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FINDING A GENERATOR MATRIX OF A
MULTIDIMENSIONAL CYCLIC CODE

R. ANDRIAMIFIDISOA∗, R. M. LALASOA AND T. J. RABEHERIMANANA

Abstract. We generalize Sepasdar’s method for finding a gene-
rator matrix of two-dimensional cyclic codes to find a generating
subset and a linearly independent subset of a general multicyclic
code. From these sets, a basis of the code as a vector subspace
can be deduced or constructed. A generator matrix can be then
deduced from this basis.

1. Introduction

Sepasdar, in [4] presented a method to find a generator matrix of two
dimensional skew cyclic Codes. Then, Sepasdar and Khashyarmanesh,
in [5] gave a method to find a generator matrix of some class of two-
dimensional cyclic codes. Finally, Sepasdar, in [6], found a method to
construct a generator matrix for general two-dimensional cyclic codes.
In this paper, we will generalize this Sepasdar’s method for a general
multicyclic code. Our method uses an ideal basis of the code whose
construction was presented by Lalasoa et al. in [3].

In section 2 of this paper, we recall the notations used in [3] and the
mathematical tools we will need, including two orderings : the partial
ordering “6+” and the well ordering “6lex”. This latter allows to de-
fine degrees of polynomials in the quotient ring with a special property,
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given by Proposition 3.5.

In section 3, we present our results. Proposition 3.1 gives an idea of
how a basis of the multicyclic code, considered as a vector space will
look like. It also provides a generating set for the code. Corollary 3.2
gives a simple condition for this set to be a basis. The main result is
Theorem 3.4, which allows the construction of an independent subset
of the code. If this set is too small to be a generating set, we must
add elements from the generating set found by Proposition 3.1. Once
a basis is found, one can then construct a generator matrix by forming
the matrix whose rows are the coefficients of the polynomials of the
basis.

In the last section 4, we give examples for the 2-D and 3-D case..

In Appendix A, we state the method for constructing the examples
of multicyclic codes and in Appendix B we present algorithms for find-
ing ideal bases for these codes. Computations were done using the
SageMath mathematical software system.

2. Notations and Preliminaries

We briefly recall the notations which are used in [3]. Let R be the
quotient ring

R = Fq[X1, . . . , Xs]/〈Xρ1
1 − 1, . . . , Xρs

s − 1〉 = Fq[x1, . . . , xs] (2.1)

where Fq is the finite field with q elements and xi the residue class of
Xi modulo the ideal 〈Xρ1

1 − 1, . . . , Xρs
s − 1〉. We have

xρii = 1, (2.2)

so that

xmi = xm mod ρi
i for m ∈ N and i = 1, . . . , s, (2.3)

where m mod ρi is the remainder of m by the euclidean division of m
by ρi.

The additive product group Gs is defined by

Gs = Z /ρ1 Z× . . .× Z /ρs Z, (2.4)

with
Z /ρi Z = {0, 1, . . . , ρi − 1}.

An element of Fq[x1, . . . , xs] is of the form

f(x1, . . . , xs) =
∑

(α1,...,αs)∈Gs

f(α1,...,αs)x
α1
1 · · ·xαss . (2.5)
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For sake of simplicity, we denote (α1, . . . , αs) ∈ Gs or, more generally,
(α1, . . . , αs) ∈ Ns by α. Then (2.5) can then be written as a

f(x) =
∑
α∈Gs

fαx
α, (2.6)

where

xα = xα1
1 · · ·xαss , (2.7)

and we may omit the set Gs. For α ∈ Ns, we also adopt the notation

α mod ρ = (α1 mod ρ1, . . . , αs mod ρs) ∈ Gs,

where ρ = (ρ1, . . . , ρs). Equations (2.2) and (2.3) are then “general-
ized” to the following:

xρ = 1 and xα = xα mod ρ. (2.8)

The set Ns, and therefore also he product group Gs is provided with
two orders : a partial ordering 6+ defined by

α 6+ β ⇐⇒ αi 6 βi for i = 1, . . . , s,

and a well ordering 6lex (the “lexicographical ordering’), defined by

α <lex β ⇐⇒ for the first index i such that αi 6= βi, one has αi < βi.

Put n = ρ1 · · · ρs. We then may write Gs = {α(1), . . . , α(i), . . . , α(n)}
with

α(1) <lex · · ·α(i) <lex · · · <lex α
(n) (2.9)

and the polynomial f(x) in (2.6) can be written as

f(x) = fα(1)xα
(1)

+ · · ·+ fα(i)xα
(1)

+ · · ·+ fα(ρs)x
α(n)

. (2.10)

If f(x) is non-zero, we may define its degree, denoted deg f(x) or simply
deg f as

deg f = max
6lex

{α(i) | fα(i) 6= 0}. (2.11)

(Note that it is the usual definition of the degree of a multivariate
polynomial). However, due to equations (2.8), for two polynomials f
and g of Fq[x1, . . . , xs], the equality deg(fg) = deg f + deg g does not
necessarily hold. The following proposition gives a sufficient condition
for this property.

