Journal of Algebra and related topics Vol. 1, No 1, (2013), pp 31-39

ARENS REGULARITY AND DERIVATIONS OF HILBERT MODULES WITH THE CERTAIN PRODUCT

A. SAHLEH * AND L. NAJARPISHEH

ABSTRACT. Let A be a C^* -algebra and E be a left Hilbert Amodule. In this paper we define a product on E that making it into a Banach algebra and show that under the certain conditions E is Arens regular. We also study the relationship between derivations of A and E.

1. INTRODUCTION AND PRELIMINARIES

The notion of Hilbert C^* -module is a natural generalization that of Hilbert space arising by replacing of the field of scalars \mathbb{C} by a C^* -algebra. For commutative C^* -algebras, such generalization was described for the first time in the work of I. Kaplansky [6] and the general theory of Hilbert C^* -modules appeared in the basic papers of W. L. Paschke [10] and M. A. Rieffel [11]. Let us recall these notions with more details.

Let A be a C^* -algebra and E be a linear space which is a left Amodule with a compatible scalar multiplication. The space E is called a left pre-Hilbert A-module if there exists an A-valued inner product $_{E}\langle .,. \rangle : E \times E \longrightarrow A$ with the following properties:

 $\begin{array}{ll} \text{(i)} & _{\scriptscriptstyle E}\!\langle x,x\rangle \geq 0 \text{ and } _{\scriptscriptstyle E}\!\langle x,x\rangle = 0 \text{ if and only if } x=0;\\ \text{(ii)} & _{\scriptscriptstyle E}\!\langle \lambda x+y,z\rangle = \lambda _{\scriptscriptstyle E}\!\langle x,z\rangle + _{\scriptscriptstyle E}\!\langle y,z\rangle;\\ \text{(iii)} & _{\scriptscriptstyle E}\!\langle a.x,y\rangle = a _{\scriptscriptstyle E}\!\langle x,y\rangle;\\ \text{(iii)} & _{\scriptscriptstyle E}\!\langle a.x,y\rangle = a _{\scriptscriptstyle E}\!\langle x,y\rangle; \end{array}$

⁽iv) $_{E}\langle x,y\rangle^{*} = _{E}\langle y,x\rangle$ for all $x,y,z \in E, a \in A, \lambda \in \mathbb{C}$.

MSC(2010): Primary: 46L08; Secondary: 46H20, 46H25

Keywords: $C^{\ast}\mbox{-algebra},$ Hilbert $C^{\ast}\mbox{-module},$ Banach algebra, Arens regular, derivation.

Received: 31 July 2013, Accepted: 27 October 2013.

 $[\]ast {\rm Corresponding}$ author .

From the validity of a useful version of the classical Cauchy-Schwartz inequality it follows that $||x|| = ||_E \langle x, x \rangle ||^{\frac{1}{2}}$ is a norm on E making it into a normed left A-module [7]. The left pre-Hilbert module E is called left Hilbert A-module if it is complete with respect to the above norm. One interesting example of left Hilbert C^* -modules is any C^* -algebra A as a left Hilbert A-module via $_A \langle a, b \rangle = ab^*(a, b \in A)$.

The left Hilbert A-module E is called full if the closed linear span $E\langle E, E \rangle$ of all elements of the form $E\langle x, y \rangle$ $(x, y \in E)$ is equal to A. Likewise, a right Hilbert A-module with an A-valued inner product $\langle ., . \rangle_E$ can be defined. The reader is referred to [7] for more details on Hilbert C^{*}-modules .

For a normed space X, we denote by X' the topological dual of X. Now, let X, Y and Z be normed spaces and let $f: X \times Y \longrightarrow Z$ be a bounded bilinear map. In [2], R. Arens showed that f has two natural but different extensions f''' and $f^{r'''r}$ from $X'' \times Y''$ to Z''. The adjoint $f': Z' \times X \longrightarrow Y'$ of f is defined by $\langle f'(z', x), y \rangle = \langle z', f(x, y) \rangle$ for all $x \in X, y \in Y, z' \in Z'$, which is also a bounded bilinear map. By setting f'' = (f')' and continuing in this way, the mapping $f'': Y'' \times Z' \longrightarrow X'$, $f''': Y'' \times Z' \longrightarrow X'$ may be defined similarly. We also denote by f^r the reverse map of f, that is, the bounded bilinear map $f^r: Y \times X \longrightarrow Z$ defined by $f^r(y, x) = f(x, y)$ for all $x \in X, y \in$ Y, and it may be extended as above to $f^{r'''r}: X'' \times Y'' \longrightarrow Z''$.

