > = < πr

e
′′′(y′′, x′′), x′ >

= < y′′, πr
e
′′(x′′, x′) >

= < y′′, πr
l
′′(ϕ∗∗(x′′), x′) >

= < πr
l
′′′(y′′, ϕ∗∗(x′′)), x′ >

= < πr
l
′′′r(ϕ∗∗(x′′), y′′), x′ > .

So we have πr
e
′′′r(x′′, y′′) = πr

l
′′′r(ϕ∗∗(x′′), y′′) (2).

Now, since for all x′ ∈ E ′ the bounded linear mapping a 7−→ π′l(x
′, a)

from A to E ′ is weakly compact, so applying Theorem (2.2) for πl
shows that πl is regular, and finally by (1), (2) we have π′′′e (x′′, y′′) =
πr
e
′′′r(x′′, y′′) for all x′′, y′′ ∈ E ′′, thus (E, πe) is Arens regular. �

Example 2.4. Let Y be a Banach space and X be a compact Hausdorff
space. Then C(X, Y ), the space of all continuous Y -valued functions
on X, is a Banach space andM(X, Y ), the Banach space of all count-
ably additive Y -valued measures with regular finite variation defined
on the Borel σ-algebra BX of X, is the topological dual of C(X, Y ) [3].
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In particular when H is a Hilbert space M(X,H) is the topological
dual of C(X,H). It is proved that if Y ∗ is weakly sequentially com-
plete then M(X, Y ∗) is weakly sequentially complete [12]. Now since
the Hilbert spaces are reflexive, so the topological dual of C(X,H)
is weakly sequentially complete, therefore by [1,Theorem 4.2] we have
for all x′ ∈ E ′ the bounded linear mapping a 7−→ π′l(x

′, a) from A to
E ′ is weakly compact. Thus applying the above Theorem shows that
(C(X,H), πΛ0) is an Arens regular Banach algebra.

Definition 2.5. Let E be a left Hilbert A-module and e be an arbitrary
element in E with ||e|| = 1. We define the set Ae := {

E
〈x, e〉 : x ∈ E}.

It is easy to verify that Ae is a left ideal in A, but it is not closed in
general. Indeed, let A = {f : [0, 1] −→ C : f is continuous , f(1) = 0}.
Then, f : [0, 1] −→ C defined by f(x) = x− 1 is an element of A and
Af = {

A
〈g, f〉 : g ∈ A} = {gf ∗ : g ∈ A} is not closed, because f ∈ Af

and f 6∈ Af .
Now we give some conditions under which Ae is a closed ideal in A.

For instance if e be a element of E such that
E
〈e, e〉 = 1A then Ae = A,

because for all a ∈ A we have a = a1A = a
E
〈e, e〉 =

E
〈a.e, e〉.

The following definition of a Hilbert bimodule is orginally due to
Brown, Mingo and Shen [4].

Definition 2.6. Let E be an A-bimodule. E is said to be a Hilbert
A-bimodule, when E is a left and right Hilbert A-module and satisfies
the relation

E
〈x, y〉.z = x.〈y, z〉

E
.

Proposition 2.7. Let A be unital and E be a Hilbert A-bimodule. If
e be an element of E such that 〈e, e〉

E
∈ Inv(A) then Ae is closed.

Proof. Let b ∈ Ae, then there exists a sequence (xn)n∈N ⊆ E such
that

E
〈xn, e〉 convergence to b. Thus the sequence (

E
〈xn, e〉)n∈N ⊆ A is

Cauchy. Now we have:

||xn − xm|| = ||(xn − xm)〈e, e〉
E
〈e, e〉−1

E
||

≤ ||xn.〈e, e〉E − xm.〈e, e〉E ||||〈e, e〉−1
E
||

= ||
E
〈xn, e〉.e− E

〈xm, e〉.e||||〈e, e〉−1
E
||

≤ ||
E
〈xn, e〉 − E

〈xm, e〉||||e||||〈e, e〉−1
E
||.

So the sequence (xn)n∈N ⊆ E is Cauchy and by the completeness of E
there exists an element x ∈ E such that xn convergence to x. Now by
continuity of A-valued inner product we conclude that

E
〈xn, e〉 conver-

gence to
E
〈x, e〉. Thus b =

E
〈x, e〉 and Ae is closed. �

The following useful Proposition is well-known and its proof is straight-
forward.
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Proposition 2.8. Let X and Y be Banach algebras and T be a con-
tinuous homomorphism from X onto Y . If X is Arens regular then Y
is.

