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Abstract. This manuscript is concerned about the study of the existence and uniqueness of
solutions for fractional differential equation involving Caputo Hadamard fractional operator of
order 1 < ϑ ≤ 2 with impulsive boundary conditions. The existence results are established firstly
through the Banach Contraction Principle and then using Schauder’s fixed point theorem. We
present some examples to demonstrate the application of our main results.
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1 Introduction

The theory of fractional differential equations is an advanced and more generalized version of
differential equation theory. Boundary value problems of fractional order have numerous applica-
tions in applied physics, biological, engineering, and chemical background. For the fundamental
study of fractional systems, one can go through the books [6,10,13,19,21] and references therein.
There are an immense number of papers related to differential equations of arbitrary order with
initial and boundary conditions being published but still far less work has been done to develop
the existence of solutions for fractional order differential equations with boundary conditions.
The differential equations of fractional order involving Riemann-Liouville and Caputo fractional
derivatives have recently been studied by many authors [2–4,14,18,22]. On the other hand, the
literature on fractional differential equations involving the Hadamard derivative has been com-
paratively less explored. Formally Riemann-Liouville fractional derivative is a fractional power
( d
dx)α of the differentiation d

dx and is invariant with respect to translation on the whole axis [20].
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Later, Hadamard [11] suggested a fractional power of the form (x d
dx)α. This construction is well

suited to the case of the half-axis and is invariant relative to dilation [20]. Furthermore, Jarad et
al. [12] modified the Hadamard fractional derivative into a more suitable one having physically
interpretable initial conditions similar to the ones in the Caputo setting. For more theories and
properties of Hadamard integral and derivative, we refer the reader to [8, 16, 17, 25, 27] and the
references cited therein.

The study of the impulsive boundary value problems has been evolved over the last few
decades. Also, it has been very helpful in the development of the various applied mathematical
models of real-world processes occurring in engineering and applied sciences. An Abundance of
literature is available on impulsive boundary value problems, for instance, see the monographs
[5,7,9,15,24,26] and references therein. Impulsive differential equations with boundary conditions
are used to understand the processes in which abrupt changes and discontinuous jumps occur.

In 2013, Tian and Bai [23] studied a sufficient condition for the existence of solutions to the
impulsive boundary value problem involving the Caputo fractional derivative. They established
the existence and uniqueness results using Krasnoselskii fixed point theorem and Banach fixed
point theorem. Recently, W. Yukunthorn et. al. [28] considered impulsive multi-order bound-
ary value problem involving Caputo-Hadamard fractional differential operator. The necessary
conditions for the existence of solutions are established by Rothe Fixed Point theorem, Banach
fixed point theorem and degree theory. In these papers, existence results of various types of
dynamical systems with fractional-order have been established. However, to the study of the
existence of solutions of dynamical systems, fixed-point technique has been effectively utilized.
Motivated by this fact, we use Schauder’s fixed point theorem to study the existence of solutions
of Caputo-Hadamard fractional differential equation with impulsive boundary condition of the
following form 

CHDϑ
ζk
u(ζ) = f(ζ, u(ζ)), ζ, ζk ∈ [1, e], ζ 6= ζk,

4u(ζk) = Ak(u(ζk)), k = 1, 2, · · · ,m,
4δu(ζk) = Ak(u(ζk)),

u(1) = h(u), u(e) = g(u),

(1)

where CHDϑ
ζk

is the Caputo-Hadamard fractional derivative of order 1 < ϑ ≤ 2. Let f : [1, e]×R→
R, Ak,Ak : PC(J,R) → R be continuous functions and 4u(ζk) = u(ζ+

k ) − u(ζ−k ), 4δu(ζk) =
δu(ζ+

k ) − δu(ζ−k ) and δ = ζ d
dζ . Also, u(ζ+

k ) and u(ζ−k ) are the right limit and left limit of u(ζ)
at ζ = ζk respectively and g, h : PC(J,R) → R are any fixed continuous functionals, where
PC(J,R) is the space of piece-wise continuous functions.