The map f is called Arens regular when the equality $f''' = f^{r'''r}$ holds. Two natural extensions of the multiplication map $\pi : X \times X \longrightarrow X$ of a Banach algebra X, π''' and $\pi^{r'''r}$, are actually the so-called first and second Arens products, which will be denoted by \Box and \Diamond , respectively. The Banach algebra X is said to be Arens regular if the multiplication map π is Arens regular. For example $L^1(G)$ is Arens regular if and only if G is finite [13].

A derivation of an algebra A is a linear mapping D from A into itself such that D(ab) = D(a)b + aD(b) for all $a, b \in A$. For a fixed $b \in A$, the mapping $a \mapsto ba - ab$ is clearly a derivation, which is called an inner derivation implemented by b.

Throughout this paper A denotes a C^* -algebra. We recall that every Hilbert module is a Banach space but the algebraic properties of Hilbert modules are our interesting subject. So in this note we utilize the A-valued inner product of Hilbert module E and define a product on E that making it into a Banach algebra. Our goal is finding the conditions under which E is Arens regular. We also study derivations of E and give some conditions under which innerness of derivations on A implies the innerness of derivations on E and vice-versa. Finally we

give a necessary and sufficient condition under which every derivation of C(X, H) is zero.

2. Arens regularity of Hilbert modules

In this section we introduce a product on a left Hilbert A-module that making it into a Banach algebra and study Arens regularity of this Banach algebra.

Let *E* be a left Hilbert *A*-module, and let *e* be an arbitrary element in *E* with ||e|| = 1. Then by a direct calculation the map $\pi_e : E \times E \longrightarrow E$ defined by $\pi_e(x, y) = {}_{E}\langle x, e \rangle . y$ is a product on *E* that making it into a Banach algebra. We denote this Banach algebra by (E, π_e) .

Example 2.1. Let X be a compact Hausdorff space and H be a Hilbert space. Then E = C(X, H), the space of all continuous H-valued functions on X, is a Banach space and it is a left Banach C(X)-module with the module action defined by $\pi_l(f, \Lambda)(x) = f(x)\Lambda(x)$ for all $f \in C(X), \Lambda \in E, x \in X$. Also we define a C(X)-valued inner product $_{E}\langle ., .\rangle$ on E by $_{E}\langle \Lambda, \Gamma \rangle(x) = _{H}\langle \Lambda(x), \Gamma(x) \rangle$ for all $\Lambda, \Gamma \in E, x \in X$. It is easy to verify that E is a left C(X)-Hilbert module.

Now let *h* be an arbitrary element of Hilbert space *H* with ||h|| = 1. The map $\Lambda_0 : X \longrightarrow H$ defined by $\Lambda_0(x) = h$ for all $x \in X$ is a continuous *H*-valued function on *X*, therefore we have $\Lambda_0 \in E$ and it is easy to see that $_{E}\langle \Lambda_0, \Lambda_0 \rangle = 1_{C(X)}$. So π_{Λ_0} is a product on *E* that making it into a Banach algebra denoted by (E, π_{Λ_0}) .

Theorem 2.2. [8] For a bounded bilinear map $f : X \times Y \longrightarrow Z$ the following statements are equivalent:

- (i) f is regular;
- (ii) $f'''' = f^{r''''r};$
- (iii) $f''''(Z', X'') \subseteq Y';$
- (iv) the linear map $x \mapsto f'(z', x) : X \longrightarrow Y'$ is weakly compact for every $z' \in Z'$.

Theorem 2.3. Let E be a left Hilbert A-module and let for all $x' \in E'$ the bounded linear map $T_{x'} : A \longrightarrow E'$ defined by $T_{x'}(a) = \pi'_l(x', a)$ be weakly compact. Then the Banach algebra (E, π_e) is Arens regular.