Theorem 2.9. Let A be unital and E be a Hilbert A-bimodule, ||e|| =
1 and 〈e, e〉

E
∈ Inv(A). Then the Banach algebra (E, πe) is Arens

regular.

Proof. In Proposition (2.7) we saw that under the above conditions Ae

is a closed ideal in A. Now since A is Arens regular so Ae is. We define
the map T : Ae −→ (E, πe) by T (

E
〈x, e〉) = x for all x ∈ E. T is

well-defined because if
E
〈x, e〉 =

E
〈y, e〉 we have:

x− y = (x− y).(〈e, e〉
E
〈e, e〉−1

E
)

= ((x− y).〈e, e〉
E

).〈e, e〉−1
E

= (
E
〈x, e〉.e−

E
〈y, e〉.e).〈e, e〉−1

E
.

And T is continuous because

||xn − x|| = ||(xn − x).〈e, e〉
E
〈e, e〉−1

E
||

≤ ||(xn − x).〈e, e〉
E
||||〈e, e〉−1

X
||

= ||
E
〈xn − x, e〉.e||||〈e, e〉−1

E
||

≤ ||
E
〈xn − x, e〉||||e||||〈e, e〉−1

E
||.

It is easy to see that T is linear. So it is enough that we show that T
is multiplicative

T (
E
〈x, e〉

E
〈y, e〉) = T (

E
〈
E
〈x, e〉.y, e〉) =

E
〈x, e〉.y

= πe(x, y)

= πe(T (
E
〈x, e〉), T (

E
〈y, e〉)).

By Proposition (2.8) since T is onto, the Banach algebra (E, πe) is
Arens regular. �

3. Derivations of (E, πe)

Let E be a left Hilbert A-module, and let e be an element in E with
||e|| = 1 and (E, πe) be the Banach algebra introduced in previous
section.

Lemma 3.1. Let E be a full Hilbert A-module and let a ∈ A. Then
a = 0 if and only if x.a = 0 for all x ∈ E [9].

Theorem 3.2. Let A be unital and E be a left Hilbert A-module and
let D : A −→ A and δ : (E, πe) −→ (E, πe) be derivations of Banach
algebras such that δ(a.x) = D(a).x + a.δ(x). Suppose that δ is inner
implemented by y, then
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(i) if E is full then D is inner.
(ii) if A is unital and there exists z ∈ E such that

E
〈z, y〉 ∈ Inv(A),

then D is inner.

Proof. Let a be an arbitrary element of A. Then for all x ∈ E, δ(a.x) =
D(a).x+ a.δ(x). So for all x ∈ E

D(a).x = δ(a.x)− a.δ(x)

= πe(y, a.x)− πe(a.x, y)− a.(πe(y, x)− πe(x, y))

=
E
〈y, e〉.(a.x)−

E
〈a.x, e〉.y − a.(

E
〈y, e〉.x−

E
〈x, e〉.y)

=
E
〈y, e〉a.x− a

E
〈x, e〉.y − a

E
〈y, e〉.x+ a

E
〈x, e〉.y

=
E
〈y, e〉a.x− a

E
〈y, e〉.x.

Hence D(a).x = (
E
〈y, e〉a− a

E
〈y, e〉).x for all x ∈ E.

(i) Since for all x ∈ E we have (D(a)− (
E
〈y, e〉a− a

E
〈y, e〉)).x = 0 and

E is full, applying Lemma (3.1) for left Hilbert modules shows that
D(a) =

E
〈y, e〉a− a

E
〈y, e〉 and D is a inner derivation implemented by

E
〈y, e〉.

(ii)Since for all x ∈ E in particular for z, D(a).x =
E
〈y, e〉a.x −

a
E
〈y, e〉.x, we conclude that

E
〈D(a).z, y〉 =

E
〈(

E
〈y, e〉a− a

E
〈y, e〉).z, y〉

and so
D(a)

E
〈z, y〉 = (

E
〈y, e〉a − a

E
〈y, e〉)

E
〈z, y〉. Now since

E
〈z, y〉 ∈ Inv(A)

we obtain that D(a) =
E
〈y, e〉a−a

E
〈y, e〉. Thus D is a inner derivation

implemented by
E
〈y, e〉. �

Theorem 3.3. Let E be a Hilbert A-bimodule, 〈e, e〉
E
∈ Inv(A) and

all derivations of Ae be inner, then every derivation of (E, πe) is inner.