Proposition 2.1. If f and g are non-zero elements of Fq[x1, . . . , xs]
such that deg f + deg g <+ ρ, then deg(fg) = deg f + deg g.
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Proof. Write f(x1, . . . , xs) =
∑

α fαx
α and g(x1, . . . , xs) =

∑
β gβx

β.

Then, using the second equation of (2.8), we have

f(x1, . . . , xs)g(x1, . . . , xs) =
∑
α

∑
β

fαgβx
(α+β) mod ρ

=
∑
α

∑
β

fαgβx
(α+β)

since α+ β 6+ deg f + deg g <+ ρ = (ρ1, . . . , ρs) for all α and β. Thus

deg(fg) = max
6lex

(α + β) = deg f + deg g.

�

All the previous results are also true for the quotient ring

S = Fq[X1, . . . , Xs]/〈Xρ1
1 − 1, . . . , X

ρs−1

s−1 − 1〉 = Fq[x1, . . . , xs−1],

with s−1 variables, where xi is the residue class of xi modulo the ideal
〈Xρ1

1 −1, . . . , X
ρs−1

s−1 −1〉. Note that we have used the same notation xi,
because the residue class of xi modulo the ideal 〈Xρ1

1 −1, . . . , X
ρs−1

s−1 −1〉
may be identified with its class modulo the ideal 〈Xρ1

1 −1, . . . , Xρs
s −1〉,

(cf. Proposition 2.2, [3]).

A multicyclic code is an ideal of R (equation (2.1)).

Let I be a non-zero ideal of R and

B = {p(0)1 , . . . , p(0)r1 , p
(1)
1 , . . . , p(1)r1 , . . . , p

(i)
1 , . . . , p

(i)
ri
, . . . , p

(ρs−1)
1 , . . . , p(ρs−1)rρs−1

}
(2.12)

the basis of I, found by Lalasoa et al. by the method in [3], with
pk ∈ Ik. Then an element f(x1, . . . , xs) ∈ R may be written as a finite
sum

f(x1, . . . , xs) =

rρs−1∑
i=0

rj∑
j=1

q
(i)
j (x1, . . . , xs−1)p

(i)
j (x1, . . . , xs). (2.13)

Note that in (2.13), the coefficients of the polynomials in B are poly-
nomials in S.

3. Results

Our aim in this section is to construct a basis of I, as an Fq-vector
subspace of R (an Fq-basis), from the ideal basis B of I, in (2.12).
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Proposition 3.1. The set

B′ = {xα1
1 · · ·x

αs−1

s−1 p | (α1, . . . , αs−1) 6+ (ρ1−1, . . . , ρs−1−1) and p ∈ B}

is a generating set of I, as an Fq-vector space.

Proof. It suffices to use (2.13) and write

q
(i)
j (x1, . . . , xs−1) =

∑
(α1,...,αs−1)6+(ρ1−1,...,ρs−1−1)

q
(i)
jα1,...,αs−1

xα1
1 · · ·x

αs−1

s−1 ,

where q
(i)
jα1,...,αs−1

∈ Fq, the sum being finite. Then the polynomial f is
written as a linear combination of elements of B′, with coefficients in
Fq. �

Corollary 3.2. With the notations in Proposition 3.1, if |B′| = dim I =
logq |I|, then B′ is an Fq-basis of I, when I is considered as an Fq-
subspace of R.

Proof. The ring R is isomorphic to a subspace of Fnq , by the mapping

R←→ Fnq
f(x) =

∑
α∈Gs

fαx
α ←→ (fα)α∈Gs ,

where n =
∏s

i=1 ρi. Thus, I may be identified with a subspace of Fnq ,
and it is known that in this case, dim I = logq|I|. Since the set B′ is
an Fq-generating set, it follows that it is an Fq-basis of I, when its
cardinality equals to dim I.

�

The set B′ in 3.1 may be too large to be an Fq- basis of I. In other
words, the elements of B′ may be linearly dependent. If this is the
case, an Fq - basis B of I should be then extracted from B′.

We will find linearly independent elements of B′ and check whether
they form an Fq -base of I.

According to the notations in (2.12), we choose polynomials

p0(x1, . . . , xs), ..., pρs−1(x1, . . . , xs), (3.1)

where pk ∈ {p(k)1 , . . . , p
(k)
rρs−1}. Let pk(x1, . . . , xs−1) ∈ S be the coeffi-

cient of pk with respect to xks and

ak = deg pk, (3.2)
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where the degree is defined as in (2.11), but, now, in the quotient ring
S. We have

pk(x1, . . . , xs) =

ρs−1∑
h=k

phh(x1, . . . , xs−1)x
h
s , (3.3)

with phh ∈ S and
pkk = pk. (3.4)

Proposition 3.3. Let l0(x1, . . . , xs−1), . . . , lρs−1(x1, . . . , xs−1) be poly-
nomials in Fq[x1, . . . , xs−1] such that deg(lk) <+ [(ρ1, . . . , ρs−1)− (ak)].
Then

ρs−1∑
k=0

lk(x1, . . . , xs−1)pk(x1, . . . , xs−1) = 0 =⇒lk(x1, . . . , xs−1) = 0

for k = 0 . . . , ρs−1.