Proof. Let $\varphi : E \longrightarrow A$ be defined by $\varphi(x) = {}_{E}\langle x, e \rangle$, then φ is a bounded linear map and let $\pi_{l} : A \times E \longrightarrow E$ be the left module action of A on E, thus $\pi_{e}(x, y) = \pi_{l}(\varphi(x), y)$. Now suppose that $x, y \in E, x' \in \mathbb{R}$

E', x'' and $y'' \in E''$. So we have: $<\pi'_{e}(x',x),y)>=<x',\pi_{e}(x,y)>=<x',\pi_{l}(\varphi(x),y)>$ $= < \pi'_{l}(x', \varphi(x)), y > .$ $<\pi''_{e}(x'',x'),x)>=<x'',\pi'_{e}(x',x)>=<x'',\pi'_{l}(x',\varphi(x))>$ $= \langle \pi_{1}^{\prime\prime}(x^{\prime\prime},x^{\prime}),\varphi(x) \rangle$ $= \langle \varphi^*(\pi''_{I}(x'', x')), x \rangle$. $<\pi_{e}^{\prime\prime\prime}(x^{\prime\prime},y^{\prime\prime}),x^{\prime}> = < x^{\prime\prime},\pi_{e}^{\prime\prime}(y^{\prime\prime},x^{\prime})>$ $= \langle x'', \varphi^*(\pi''_{l}(y'', x')) \rangle$ $= \langle \varphi^{**}(x''), \pi_{I}''(y'', x') \rangle$ $= < \pi_{I}^{\prime\prime\prime}(\varphi^{**}(x^{\prime\prime}), y^{\prime\prime}), x^{\prime} > .$ Therefore $\pi_{e}^{\prime\prime\prime}(x^{\prime\prime},y^{\prime\prime}) = \pi_{l}^{\prime\prime\prime}(\varphi^{**}(x^{\prime\prime}),y^{\prime\prime})$ (1). Now $<\pi_{e}^{r'}(x',x), y>=< x', \pi_{e}(y,x)> = < x', \pi_{l}(\varphi(y),x)>$ $= \langle x', \pi_l^r(x, \varphi(y)) \rangle$ $= \langle \pi_{l}^{r'}(x', x), \varphi(y) \rangle$ $= \langle \varphi^*(\pi_1^{r'}(x', x)), y \rangle$. $<\pi_{e}^{r''}(x'',x'), x>=< x'', \pi_{e}^{r'}(x',x)> = < x'', \varphi^{*}(\pi_{L}^{r'}(x',x))>$ $= \langle \varphi^{**}(x''), \pi_{I}^{r'}(x', x) \rangle$ $= < \pi_{I}^{r''}(\varphi^{**}(x''), x'), x > .$ $<\pi_e^{r'''r}(x'',y''), x'> \ = \ <\pi_e^{r'''}(y'',x''), x'>$ $= \langle y'', \pi_e^{r''}(x'', x') \rangle$ $= \langle y'', \pi_{l}^{r''}(\varphi^{**}(x''), x') \rangle$ $= < \pi_{I}^{r'''}(y'', \varphi^{**}(x'')), x' >$ $= < \pi_1^{r'''r}(\varphi^{**}(x''), y''), x' > .$

So we have $\pi_e^{r'''r}(x'', y'') = \pi_l^{r'''r}(\varphi^{**}(x''), y'')$ (2).

Now, since for all $x' \in E'$ the bounded linear mapping $a \mapsto \pi'_l(x', a)$ from A to E' is weakly compact, so applying Theorem (2.2) for π_l shows that π_l is regular, and finally by (1), (2) we have $\pi''_e(x'', y'') = \pi_e^{r'''r}(x'', y'')$ for all $x'', y'' \in E''$, thus (E, π_e) is Arens regular. \Box

Example 2.4. Let Y be a Banach space and X be a compact Hausdorff space. Then C(X, Y), the space of all continuous Y-valued functions on X, is a Banach space and $\mathcal{M}(X, Y)$, the Banach space of all countably additive Y-valued measures with regular finite variation defined on the Borel σ -algebra \mathcal{B}_X of X, is the topological dual of C(X, Y) [3].