This manuscript is organized as follows. In Section 2, we present a few useful definitions
and lemmas. In Section 3, we present two main results based on Banach Contraction Principle
and Schauder’s fixed point theorem. In Section 4, we present some examples to demonstrate the
application of our main results.

2 Some definitions and lemmas

This section is devoted to some notations, basic definitions and some results which are useful
for validating the main results.
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Let us denote J = [1, e], 1 = t0 < t1 < t2 < · · · < tm+1 = e, J0 = [1, t1], J1 = (t1, t2], . . . , Jm =
(tm, e], and the Banach space

PC(J,R) = {u : J→ R; u(·) ∈ C((tk, tk+1],R), k = 0, 1, . . . ,m

and u(t+k ), u(t−k ) exist with u(t−k ) = u(tk), k = 1, 2, . . .m},

with the norm ‖u‖PC := sup{|u(t)| : t ∈ J}.

Definition 1. [11,12] The Hadamard derivative of fractional order q for a function g : [a, b]→
R, 0 < a < b is defined as

HDq
ag(t) =

1

Γ(n− q)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−q−1 g(s)

s
ds n− 1 < q ≤ n , n = [q] + 1,

where [q] denotes the integer part of the real number q.

Definition 2. [11, 12] The Hadamard fractional integral of order q for a function g is defined
as

HIqag(t) =
1

Γ(q)

∫ t

a

(
log

t

s

)q−1 g(s)

s
ds.

Definition 3. [11, 12] For an n-times differentiable function g : [a, b] → R, 0 < a < b, the
Caputo type Hadamard derivative of fractional order α is defined as

CHDα
a g(t) =

1

Γ(n− α)

∫ t

a

(
log

t

s

)n−α−1

δng(s)
ds

s
, n− 1 < α < n, n = [α] + 1,

where δ = t ddt t ∈ [1, e] and [α] denotes the integer part of the real number α and log(·) = loge(·).

Lemma 1. [1] Schauder Fixed Point Theorem: Let C be a closed, convex subset of a
normed linear space E. Then every compact and continuous map F : C → C has at least one
fixed point.

Lemma 2. [12] Let y ∈ ACnδ [1, e] or Cnδ [1, e] and α ∈ C. Then

HIqa(CHDα
a y(x)) = y(x)−

n−1∑
k=0

ck

(
log

x

a

)k
.

Lemma 3. Let 1 < ϑ ≤ 2 and a ∈ C[J,R]. Then the nonlinear system
CHDϑ

tk
u(ζ) = a(ζ), ζ, ζk ∈ [1, e], ζ 6= ζk,

4u(ζk) = Ak(u(ζk)), k = 1, 2, . . . ,m,

4δu(ζk) = Ak(u(ζk)),

u(1) = h(u), u(e) = g(u)

(2)
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is equivalent to the following integral equation

u(ζ) =



c log ζ + h(u) + HIϑ1 a(ζ); ζ ∈ J0,

c log ζ + h(u) + HIϑζka(ζ) +
∑k

j=1
HIϑζj−1

a(ζj)

+
∑k

j=1 Aj(u(ζj)) +
∑k

j=1

(
log ζ

ζj

)
HIϑ−1

ζj−1
a(ζj)

+
∑k

j=1

(
log ζ

ζj

)
Aj(u(ζj)); ζ ∈ Jk k = 1, 2, . . . ,m.

(3)

where

c = g(u)− h(u)−
m+1∑
j=1

HIϑζj−1
a(ζj)−

m∑
j=1

Aj(u(ζj))

−
m∑
j=1

(
log

e

ζj

)
HIϑ−1

ζj−1
a(ζj)−

m∑
j=1

(
log

e

ζj

)
Aj(u(ζj)). (4)

Proof. By Lemma 2, for ζ ∈ J0 = [1 = ζ0, ζ1], we have

u(ζ) = HIϑ1 a(ζ) + c0 + c1 log ζ =
1

Γ(ϑ)

∫ ζ

1

(
log

ζ

s

)ϑ−1

a(s)
ds

s
+ c0 + c1 log ζ,

and

δu(ζ) = ζ
d

dζ
[u(ζ)] = ζ

[
1

Γ(ϑ− 1)

∫ ζ

1

(
log

ζ

s

)ϑ−2

a(s)
ds

s

1

ζ
+ c1

1

ζ

]
= HIϑ−1

1 a(ζ) + c1.