Proof. Let l0(x1, . . . , xs−1), . . . , lρs−1(x1, . . . , xs−1) be polynomials in
Fq[x1, . . . , xs−1] which verify the hypothesis of the proposition, such
that

ρs−1∑
k=0

lk(x1, . . . , xs−1)pk(x1, . . . , xs) = 0.

Then

l0(x1, . . . , xs−1)p0(x1, . . . , xs−1) = 0.

Suppose that l0 6= 0. By taking the degrees, we have, by Proposition
3.5,

deg(l0p0) = deg(l0) + deg(p0) > 0. (3.5)

But this is impossible for a non-zero polynomial. It follows that l0 = 0
and using (3.3), the same reasoning can be applied step by step to show
that li for i = 1, . . . , ρs−1. �

Theorem 3.4. With the previous notations, let B be the set

B ={xi
0
1
1 . . . x

i0s−1

s−1 p0(x1, . . . , xs) | (i01, . . . , i0s−1) <+ (ρ1, . . . , ρs−1)− a0}

∪{xi
1
1
1 . . . x

i1s−1

s−1 p1(x1, . . . , xs) | (i11, . . . , i1s−1) <+ (ρ1, . . . , ρs−1)− a1}
. . .

∪{xi
rn−1
1
1 . . . x

i
rn−1
s−1

s−1 pρs−1(x1, . . . , xs) |
(i
rn−1

1 , . . . , i
rn−1

s−1 ) <+ (ρ1, . . . , ρs−1)− aρs−1}.
Then
(1) The elements of B are Fq-linearly independent.
(2) If |B| = logq|I|, then B is an Fq-basis of I.
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Proof. (1) We construct the finite sequence of numbers

Nk = |{xi
k
1
1 . . . x

iks−1

s−1 pk(x1, . . . , xs) | (ik1, . . . , iks−1) <+ (ρ1, . . . , ρs−1)− ak|.

for k = 0, . . . , ρs − 1. Now, let (αkj )16j6Nk be sequences of elements of
Fq such that

ρs−1∑
k=0

Nk∑
j=1

αkjx
ik1
1 . . . x

iks−1

s−1 pk(x1, . . . , xs) = 0 (3.6)

(this is a linear combination of elements of B which equals to zero).
By taking

lk(x1, . . . , xs−1) =

Nk∑
j=1

αkjx
ik1
1 . . . x

iks−1

s−1

for k = 0, . . . , ρs − 1, equation (3.6) becomes

ρs−1∑
k=0

lk(x1, . . . , xs−1)pk(x1, . . . , xs) = 0.

By Proposition 3.3, we have lk(x1, . . . , xs−1) = 0 for k = 0, . . . , ρs−1,
i.e. αkj = 0 for j = 1, . . . , Nk.
(2) The proof is similar to that of Corollary 3.2 where B′ is replaced
by B, which is an Fq-linearly independent of I. �

From its construction, it is clear that the independent set B is a
subset of the generating set B′. If B is too small to be an Fq-basis for
the code, we can add elements from B′ in order to get a basis.

For an Fq-basis B = {g1(x), . . . , gl(x)} of I, where, according to
(2.10)

gλ(x) = gλα(1)xα
(1)

+ · · ·+ gλα(i)xα
(1)

+ · · ·+ gλα(ρs)x
α(n)

for λ = 1, . . . , l.
(3.7)

A generator matrix for I, as a multicyclic code is then

G =


g1α(1) . . . g1α(ν) . . . g1α(n)

...
...

...
...

...
gλα(1) . . . gλα(ν) . . . gλα(n)

...
...

...
...

...
glα(1) . . . glα(ν) . . . glα(n)

 ∈ Fl,nq , (3.8)

where Fl,nq is the set of matrices with l rows and n columns and entries
in Fq. In other words, G is the matrix whose rows are the coefficients
of the elements of B.
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4. Examples

In this section, we refer to Appendix A for the construction of the
codes and to Appendix B for the construction of an ideal basis of the
code.