In particular when H is a Hilbert space $\mathcal{M}(X, H)$ is the topological dual of C(X, H). It is proved that if Y^* is weakly sequentially complete then $\mathcal{M}(X, Y^*)$ is weakly sequentially complete [12]. Now since the Hilbert spaces are reflexive, so the topological dual of C(X, H)is weakly sequentially complete, therefore by [1,Theorem 4.2] we have for all $x' \in E'$ the bounded linear mapping $a \mapsto \pi'_l(x', a)$ from A to E' is weakly compact. Thus applying the above Theorem shows that $(C(X, H), \pi_{\Lambda_0})$ is an Arens regular Banach algebra.

Definition 2.5. Let *E* be a left Hilbert *A*-module and *e* be an arbitrary element in *E* with ||e|| = 1. We define the set $A_e := \{ {}_{E} \langle x, e \rangle : x \in E \}$.

It is easy to verify that A_e is a left ideal in A, but it is not closed in general. Indeed, let $A = \{f : [0,1] \longrightarrow \mathbb{C} : f \text{ is continuous }, f(1) = 0\}$. Then, $f : [0,1] \longrightarrow \mathbb{C}$ defined by f(x) = x - 1 is an element of A and $A_f = \{ {}_A\langle g, f \rangle : g \in A \} = \{gf^* : g \in A\}$ is not closed, because $f \in \overline{A_f}$ and $f \notin A_f$.

Now we give some conditions under which A_e is a closed ideal in A. For instance if e be a element of E such that $_{E}\langle e, e \rangle = 1_A$ then $A_e = A$, because for all $a \in A$ we have $a = a1_A = a_{E}\langle e, e \rangle = _{E}\langle a.e, e \rangle$.

The following definition of a Hilbert bimodule is orginally due to Brown, Mingo and Shen [4].

Definition 2.6. Let *E* be an *A*-bimodule. *E* is said to be a Hilbert *A*-bimodule, when *E* is a left and right Hilbert *A*-module and satisfies the relation $_{E}\langle x, y \rangle . z = x . \langle y, z \rangle_{E}$.

Proposition 2.7. Let A be unital and E be a Hilbert A-bimodule. If e be an element of E such that $\langle e, e \rangle_E \in Inv(A)$ then A_e is closed.

Proof. Let $b \in \overline{A_e}$, then there exists a sequence $(x_n)_{n \in \mathbb{N}} \subseteq E$ such that $_{E}\langle x_n, e \rangle$ convergence to b. Thus the sequence $(_{E}\langle x_n, e \rangle)_{n \in \mathbb{N}} \subseteq A$ is Cauchy. Now we have:

$$\begin{aligned} ||x_n - x_m|| &= ||(x_n - x_m)\langle e, e\rangle_E \langle e, e\rangle_E^{-1}|| \\ &\leq ||x_n \langle e, e\rangle_E - x_m \langle e, e\rangle_E ||||\langle e, e\rangle_E^{-1}|| \\ &= ||_E \langle x_n, e\rangle \cdot e - E\langle x_m, e\rangle \cdot e||||\langle e, e\rangle_E^{-1}|| \\ &\leq ||_E \langle x_n, e\rangle - E\langle x_m, e\rangle ||||e||||\langle e, e\rangle_E^{-1}|| \end{aligned}$$

So the sequence $(x_n)_{n\in\mathbb{N}} \subseteq E$ is Cauchy and by the completeness of E there exists an element $x \in E$ such that x_n convergence to x. Now by continuity of A-valued inner product we conclude that $_{E}\langle x_n, e \rangle$ convergence to $_{E}\langle x, e \rangle$. Thus $b = _{E}\langle x, e \rangle$ and A_e is closed. \Box

The following useful Proposition is well-known and its proof is straightforward. **Proposition 2.8.** Let X and Y be Banach algebras and T be a continuous homomorphism from X onto Y. If X is Arens regular then Yis.

Theorem 2.9. Let A be unital and E be a Hilbert A-bimodule, ||e|| = 1 and $\langle e, e \rangle_E \in Inv(A)$. Then the Banach algebra (E, π_e) is Arens regular.