As u(1) = h(u) implies c0 = h(u), it follows that

u(ζ) = HIϑ1 a(ζ) + h(u) + c1 log ζ = c log ζ + h(u) + HIϑ1 a(ζ),

where c = c1.
Now for ζ ∈ J1 = (ζ1, ζ2], we have

HIϑζ1(CHDϑ
ζ1)u(ζ) = u(ζ)− d0 − d1

(
log

ζ

ζ1

)
,

u(ζ) = HIϑζ1a(ζ) + d0 + d1

(
log

ζ

ζ1

)
,

and

δu(ζ) = ζ
d

dζ
(u(ζ)) = ζ

[
1

ζ

1

Γ(ϑ− 1)

∫ ζ

ζ1

(
log

ζ

s

)ϑ−2

a(s)
ds

s
+
d1

ζ

]
= HIϑ−1

ζ1
a(ζ) + d1.

Also, u(ζ+
1 )− u(ζ−1 ) = 4u(ζ1) = A1(u(ζ1)) implies

A1(u(ζ1)) = d0 − HIϑ1 a(ζ1)− h(u)− c log ζ1,
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d0 = HIϑ1 a(ζ1) + h(u) + c log ζ1 + A1(u(ζ1)),

and δu(ζ+
1 )− δu(ζ−1 ) = 4δu(ζ1) = A1(u(ζ1)) implies

A1(u(ζ1)) = d1 − HIϑ−1
1 a(ζ1)− c,

d1 = A1(u(ζ1)) + HIϑ−1
1 a(ζ1) + c.

Applying the above arguments, we get

u(ζ) = HIϑζ1a(ζ) + HIϑζ1a(ζ1) +

(
log

ζ

ζ1

)
HIϑ−1

1 a(ζ1) +

(
log

ζ

ζ1

)
A1(u(ζ1)) + h(u)

+ A1(u(ζ1)) + c log ζ.

Continuing in the same manner, we obtain for ζ ∈ Jm = (ζm, e],

u(ζ) = c log ζ + h(u) +
m∑
j=1

Aj(u(ζj)) +
m∑
j=1

(
log

ζ

ζj

)
Aj(u(ζj)) + HIϑζma(ζ)

+

m∑
j=1

HIϑζj−1
a(ζj) +

m∑
j=1

(
log

ζ

ζj

)
HIϑ−1

ζj−1
a(ζj),

and using u(e) = g(u), we have

g(u) = c+ h(u) +
m∑
j=1

Aj(u(ζj)) +
m∑
j=1

(
log

e

ζj

)
Aj(u(ζj))

+ HIϑζma(e) +

m∑
j=1

HIϑζj−1
a(ζj) +

m∑
j=1

(
log

e

ζj

)
HIϑ−1

ζj−1
a(ζj).

This implies that

c = g(u)− h(u)−
m∑
j=1

Aj(u(ζj))−
m∑
j=1

(
log

e

ζj

)
Aj(u(ζj))

−
m+1∑
j=1

HIϑζj−1
a(ζj)−

m∑
j=1

(
log

e

ζj

)
HIϑ−1

ζj−1
a(ζj),

which completes the proof.

3 Main Results

Now we construct an operator T : PC(J,R)→ PC(J,R) by

T(u(ζ)) =a log ζ + (1− log ζ)h(u) + (log ζ)g(u) +
∑

0<ζk<ζ

Ak(u(ζk)
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+
∑

0<ζk<ζ

(
log

ζ

ζk

)
Ak(u(ζk)) +

1

Γ(ϑ)

∫ ζ

ζk

(
log

ζ

s

)ϑ−1

f(s, u(s))
ds

s

+
∑

0<ζk<ζ

1

Γ(ϑ)

∫ ζk

ζk−1

(
log

ζ

s

)ϑ−1

f(s, u(s))
ds

s

+
∑

0<ζk<ζ

(
log

ζ

ζk

)
1

Γ(ϑ− 1)