Example 4.1 (2-D case). We consider the following 2-D cyclic code:

I ={0,−x− 1,−x+ y, x+ 1, x− y,−y − 1, y + 1,−x− y + 1,

x+ y − 1,−xy + 1, xy − 1,−xy − y, xy + y,−xy − x, xy + x,

− xy + y − 1, xy − y + 1,−xy + x− 1, xy − x+ 1,−xy + x+ y,

xy − x− y,−xy − x− y − 1,−xy − x+ y + 1,−xy + x− y + 1,

xy − x+ y − 1, xy + x− y − 1, xy + x+ y + 1}.
It is an ideal of the quotient ring

F3[X, Y ]/〈X2 − 1, Y 2 − 1〉 = F3[x, y],

The code has |I| = 27 elements. Thus dim I = log3 |I| = log3 27 = 3.
An ideal basis of I, found in Appendix B is

B = {p0(x, y), p1(x, y)} = {1 + y, y + xy} .
We will construct the F3-generating set B′, as in Proposition 3.1. Since
s = 2 and (ρ1, ρ2) = (2, 2), we have

∆ = {i ∈ N | i 6 ρ1 − 1} = {0, 1}
and

B′ = {xip0, xip1 | i ∈ ∆} = {xip0, xip1 | i ∈ {0, 1}}
= {p0, xp0, p1, xp1}
= {y + 1, x+ xy, y + xy, y + xy}.

Since |B′| = 4 > dim I, the set B′ is not linearly independent (we must
remove one element) and therefore is not an F3-basis. We see that the
two last elements of B′ are equal. Thus the set

B” = {1 + y, x+ xy, y + xy}
is also a generating set of I. Since |B”| = 3 = dim I, it is also an
F3-basis of I.

Now, we are going to construct the independent B found using The-
orem 3.4. Using the notations in (3.3) and (3.4) and the data in Ap-
pendix B, we have:

p00(x) = 1 = p0(x) ∈ J0,
p11(x) = x+ 1 = p1(x) ∈ J1,
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so that a0 = deg p0 = 0 and a1 = deg p1 = 1. The order 6+ is the
usual order 6 on N. Using Theorem 3.4, we have

B = {xip0 | i < 2− 0}
⋃
{xip1 | i < 2− 1}

= {p0(x, y), xp0(x, y), p1(x, y)} = {1 + y, x+ xy, y + xy}.

Since |B| = dim I = 3, it follows that the set B is indeed an F3- basis
of I. Moreover, we see that B = B”.

We will write the elements of B as vectors, by taking the coefficients.
The set of exponents of the elements of R is

G2 = {00, 01, 10, 11} = Z /2Z×Z /2Z

as in (2.4). According to (2.9), we have

00 <lex 01 <lex 10 <lex 11,

and using (2.10), we can make the identification

a+ by + cx+ dxy ≡
(
a, b, c, d

)
.

between polynomials in R and the vectors of F4
3. We then can write

B = {(1, 1, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1)} ⊂ F4
3 .

Writing as in (3.8), a generator matrix of the 2-D code I is

G =

 1 1 0 0
0 0 1 1
0 1 0 1

 ∈ F3,4
3 .
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Example 4.2 (3-D case). We have constructed the following 3-D cyclic
code

J ={0,−z + 2, xz + z + 2,−xyz − x+ 2,−xy − x+ z + 1,

xyz + xy − x+ 1, xyz + xy − x− z, xyz + xy + yz + 2,

− xz + yz + x− y + 2, xy − yz + y + z + 1, xyz + xz + x− y − z,
xyz + xy + xz − x+ z,−xyz + xy − xz − yz + z,

xyz − xy + yz + x− y + 1,−xyz + xy − yz − x+ y + z,

− xyz + xy − xz + x+ y − z, xyz + xy + xz + yz + z + 1,

xyz − xy − xz + yz − y + 1,−xyz + xz − yz + x+ y − z + 2,

xyz − xy − xz − x− y − z + 2,−xyz − xy − xz − yz + x− z + 1,

xyz − xy + xz + yz + x− z + 2, xyz − xy + xz + yz + x− y + z,

− xyz − xy − xz − yz − x+ y − z + 1,

− xyz − xy − xz − yz + x− y + z + 2,

− xyz + xy + xz + yz − x− y − z + 1,

xyz − xy + xz + yz − x+ y − z + 2, ...}.

It is an ideal of the quotient ring

F3[X, Y, Z]/〈X2 − 1, Y 2 − 1, Z2 − 1〉 = F3[x, y, z],

The code J has 2187 elements, so that dim J = log3 |J | = log3 2178 = 7.

And ideal basis of J , found in Appendix B is

B = {p(0)0 , p
(0)
1 , p

(1)
0 , p

(1)
1 } = {1 + z + y + yz,−z + y, z + yz, yz − xyz}.

Since |B| = 4 < dim I, it is not a generating set of I. We are going
to construct the generating set B′, according to Proposition 3.1. Since
s = 3 and (ρ1, ρ2, ρ3) = (2, 2, 2), we have