Proof. In Proposition (2.7) we saw that under the above conditions A_e is a closed ideal in A. Now since A is Arens regular so A_e is. We define the map $T : A_e \longrightarrow (E, \pi_e)$ by $T(_{E}\langle x, e \rangle) = x$ for all $x \in E$. T is well-defined because if $_{E}\langle x, e \rangle = _{E}\langle y, e \rangle$ we have:

$$\begin{aligned} x - y &= (x - y).(\langle e, e \rangle_{E} \langle e, e \rangle_{E}^{-1}) \\ &= ((x - y).\langle e, e \rangle_{E}).\langle e, e \rangle_{E}^{-1} \\ &= ({}_{E} \langle x, e \rangle.e - {}_{E} \langle y, e \rangle.e).\langle e, e \rangle_{E}^{-1}. \end{aligned}$$

And T is continuous because

$$\begin{aligned} ||x_n - x|| &= ||(x_n - x) \cdot \langle e, e \rangle_E \langle e, e \rangle_E^{-1}|| \\ &\leq ||(x_n - x) \cdot \langle e, e \rangle_E|||| \langle e, e \rangle_X^{-1}|| \\ &= ||_E \langle x_n - x, e \rangle \cdot e|||| \langle e, e \rangle_E^{-1}|| \\ &\leq ||_E \langle x_n - x, e \rangle||||e|||| \langle e, e \rangle_E^{-1}|| \end{aligned}$$

It is easy to see that T is linear. So it is enough that we show that T is multiplicative

$$\begin{split} T(_{\scriptscriptstyle E}\!\langle x,e\rangle_{\scriptscriptstyle E}\!\langle y,e\rangle) &= T(_{\scriptscriptstyle E}\!\langle _{\scriptscriptstyle E}\!\langle x,e\rangle.y,e\rangle) &= {}_{\scriptscriptstyle E}\!\langle x,e\rangle.y \\ &= \pi_e(x,y) \\ &= \pi_e(T(_{\scriptscriptstyle E}\!\langle x,e\rangle),T(_{\scriptscriptstyle E}\!\langle y,e\rangle)). \end{split}$$

By Proposition (2.8) since T is onto, the Banach algebra (E, π_e) is Arens regular.

3. Derivations of (E, π_e)

Let E be a left Hilbert A-module, and let e be an element in E with ||e|| = 1 and (E, π_e) be the Banach algebra introduced in previous section.

Lemma 3.1. Let E be a full Hilbert A-module and let $a \in A$. Then a = 0 if and only if x.a = 0 for all $x \in E$ [9].

Theorem 3.2. Let A be unital and E be a left Hilbert A-module and let $D: A \longrightarrow A$ and $\delta: (E, \pi_e) \longrightarrow (E, \pi_e)$ be derivations of Banach algebras such that $\delta(a.x) = D(a).x + a.\delta(x)$. Suppose that δ is inner implemented by y, then

- (i) if E is full then D is inner.
- (ii) if A is unital and there exists $z \in E$ such that $_{E}\langle z, y \rangle \in Inv(A)$, then D is inner.

Proof. Let a be an arbitrary element of A. Then for all $x \in E$, $\delta(a.x) = D(a).x + a.\delta(x)$. So for all $x \in E$

$$D(a).x = \delta(a.x) - a.\delta(x)$$

= $\pi_e(y, a.x) - \pi_e(a.x, y) - a.(\pi_e(y, x) - \pi_e(x, y))$
= $_{E}\langle y, e \rangle.(a.x) - _{E}\langle a.x, e \rangle.y - a.(_{E}\langle y, e \rangle.x - _{E}\langle x, e \rangle.y)$
= $_{E}\langle y, e \rangle a.x - a _{E}\langle x, e \rangle.y - a _{E}\langle y, e \rangle.x + a _{E}\langle x, e \rangle.y$
= $_{E}\langle y, e \rangle a.x - a _{E}\langle y, e \rangle.x.$

Hence $D(a).x = ({}_{E}\langle y, e \rangle a - a {}_{E}\langle y, e \rangle).x$ for all $x \in E$.

(i) Since for all $x \in E$ we have $(D(a) - ({}_{E}\langle y, e \rangle a - a {}_{E}\langle y, e \rangle)).x = 0$ and E is full, applying Lemma (3.1) for left Hilbert modules shows that $D(a) = {}_{E}\langle y, e \rangle a - a {}_{E}\langle y, e \rangle$ and D is a inner derivation implemented by ${}_{E}\langle y, e \rangle$.