∫ ζk

ζk−1

(
log

ζ

s

)ϑ−2

f(s, u(s))
ds

s
, (5)

where

a =−
m∑
k=1

Ak(u(ζk))−
m∑
k=1

(
log

e

ζk

)
1

Γ(ϑ− 1)

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

f(s, u(s))
ds

s

−
m+1∑
k=1

1

Γ(ϑ)

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1

f(s, u(s))
ds

s
−

m∑
k=1

(
log

e

ζk

)
Ak(u(ζk)). (6)

Here, we take some suitable assumptions for establishing our main results.

(H1) f : J × R→ R is continuous and there exists constant L1 > 0 such that

|f(ζ, z1)− f(ζ, z2)| ≤ L1|z1 − z2|,

for each ζ ∈ J and all z1, z2 ∈ R.

(H2) There exist constants L2, L3 > 0 such that

|Ak(u)− Ak(v)| ≤ L2|u− v|, |Ak(u)− Ak(v)| ≤ L3|u− v|,

for u, v ∈ R, k = 1, 2, · · · ,m.

(H3) There exist constants L4, L5 > 0 such that

|g(u)− g(v)| ≤ L4‖u− v‖PC , |h(u)− h(v)| ≤ L5‖u− v‖PC .

We firstly establish the existence and uniqueness result using Banach Contraction Principle.

Theorem 1. Assume that (H1),(H2) and (H3) hold along with(
L1

4m+ 2

Γ(ϑ)
+ 2m(L2 + L3) + L4 + L5

)
< 1 (7)

Then the problem given by (1) has a unique solution on [1,e].

Proof. Let supζ∈J |f(ζ, 0)| = M1 , maxk |Ak(0)| = M2 , maxk |Ak(0)| = M3 , |g(0)| = M4 ,
|h(0)| = M5 and

U0 =

{
u(ζ) ∈ PC(J,R); ‖u‖PC ≤ R0

}
,
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where

R0 =
(4m+ 2)M1 + 2mΓ(ϑ)(M2 +M3) + Γ(ϑ)(M4 +M5)

Γ(ϑ)− (4m+ 2)L1 − 2mΓ(ϑ)(L2 + L3)− Γ(ϑ)(L4 + L5)
.

Firstly we prove that T maps U0 into itself

|a| ≤ 1

Γ(ϑ)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1

|f(s, u(s))− f(s, 0)|ds
s

+
1

Γ(ϑ)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1

|f(s, 0)|ds
s

+

m∑
k=1

(
log

e

ζk

)
1

Γ(ϑ− 1)

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

|f(s, u(s))− f(s, 0)|ds
s

+
m∑
k=1

(
log

e

ζk

)
1

Γ(ϑ− 1)

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

|f(s, 0)|ds
s

+
m∑
k=1

|Ak(u(ζk))− Ak(u(0))|+
m∑
k=1

|Ak(u(0))|

+
m∑
k=1

(
log

e

ζk

)
|Ak(u(ζk))− Ak(u(0))|+

m∑
k=1

(
log

e

ζk

)
|Ak(u(0))|

≤
m+1∑
k=1

L1‖u‖PC +M1

Γ(ϑ+ 1)
+

m∑
k=1

L1‖u‖PC +M1

Γ(ϑ)

+m(L2‖u‖PC +M2) +m(L3‖u‖PC +M3)

≤2m+ 1

Γ(ϑ)
(L1‖u‖PC +M1) +m(L2‖u‖PC +M2) +m(L3‖u‖PC +M3).