∆ = {(i, j) ∈ N2 | (i, j) 6+ (ρ1 − 1, ρ2 − 1) = (1, 1)}
= {(0, 0), (1, 0), (0, 1), (1, 1)},

so that

B′ = {xiyjp(0)0 , xiyjp
(0)
1 , xiyjp

(1)
0 , xiyjp

(1)
1 | (i, j) ∈ ∆}

= {xyz − yz, yz + y + z + 1, xyz + xy + xz + x, xy − xz,−xyz + x,

xz − z,−yz + 1,−xyz + yz,−xz + z, y − z}

Since |B′| = 10 > dim I, it follows from Corollary that B′ is not an F3-
linearly independent set and therefore not an F3-basis of J (too large).
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We are going to construct the F3-linearly independent set B as in
Theorem 3.4. According to the notations in Appendix B, (3.1) and
(3.4), we choose a polynomial pk ∈ B with pk ∈ Jk for k = 0, 1, where
pk is the coefficient of zk as a polynomial in whose coefficients are
polynomials in x and y. We may take

p1(x, y, z) = p
(0)
0 (x, y, z) = 1 + y + z + yz,

p0(x, y) = 1 + y, a0 = deg p0 = (0, 1)

p2(z, y, z) = p
(1)
1 (x, y, z) = yz − xyz

p1(x, y) = y − xy, deg p1 = (1, 1).

We get

B = {xiyjp0 | (i, j) <+ (ρ1, ρ2)− deg a0}⋃
{xiyjp1 |(i, j) <+ (ρ1, ρ2)− deg a1 }

= {xiyjp0 | (i, j) <+ (2, 2)− (0, 1)}
⋃
{xiyjp1 |(i, j) <+ (2, 2)− (1, 1) }

= {xiyjp0 | (i, j) ∈ {(0, 0), (1, 0)}}
⋃
{xiyjp1 |(i, j) ∈ {(0, 0), (1, 0), (1, 0), (1, 1} }

= {p0, xp0, p1, xp1, yp1, xyp1}
= {−yz + xyz, x+ xz + xy + xyz, 1 + z + y + yz, z − xz}

Since |B| = 4 < dim J = 7, the set B fails to be a basis for J (too
small). Since B ⊂ B′, we will add three elements from B′ \ B to B in
order to obtain an F3-basis. We have

B′ \B = {y − z, yz + z,−yz + 1, xy − xz, xyz + xz,−xyz + x}.

We will write the elements of B and B′ \B as vectors, by taking the
coefficients. The set of exponents of the elements of R is

G3 = {000, 001, 010, 011, 100, 101, 110, 111}

as in (2.4). According to (2.9), we have

000 <lex 001 <lex 010 <lex 011 <lex 100 <lex 101 <lex 110

<lex 111,
(4.1)

and using (2.10), we can make the identification

a+bz+cy+dyz+ex+fxz+gxy+hxyz ≡
(
a, b, c, d, e, f, g, h

)
.

between polynomials in R and the vectors of F8
3. We then can write

B ={(0, 0, 0,−1, 0, 0, 0, 1), (0, 0, 0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 0, 0, 0, 0),

(0, 1, 0, 0, 0,−1, 0, 0)},
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and may identify it with the matrix

V =


0 0 0 −1 0 0 0 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 1 0 0 0 −1 0 0

 ∈ F4,8
3 ,

whose rows are the elements of B. We do the same with the elements
of B′ \ B and get a matrix V ′ ∈ F6,8

3 . We then can add three rows of
V ′ to V in order to obtain a matrix with seven F3-linearly independent
rows. We find the following vectors(

0, −1, 1, 0, 0, 0, 0, 0
)
≡ z − y,(

0, 1, 0, 1, 0, 0, 0, 0
)
≡ z + yz,(

1, 0, 0, −1, 0, 0, 0, 0
)
≡ 1− yz.

Finally, an F3-basis of J is the set

B” ={z − y, z + yz, 1− yz} ∪B
= {z − y, z + yz, 1− yz,−yz + xyz, x+ xz + xy + xyz,

1 + z + y + yz, z − xz}.

This correspond to the matrix

G =



0 −1 1 0 0 0 0 0

0 1 0 1 0 0 0 0

1 0 0 −1 0 0 0 0

0 0 0 −1 0 0 0 1

0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0

0 1 0 0 0 −1 0 0


∈ F7,8

3 ,

which is a generator matrix of J .

Appendix A: Construction of multicyclic codes

Here we summarize the construction of multicyclic codes in [2].

In the general case, an r-dimensional multicyclic code (or r-D mul-
ticyclic code) is an ideal of the quotient ring

R = Fq[X1, . . . , Xr]/〈Xn1
1 − 1, . . . , Xnr

r − 1〉.
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In [2], we considered the important case where q is of the form q = pm

with m > 1 an integer and p a prime integer which does not divide any
of the n1, . . . , nr.

We recall the main result about the characterization of these codes :

Theorem (Ideals in Fq[x], [2, 1]). A set I is an ideal of Fq[x] if and
only if these exists a subset Z of S such that

I = {a(x) ∈ Fq[x] | a(ξh(i)) = 0 ∀i ∈ Z}.

Proof. See [2]. �

The above theorem means that the ideal I is the set of the polyno-
mials of F[x] which vanish on the elements ξ(h(i) ∈ Frqt for i ∈ Z. The
notations are explained bellow :

The set S is equal to {1, . . . , s}, where s is the number of orbits by
the operation of the Galois group

Γ = GAL(Fqt ,Fq) = {σν | ν = 0, . . . , t− 1, σν : Fqt −→ Fqt , ω 7−→ ωq
ν}

on the abelian group G+ =
∏r

ρ=1 Z /nρ Z.