Proof. Let δ be an arbitrary derivation of (E, πe). We define the map-
ping D on Ae by D(

E
〈x, e〉) =

E
〈δ(x), e〉 for all x ∈ E. It is easy to

verify that D is linear, also for all x, y ∈ E we have:

D(
E
〈x, e〉

E
〈y, e〉) = D(

E
〈
E
〈x, e〉.y, e〉)

=
E
〈δ(

E
〈x, e〉.y), e〉

=
E
〈δ(πe(x, y)), e〉

=
E
〈πe(δ(x), y) + πe(x, δ(y)), e〉

=
E
〈
E
〈δ(x), e〉.y, e〉+

E
〈
E
〈x, e〉.δ(y), e〉

= D(
E
〈x, e〉)

E
〈y, e〉+

E
〈x, e〉D(

E
〈y, e〉).

So D is a derivation of Ae and since every derivation D : Ae −→
Ae is inner, there exists t ∈ E such that D(

E
〈x, e〉) =

E
〈t, e〉

E
〈x, e〉 −

E
〈x, e〉

E
〈t, e〉 =

E
〈πe(t, x) − πe(x, t), e〉. Thus

E
〈δ(x), e〉 =

E
〈πe(t, x) −

πe(x, t), e〉 and so

E
〈δ(x)−(πe(t, x)−πe(x, t)), e〉.e = 0. Now since E is a Hilbert bimodule
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we have(δ(x) − (πe(t, x) − πe(x, t))).〈e, e〉E = 0 and by invertiblity of
〈e, e〉

E
we conclude that δ(x) = πe(t, x)− πe(x, t) and δ is inner. �

If in the above theorem we add the conditions under which A = Ae,
for example

E
〈e, e〉 = 1A, then we obtain relationship between A and E.

Now suppose that X is a compact Hausdorff space and H is a Hilbert
space. For E = C(X,H) and Λ0 in Example (2.1) we have

E
〈Λ0,Λ0〉 =

1C(X), so for every f ∈ C(X) we have f = f
E
〈Λ0,Λ0〉 =

E
〈f.Λ0,Λ0〉.

Thus C(X) = {
E
〈Λ,Λ0〉 : Λ ∈ E}. Also we notice that Λ0 is a left unit

for Banach algebra (E, πΛ0). So we have:

Theorem 3.4. Every derivation of (C(X,H), πΛ0) is zero if and only
if Λ0 is unit element of (C(X,H), πΛ0).

Proof. Let d be an arbitrary derivation of Banach algebra (E, πΛ0) =
(C(X,H), πΛ0). We define the mapping D on C(X) by D(

E
〈Λ,Λ0〉) =

E
〈d(Λ),Λ0〉 for all Λ ∈ E. With the same proof of the above Theo-

rem we have D is a derivation of C(X). Now since C(X) is a com-
mutative C∗-algebra, D is zero [5] and so D(

E
〈Λ,Λ0〉) = 0 for all

Λ ∈ E. Now since Λ0 is unit element of E for all Λ ∈ E we have
d(Λ) = πΛ0(d(Λ),Λ0) =

E
〈d(Λ),Λ0〉.Λ0 = D(

E
〈Λ,Λ0〉).Λ0 = 0 and so

d ≡ 0.
For the converse, consider the inner derivation dΛ0 on E defined by
dΛ0(Λ) = πΛ0(Λ0,Λ) − πΛ0(Λ,Λ0) for all Λ ∈ E. Since every deriva-
tion of (E, πΛ0) is zero thus dΛ0 = 0 . So for all Λ ∈ E we have
πΛ0(Λ0,Λ) = πΛ0(Λ,Λ0) and it shows that πΛ0(Λ,Λ0) = Λ and so Λ0 is
unit element of (E, πΛ0). �
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منظم آرنز بودن و مشتق روي مدول هاي هیلبرت با یک ضرب مشخص

و لیلا نجارپیشه*عباس سهله
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چکیده
Cیک Aفرض کنید  - جبر وE یکA-در این مقاله ضربی را . مدول هیلبرت چپ باشد

تعریف می کنیم که آن را به یک جبر باناخ تبدیل می کند و نشان خواهیم داد که تحت Eروي 
را بررسی می Eو Aهمچنین رابطه بین مشتق ها روي . استمنظم آرنِزEشرایط مشخص، 
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