Again

|T(u(ζ))| ≤|a|+ |h(u)|+ |g(u)|+m(L2‖u‖PC +M2) +m(L3‖u‖PC +M3)

+
L1‖u‖PC +M1

Γ(ϑ+ 1)
+

m∑
k=1

L1‖u‖PC +M1

Γ(ϑ+ 1)
+

m∑
k=1

L1‖u‖PC +M1

Γ(ϑ)

≤2m+ 1

Γ(ϑ)
(L1‖u‖PC +M1) + 2m(L2‖u‖PC +M2) + 2m(L3‖u‖PC +M3)

+ (L4‖u‖PC +M4) + (L5‖u‖PC +M5) +
2m+ 1

Γ(ϑ)
(L1‖u‖PC +M1)

≤4m+ 2

Γ(ϑ)
(L1‖u‖PC +M1) + 2m(L2‖u‖PC +M2) + 2m(L3‖u‖PC +M3)

+ (L4‖u‖PC +M4) + (L5‖u‖PC +M5)

≤R0.

This implies that T maps U0 into itself.
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Next we shall prove that the map T is a contraction. Let u, v ∈ PC(J,R). Then for any
ζ ∈ Jk, k = 1, 2, . . . ,m, we have

|T(u(ζ))− T(v(ζ))| ≤
(

2m+ 1

Γ(ϑ+ 1)
L1 +

2m+ 1

Γ(ϑ)
L1 + 2mL2 + 2mL3 + L4 + L5

)
‖u− v‖PC

≤
(

4m+ 2

Γ(ϑ)
L1 + 2mL2 + 2mL3 + L4 + L5

)
‖u− v‖PC .

It follows that the map T is a contraction map. Hence, from Banach fixed point theorem, the
operator T has a unique fixed point. That is, the problem (1) has a unique solution on [1,e].

The next result is established using Schauder fixed point theorem.

Theorem 2. Assume that f, Ak, Ak, g, h are continuous functions and there exists an non-
negative function a(·) ∈ L(J,R) and constants z1 ≥ 0 and zi > 0 for i = 2, 3, 4, 5 s.t., |f(ζ, u)| ≤
a(ζ) + z1|u|σ , |Ak(u)| ≤ z2|u|µ, |Ak(u)| ≤ z3|u|ν , |g(u)| ≤ z4|u|θ, |h(u)| ≤ z5|u|γ , k = 1, 2, · · · ,m,
for any u ∈ R and for some 0 < σ, µ, ν, θ, γ ≤ 1. If

2(2m+ 1)z1
Γ(ϑ)

+ 2mz2 + 2mz3 + z4 + z5 < 1,

then the impulsive boundary value problem (1) has at least one solution on [1, e].

Proof. The proof of this result is divided into three steps.
Step I. Operator T is continuous.
As f, g, h,Ak,Ak; k = 1, 2, . . . ,m, are continuous functions, we conclude that the operator T is
continuous.
Step II. T maps bounded sets into uniformly bounded sets in PC(J,R).
Let

U = {u(ζ) ∈ PC(J,R) : ‖u‖PC ≤ R},

where

R ≥ max


1,

4
Γ(ϑ−1)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

a(s)
ds

s

1−
(

4m+2
Γ(ϑ) z1 + 2mz2 + 2mz3 + z4 + z5

)

.

For any arbitrary u ∈ U , we have

|a| ≤
m∑
k=1

|Ak(u(ζk))|+
m∑
k=1

(
log

e

ζk

)
1

Γ(ϑ− 1)

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

|f(s, u(s))|ds
s

m+1∑
k=1

1

Γ(ϑ)

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1

|f(s, u(s))|ds
s

+
m∑
k=1

(
log

e

ζk

)
|Ak(u(tk))|

≤mz2R
µ +mz3R

ν
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+
1

Γ(ϑ)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1

a(s)
ds

s
+

z1R
σ

Γ(ϑ)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1ds

s

+
1

Γ(ϑ− 1)

m∑
k=1

(
log

e

ζk

)∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

a(s)
ds

s

+
z1R

σ

Γ(ϑ− 1)

m∑
k=1

(
log

e

ζk

)∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2ds

s

≤ 1

Γ(ϑ)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1

a(s)
ds

s

+
1

Γ(ϑ− 1)

m∑
k=1

(
log

e

ζk

)∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

a(s)
ds

s
+

(m+ 1)z1R
σ

Γ(ϑ+ 1)