One construct the integer t as the follows : one takes
ε = ppcm(n1, . . . , nr), and

t = min{k ∈ N | qk ≡ 1 (mod ε)}.
There exist in Fqt an element of order ε and for ρ = 1, . . . , r, the element

ξρ = α
ε
nρ de Fqt is a nρ-th primitive root of unity, i.e. ξnρ = 1 and each

nρ-th root of unity in Fqt is a power of ξρ.
Next, we explain other notations used in the above theorem:

(1) Let ξρ be a primitive nρ-th root of unity in Fqt for ρ = 1, . . . , r. Let
ξ the vector defined by

ξ = (ξ1, . . . , ξρ, . . . , ξr) ∈ Frqt and ξ = ξ1 · · · ξρ · · · ξr ∈ Fqt ,

and for h = (h1, . . . , hr) ∈
∏r

ρ=1 Z /nρ Z,

ξh = (ξh11 , . . . , ξ
hρ
ρ , . . . , ξ

hr
r ) ∈ Frqt et ξh = ξh11 · · · ξhρρ · · · ξhrr ∈ Fqt .

(4.2)
(2) for c(x) =

∑
g∈G+ cgx

g ∈ Fq[x] and h = (h1, . . . , hr) in G+, the

element c(ξh) is defined by

c(ξh) =
∑
g∈G+

cgξ
hg =

∑
g∈G+

cgξ
h1g1
1 · · · ξhrgrr ∈ Fqt .
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A method for constructing a multicyclic code

Input: An integer r > 1, integers n1, . . . , nr > 1 and a prime integer
p which does not divide any of n1, . . . , nr.
Output: An r-D multicyclic code C of Fq[x], of length n = n1 · · ·nr.

Step 1: Construction of the base field and the group G+:
- Fp = Z /pZ,
- G+ =

∏r
ρ=1 Z /nρ Z.

Step 2: Construction of the first extension of the base field:
- choose an integer m > 1 and take q = pm,
- construct the field Fq, extension of Fp.

Step 3: Construction of the second extension of the base field:
- ε = ppcm(n1, . . . , nr),
- find t = min{k ∈ N | qk ≡ 1 (mod ε)},
- construct the field Fqt = Fpmt , extension of Fq.

Step 4: Construction of the primitive nρ-th roots of unity, ρ = 1, . . . , r:

- choose an element α of order ε in F∗qt : α = a
qt−1
ε where a is a gener-

ator of the cyclic group (F∗qt ,×).

- take ξρ = α
ε
nρ for ρ = 1, . . . , r.

Step 5: Construction of the Galois group:

Γ = GAL(Fqt ,Fq) = {σν | σν : Fqt −→ Fqt , ω 7−→ ωq
ν
, ν =

0, . . . , t− 1}.

Step 6:
- for each g ∈ G+, find the orbit of g:

Γ.g = {gqν | ν = 0, . . . , t− 1}.

- find all the orbits : O1, . . . ,Os,
- take S = {1, . . . , s}.

Step 7: Choice of the zeros of the code:
- choose a subset Z of S,
- for i ∈ Z, choose a representative h(i) of Oi,
- the zeroes of the code are {h(i) | i ∈ Z}.
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Step 8: Construction of the code:

- C = {c(x) ∈ Fq[x] | c(ξh(i)) = 0 for i ∈ Z}.

The code I in Example 4.1 is constructed with the following param-
eters: r = 2, n1 = n2 = 2, p = 3,m = 1. The length of the code is
n = n1n2 = 4. Since t = 1, we have q = 3. The primitive roots of unity
are ξ1 = ξ2 = 2 and ξ = (2, 2) ∈ F2

3. The the of the orbits is

{O1,O2,O3,O4} = {{(0, 1)}, {(1, 0)}, {(0, 0)}, {(1, 1)}} ⊂ (Z /3Z)2,

so that s = 4 and S = {1, 2, 3, 4}. We take Z = {4} , which correspond
to O4 = {(1, 1)} . The code is then the ideal whose elements are the
polynomials of F3[x, y] which vanish on the set

OZ = {ξ(1,1)} = {(ξ11 , ξ12)} = {(2, 2)} ⊂ (Z /3Z)2.