(ii)Since for all $x \in E$ in particular for z, $D(a).x = {}_{E}\langle y, e \rangle a.x - a {}_{E}\langle y, e \rangle .x$, we conclude that ${}_{E}\langle D(a).z, y \rangle = {}_{E}\langle ({}_{E}\langle y, e \rangle a - a {}_{E}\langle y, e \rangle).z, y \rangle$ and so

 $D(a)_{E}\langle z,y\rangle = ({}_{E}\langle y,e\rangle a - a_{E}\langle y,e\rangle)_{E}\langle z,y\rangle$. Now since ${}_{E}\langle z,y\rangle \in Inv(A)$ we obtain that $D(a) = {}_{E}\langle y,e\rangle a - a_{E}\langle y,e\rangle$. Thus D is a inner derivation implemented by ${}_{E}\langle y,e\rangle$.

Theorem 3.3. Let *E* be a Hilbert *A*-bimodule, $\langle e, e \rangle_E \in Inv(A)$ and all derivations of A_e be inner, then every derivation of (E, π_e) is inner.

Proof. Let δ be an arbitrary derivation of (E, π_e) . We define the mapping D on A_e by $D(_{E}\langle x, e \rangle) = {}_{E}\langle \delta(x), e \rangle$ for all $x \in E$. It is easy to verify that D is linear, also for all $x, y \in E$ we have:

$$D(_{E}\langle x, e \rangle_{E} \langle y, e \rangle) = D(_{E}\langle x, e \rangle, y, e \rangle)$$

$$= {}_{E}\langle \delta(_{E}\langle x, e \rangle, y), e \rangle$$

$$= {}_{E}\langle \delta(\pi_{e}(x, y)), e \rangle$$

$$= {}_{E}\langle \pi_{e}(\delta(x), y) + \pi_{e}(x, \delta(y)), e \rangle$$

$$= {}_{E}\langle \xi \delta(x), e \rangle, y, e \rangle + {}_{E}\langle \xi x, e \rangle, \delta(y), e \rangle$$

$$= D({}_{E}\langle x, e \rangle)_{E}\langle y, e \rangle + {}_{E}\langle x, e \rangle D({}_{E}\langle y, e \rangle).$$

So D is a derivation of A_e and since every derivation $D : A_e \longrightarrow A_e$ is inner, there exists $t \in E$ such that $D(_E\langle x, e \rangle) = _E\langle t, e \rangle_E \langle x, e \rangle - _E\langle x, e \rangle_E \langle t, e \rangle = _E\langle \pi_e(t, x) - \pi_e(x, t), e \rangle$. Thus $_E\langle \delta(x), e \rangle = _E\langle \pi_e(t, x) - \pi_e(x, t), e \rangle$ and so

 $_{E}\langle \delta(x) - (\pi_{e}(t,x) - \pi_{e}(x,t)), e \rangle e = 0$. Now since E is a Hilbert bimodule

we have $(\delta(x) - (\pi_e(t, x) - \pi_e(x, t)))$. $\langle e, e \rangle_E = 0$ and by invertibility of $\langle e, e \rangle_E$ we conclude that $\delta(x) = \pi_e(t, x) - \pi_e(x, t)$ and δ is inner. \Box

If in the above theorem we add the conditions under which $A = A_e$, for example $_{E}\langle e, e \rangle = 1_A$, then we obtain relationship between A and E.

Now suppose that X is a compact Hausdorff space and H is a Hilbert space. For E = C(X, H) and Λ_0 in Example (2.1) we have $_E\langle\Lambda_0, \Lambda_0\rangle = 1_{C(X)}$, so for every $f \in C(X)$ we have $f = f_E\langle\Lambda_0, \Lambda_0\rangle = _E\langle f.\Lambda_0, \Lambda_0\rangle$. Thus $C(X) = \{_E\langle\Lambda, \Lambda_0\rangle : \Lambda \in E\}$. Also we notice that Λ_0 is a left unit for Banach algebra (E, π_{Λ_0}) . So we have:

Theorem 3.4. Every derivation of $(C(X, H), \pi_{\Lambda_0})$ is zero if and only if Λ_0 is unit element of $(C(X, H), \pi_{\Lambda_0})$.