+
mz1R

σ

Γ(ϑ)
+mz2R

µ +mz3R
ν

≤ 1

Γ(ϑ− 1)

m+1∑
k=1

∫ ζk

ζk−1

((
log

ζk
s

)ϑ−2

+

(
log

ζk
s

)ϑ−2)
a(s)

ds

s

+
(2m+ 1)z1R

σ

Γ(ϑ)
+mz2R

µ +mz3R
ν

=
2

Γ(ϑ− 1)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

a(s)
ds

s
+

(2m+ 1)z1R
σ

Γ(ϑ)
+mz2R

µ +mz3R
ν

and

|T(u(ζ))| ≤ |a|+ |g(u)|+ |h(u)|+
m∑
k=1

|Ak(u(ζk)|+
m∑
k=1

(
log

ζ

ζk

)
|Ak(u(ζk))|

+
1

Γ(ϑ)

∫ ζ

ζk

(
log

ζ

s

)ϑ−1

a(s)
ds

s
+

z1R
σ

Γ(ϑ)

∫ ζ

ζk

(
log

ζ

s

)ϑ−1ds

s

+
1

Γ(ϑ)

m∑
k=1

∫ ζk

ζk−1

(
log

ζ

s

)ϑ−1

a(s)
ds

s
+

z1R
σ

Γ(ϑ)

m∑
k=1

∫ ζk

ζk−1

(
log

ζ

s

)ϑ−1ds

s

+
1

Γ(ϑ− 1)

m∑
k=1

(
log

ζ

ζk

)∫ ζk

ζk−1

(
log

ζ

s

)ϑ−2

a(s)
ds

s

+
z1R

σ

Γ(ϑ− 1)

m∑
k=1

(
log

ζ

ζk

)∫ ζk

ζk−1

(
log

ζ

s

)ϑ−2ds

s

≤ |a|+mz4R
θ +mz5R

γ +mz2R
µ +mz3R

ν +
(m+ 1)z1R

σ

Γ(ϑ+ 1)
+

(m)z1R
σ

Γ(ϑ+ 1)

+
1

Γ(ϑ)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζ

s

)ϑ−1

a(s)
ds

s
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+
1

Γ(ϑ− 1)

m∑
k=1

(
log

ζ

ζk

)∫ ζk

ζk−1

(
log

ζ

s

)ϑ−2

a(s)
ds

s

≤ 2

Γ(ϑ− 1)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

a(s)
ds

s
+

(2m+ 1)z1R
σ

Γ(ϑ+ 1)
+mz2R

µ

+mz3R
ν +mz4R

θ +mz5R
γ +mz2R

µ +mz3R
ν +

(m+ 1)z1R
σ

Γ(ϑ+ 1)

+
(m)z1R

σ

Γ(ϑ+ 1)
+

2

Γ(ϑ− 1)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

a(s)
ds

s

≤ 4

Γ(ϑ− 1)

m+1∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

a(s)
ds

s
+

2(2m+ 1)z1R

Γ(ϑ+ 1)

+ 2mz2R+ 2mz3R+mz4R+mz5R

≤R

So T maps U into itself.
Step III. T maps bounded sets into equicontinuous sets of PC(J,R).
Let U ⊂ PC(J,R) be any arbitrary bounded set as assumed in STEP II. We fix, Nf =
max{|f(ζ, u) : ζ ∈ J & u ∈ U}|+ 1, u ∈ U and let ζ, τ ∈ [1, e] with ζ < τ . So we obtain

|a| ≤mz2R
µ +mz3R

ν +
Nf

Γ(ϑ)

m∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−1ds

s

+
Nf

Γ(ϑ− 1)

m∑
k=1

(
log

e

ζk

)∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2

|f(s, u(s))|ds
s

≤
Nf(2m+ 1)

Γ(ϑ)
+mz2R

µ +mz3R
ν ,

and

|T(u(τ))− T(u(ζ))| ≤|a|(log τ − log ζ) + z4R
θ(log τ − log ζ) + z5R

θ(log τ − log ζ)

+
Nf

Γ(ϑ)