The code J in Example 4.2 is constructed with the following pa-
rameters: r = 3, n1 = n2 = n3 = 2, p = 3,m = 1. The length is
n = n1n2n3 = 8. Since t = 1, we have q = 3. The primitive roots of
unity are ξ1 = ξ2 = ξ3 = 2 and ξ = (2, 2, 2) ∈ F3

3. The set of the orbits
is

{O1,O2,O3,O4,O5,O6,O7,O8}
= {{(1, 0, 1)}, {(1, 1, 0)}, {(1, 1, 1)}, {(0, 1, 0)},
{(0, 1, 1)}, {(0, 0, 1)}, {(0, 0, 0)}, {(1, 0, 0)}} ⊂ (Z /3Z)3,

so that s = 8 and S = {1, 2, 3, 4, 5, 6, 7, 8}. We take Z = {5}, which
correspond to O5 = {(0, 1, 1)}. The code is then the ideal whose ele-
ments are the polynomials of F3[x, y, z] which vanish on the set

OZ = {ξ(0,1,1)} = {(ξ01 , ξ12 , ξ13)} = {(1, 2, 2)} ⊂ (Z /3Z)3.

Appendix B: Algorithms for constructing an ideal basis
of a multicylic code

In this section, we present algorithms which are derived from Sep-
asdar’s method ([6, 3]) for finding a basis of an ideal in the two-
dimensional case and its extension to the three-dimensional case. The
case of a more variable can be deduced from these algorithms.

First algorithm: case of an ideal in two variables
Input : two integers m,n > 1, an integer q which is the power of a
prime number, a non-zero ideal I of Fq[x, y].
Output : a basis B of the ideal I.
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Step 1. For i = 0, . . . , n − 1, find the ideals Ii and the subsets Hi,
of Fq[x] defined by

I0 = H0 = {constant terms of the elements of I as

polynomials in y}
and for i = 1, ..., n− 1,

Hi = {elements of I whose coefficient of yj, j = 0, . . . , i− 1

are zero}
(= {elements of Hi−1 whose coefficient of yi−1 is zero}),
Ii = {coefficients of yi of the elements of Hi}.

Step 2. For i = 0, . . . , n− 1, find a generator pi(x) of Ii in Fq[x].
Step 3. Find an element P0(x, y) ∈ I whose constant term, as a
polynomial in y is p0(x).
Step 4. Find an element Pi(x, y) ∈ I whose coefficients of yj, j =
0, . . . , i− 1 are zeros, the coefficient of yi being pi(x).
Step 5. A basis of I is

B = {Pi(x, y) | i = 0, . . . , n− 1}.

For the code in Example 4.1, we apply this first algorithm.

I0 = H0 = {g0(x) ∈ F3[x, y] | ∃g(x, y) ∈ I such that

g(x, y) = g0(x) + g1(x)y where g1(x) ∈ F3[x]}
= {−1, 0, 1, x, y, xy,−x,−y,−xy,−x− 1,−x+ 1,−x− y,−x+ y,

x− 1, x+ 1, x− y, x+ y,−y − 1,−y + 1, y − 1, y + 1,−x− y − 1,

− x− y + 1,−x+ y − 1,−x+ y + 1, x− y − 1, x− y + 1, x+ y − 1,

x+ y + 1,−xy − 1,−xy + 1, xy − 1, xy + 1,−xy − y,−xy + y,

xy − y, xy + y,−xy − x,−xy + x, xy − x, xy + x,−xy − y − 1,

− xy − y + 1,−xy + y − 1,−xy + y + 1, xy − y − 1, xy − y + 1,

xy + y − 1, xy + y + 1,−xy − x− 1,−xy − x+ 1,−xy + x− 1,

− xy + x+ 1, xy − x− 1, xy − x+ 1, xy + x− 1, xy + x+ 1,

− xy − x− y,−xy − x+ y,−xy + x− y,−xy + x+ y, xy − x− y,
xy − x+ y, xy + x− y, xy + x+ y,−xy − x− y − 1,−xy − x− y + 1,

− xy − x+ y − 1,−xy − x+ y + 1,−xy + x− y − 1,−xy + x− y + 1,

− xy + x+ y − 1,−xy + x+ y + 1, xy − x− y − 1, xy − x− y + 1,

xy − x+ y − 1, xy − x+ y + 1, xy + x− y − 1, xy + x− y + 1,

xy + x+ y − 1, xy + x+ y + 1}.
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A generator of I0 is p00(x) = 1.

H1 = {element of I whose constant constant term, as a

polynomial in y is zero}
= {0,−xy − y, xy + y},

I1 = {coefficients of y of the elements of H1 }
= {0,−x− 1, x+ 1}.

A generator of I1 is p11(x) = x+ 1. Thus, we can take

p0(x, y) = 1 + y (polynomial of I whose constant term is 1)

p1(x, y) = (x+ 1)y = y + xy (polynomial of H1 whose coefficient of y is x+ 1).

An ideal basis of I is then given by

B = {p0(x, y), p1(x, y)} = {1 + y, y + xy}.

Second algorithm: case of an ideal in three variables
Input : three integers l,m and n > 1, an integer q which is the power
of a prime number, a non zero ideal I of Fq[x, y, z].
Ouput : a basis B of the ideal I.
Step 1. For i = 0, . . . , n − 1, find the ideals Ii and the subsets Hi of
Fq[x, y] defined by

I0 = H0 = {constant terms of the elements of I as

polynomials in z}
and for i = 1, ..., n− 1,

Hi = {elements of I whose coefficients of zj, j = 0, . . . , i− 1

are zero}
Ii = {coefficients of zi of the elements of Hi}.