Proof. Let d be an arbitrary derivation of Banach algebra $(E, \pi_{\Lambda_0}) = (C(X, H), \pi_{\Lambda_0})$. We define the mapping D on C(X) by $D(_E\langle\Lambda, \Lambda_0\rangle) = {}_E\langle d(\Lambda), \Lambda_0\rangle$ for all $\Lambda \in E$. With the same proof of the above Theorem we have D is a derivation of C(X). Now since C(X) is a commutative C*-algebra, D is zero [5] and so $D(_E\langle\Lambda, \Lambda_0\rangle) = 0$ for all $\Lambda \in E$. Now since Λ_0 is unit element of E for all $\Lambda \in E$ we have $d(\Lambda) = \pi_{\Lambda_0}(d(\Lambda), \Lambda_0) = {}_E\langle d(\Lambda), \Lambda_0\rangle$. $\Lambda_0 = D(_E\langle\Lambda, \Lambda_0\rangle)$. $\Lambda_0 = 0$ and so $d \equiv 0$.

For the converse, consider the inner derivation d_{Λ_0} on E defined by $d_{\Lambda_0}(\Lambda) = \pi_{\Lambda_0}(\Lambda_0, \Lambda) - \pi_{\Lambda_0}(\Lambda, \Lambda_0)$ for all $\Lambda \in E$. Since every derivation of (E, π_{Λ_0}) is zero thus $d_{\Lambda_0} = 0$. So for all $\Lambda \in E$ we have $\pi_{\Lambda_0}(\Lambda_0, \Lambda) = \pi_{\Lambda_0}(\Lambda, \Lambda_0)$ and it shows that $\pi_{\Lambda_0}(\Lambda, \Lambda_0) = \Lambda$ and so Λ_0 is unit element of (E, π_{Λ_0}) .

References

- C. A. Akemann, P. G. Dodds and J. L. B. Gablen, Weak compactness in the dual space of a C^{*}- algebra, J. Funct. Anal. 10 (1972), 446-450.
- R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848.
- J. K. Brooks and P. W. Lewis, *Linear operators and vector measures*, Trans. Amer. Math. Soc. 192 (1974), 139-162.
- L. G. Brown, J. A. Mingo and N.-T. Shen, Quasi-multipliers and embeddings of Hilbert C*-bimodules, Canad. J. Math. 46 (1994), no. 6, 1150-1174.
- R. V. Kadison, Derivations of operator algebras, Ann. Math. 83(2) (1966), 280-293.
- 6. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-858.
- E. C. Lance, Hilbert C^{*}-modules, LMS Lecture Note Series 210, Cambridge Univ. Press, 1995.
- S. Mohammadzadeh and H.R.E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Austral. Math. Soc. 77 (2008), 465-476.

- M. S. Moslehian, On full Hilbert C^{*}-modules, Bull. Malays. Math. Soc. 224 (2001),no. 1, 45-47.
- W. L. Paschke, Inner product modules over B^{*}-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
- M. A. Rieffel, Induced representations of C^{*}-algebras, Advances in Math. 13 (1974), 176-257.
- 12. M. Talagrand, Weak Cauchy sequences in $L^1(E)$. Amer. J. Math. 106 (1984), 703-724.
- N. J. Young, The irregularity of multiplication in group algebras, Quart. J. Math. 24 (1973), 59-62.

A. Sahleh

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran. Email: sahlehj@guilan.ac.ir

L. Najarpisheh

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran. Email: Najarpisheh@phd.guilan.ac.ir Journal of Algebra and related topics Vol. 1, No 1, (2013), pp 81

منظم آرنز بودن و مشتق روی مدول های هیلبرت با یک ضرب مشخص

عباس سهله^{*} و لیلا نجار پیشه دانشکده علومریاضی، دانشگاه گیلان، رشت، ایران

چکیده فرض کنید A یک C^+ جبر و E یک A^- مدول هیلبرت چپ باشد. در این مقاله ضربی را روی E تعریف می کنیم که آن را به یک جبر باناخ تبدیل می کند و نشان خواهیم داد که تحت شرایط مشخص، E منظم آرِنز است. همچنین رابطه بین مشتق ها روی A و E را بررسی می کنیم.

Email: sahlehj@guilan.ac.ir

* مؤلف مسئول