∣∣∣∣ ∫ τ

ζk

(
log

τ

s

)ϑ−1ds

s
−
∫ ζ

ζk

(
log

ζ

s

)ϑ−1ds

s

∣∣∣∣
+
| log τ − log ζ|Nf

Γ(ϑ− 1)

m∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2ds

s
+ (log τ − log t)mz3R

ν

≤(|a|+ z4R
θ + z5R

θ +mz3R
ν)(log τ − log ζ)

+
Nf

Γ(ϑ)

∥∥∥∥∫ τ

ζk

(
log τ − log s

)ϑ−1ds

s
−
∫ ζ

ζk

(
log ζ − log s

)ϑ−1ds

s

∥∥∥∥
PC

+
(log τ − log ζ)Nf

Γ(ϑ− 1)

m∑
k=1

∫ ζk

ζk−1

(
log

ζk
s

)ϑ−2ds

s

≤(|a|+ z4R
θ + z5R

θ +mz3R
ν)(log τ − log ζ)
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+
(log τ − log ζ)Nf

Γ(ϑ)

m∑
k=1

(log ζk − log ζk−1)ϑ−1

+
Nf

Γ(ϑ+ 1)
[(log τ − log ζk)

ϑ − (log ζ − log ζk)
ϑ],

→ 0 as τ → ζ. Therefore, for any arbitrary U ⊂ PC(J,R), T maps U into equicontinuous set of
PC(J,R). Combining Step I, II, III along with the Arzela-Ascoli theorem, it can be found that T
is a completely continuous operator. Therefore from the fixed point theorem given by Schauder,
operator T has at least one fixed point which is solution of the problem (1) in [1, e].

In the next section we present some numerical results.

4 Numerical examples

Example 1. Consider the following non-linear boundary value problem
CHD

3
2
ζk
u(ζ) = sin(u(ζ))

24+ζ2
+ 1

1+ζ2
, ζ ∈ [1, e], ζ 6= 13

7 ,

4u(13
7 ) = 1

10u(13
7 ),

4δu(13
7 ) = 1

30u(13
7 ),

u(1) = h(u); u(e) = g(u),

(8)

where

h(u) =

n∑
i=1

αiu(ξi), g(u) =

n∑
i=1

βiu(ηi), ξi, ηi 6=
13

7
∈ (1, e),

and
n∑
i=1

αi <
1

10
,

n∑
i=1

βi <
1

10
.

Here

f(ζ, u) =
sin(u(ζ))

24 + ζ2
+

1

1 + ζ2
.

We can easily see that,

|f(ζ, u)− f(ζ, v)| ≤ 1

24
|u− v|.

So L1 = 1
24 . Similarly, L2 = 1

10 , L3 = 1
30 , L4 = 1

10 , L5 = 1
10 . Here ϑ = 3

2 , ζ1 = 13
7 ,m = 1 and

therefore (
L1

4m+ 2

Γ(ϑ)
+ 2m(L2 + L3) + L4 + L5

)
=0.749 < 1.

Thus all the postulates of Theorem 1 are satisfied. Therefore, the boundary value problem (8)
has a unique solution on [1, e].
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Example 2. Consider the following boundary value problem

CHD
3
2
ζk
u(ζ) = 2+(u(ζ))

108eζ+3 , ζ ∈ [1, e], ζ 6= 15
7 ,

4u(15
7 ) =

u( 15
7

)

13+u( 15
7

)
,

4δu(15
7 ) =

u( 15
7

)

25+u( 15
7

)
,

u(1) = h(u); u(e) = g(u),

(9)

where

h(u) = min
j

(u(ϑj))
1
4

15 + u(ϑj)
, g(u) = max

j

(u(βj))
1
3

15 + u(βj)
,

with j = 1, 2, . . . , 10 ϑj , βj 6= 15
7 ∈ (1, e). Here z1 = 1

108e4
, z2 = 1

13 , z3 = 1
25 , z4 = 1

15 , z5 = 1
15 .

Clearly

2(2m+ 1)z1
Γ(ϑ)

+ 2mz2 + 2mz3 + z4 + z5 =0.368 < 1.

Therefore, by Theorem 2 the nonlinear system (9) has at least one solution on [1, e].
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