Step 2. For i = 0, . . . , n−1, find a basis Bi = {pi0(x, y), . . . , piri(x, y)}
of Ii in Fq[x, y] by the algorithm for the two variables case.
Step 3. For each element p0ρ(x, y) of B0, find an element P0ρ(x, y, z) ∈
I whose constant term, as a polynomial in z is p0ρ(x, y).
Step 4. For each element piρ(x, y) of Bi, i = 1, . . . , n − 1, find an
element Piρ(x, y, z) ∈ I whose coefficient of zj, j = 0, . . . , i − 1 are
zeros, the coefficient of zi being piρ(x, y).
Step 5. A basis of I is

B = {Piρ(x, y, z) | i = 0, . . . , n− 1, ρ = 0, . . . , ri}.
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For the code J in Example 4.2, we first use the second algorithm.

J0 = H0 = {g0(x, y) ∈ F3[x, y] | ∃g(x, y, z) ∈ J such that

g(x, y, z) = g0(x, y) + g1(x, y)z where g1(x, y) ∈ F3 x, y}
= {−1, 0, 1, x, y, xy,−x,−y,−xy,−x− 1,−x+ 1,−x− y,−x+ y,

x− 1, x+ 1, x− y, x+ y,−y − 1,−y + 1, y − 1, y + 1,−x− y − 1,

− x− y + 1,−x+ y − 1,−x+ y + 1, x− y − 1, x− y + 1, x+ y − 1,

x+ y + 1,−xy − 1,−xy + 1, xy − 1, xy + 1,−xy − y,−xy + y,

xy − y, xy + y,−xy − x,−xy + x, xy − x, xy + x,−xy − y − 1,

− xy − y + 1,−xy + y − 1,−xy + y + 1, xy − y − 1, xy − y + 1,

xy + y − 1, xy + y + 1,−xy − x− 1,−xy − x+ 1,−xy + x− 1,

− xy + x+ 1, xy − x− 1, xy − x+ 1, xy + x− 1, xy + x+ 1,

− xy − x− y,−xy − x+ y,−xy + x− y,−xy + x+ y, xy − x− y,
xy − x+ y, xy + x− y, xy + x+ y,−xy − x− y − 1,−xy − x− y + 1,

− xy − x+ y − 1,−xy − x+ y + 1,−xy + x− y − 1,−xy + x− y + 1,

− xy + x+ y − 1,−xy + x+ y + 1, xy − x− y − 1, xy − x− y + 1,

xy − x+ y − 1, xy − x+ y + 1, xy + x− y − 1, xy + x− y + 1,

xy + x+ y − 1, xy + x+ y + 1}.
Then, since J0 is an ideal with two variables, we use the first algorithm
to find a basis. Take

J00 = H00 = {g00(x) ∈ F3[x] | ∃g(x, y) ∈ J0 such that

g(x, y) = g00(x) + g01(x)y where g01(x) ∈ F3[x]}
= {0, 1,−1, x, x+ 1, x− 1,−x,−x+ 1,−x− 1}.

We have J00 = 〈1〉. By taking p000(x) = 1, there exists p00(x, y) ∈ J0
such that p00(x, y) = 1 + g01(x)y where g01(x) ∈ S1. We can take
g01(x) = 1, so that

p00(x, y) = 1 + y.

Now, we are going to find the set H01 of the elements of J0 whose
constant terms, as polynomials in y are zero. We find

H01 = {0, y, xy,−y,−xy,−xy − y,−xy + y, xy − y, xy + y}.
Now, we consider

J01 = {g01(x) ∈ F3[x] | ∃g(x, y) ∈ H01 such that g(x, y) = g01(x)y}
= the set of the coefficients of y of the elements of H0

= {0, 1,−1, x, x+ 1, x− 1,−x,−x+ 1,−x− 1}.
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We have J01 = 〈1〉. By taking p101(x) = 1, there exists p01(x, y) ∈ J0
such that p01(x, y) = g01(x, y)y. We can take p01(x, y) = y. A basis of
J0 is then

B0 = {p00(x, y), p01(x, y)} = {y, 1 + y}.
Next, we construct

H1 = {elements of J whose constant terms, as

polynomial in z are zero}
= {0,−xz + z, xz − z,−yz − z, yz + z,−xz − yz, xz + yz,−xyz − z,
xyz + z,−xyz + yz, xyz − yz,−xyz − xz, xyz + xz,−xz + yz − z,
xz − yz + z,−xyz − yz + z, xyz + yz − z,−xyz + xz + z,

xyz − xz − z,−xyz + xz − yz, xyz − xz + yz,−xyz − xz − yz − z,
− xyz − xz + yz + z,−xyz + xz + yz − z, xyz − xz − yz + z,

xyz + xz − yz − z, xyz + xz + yz + z}.
We then have

J1 = {g1(x, y) ∈ F3[x, y] | ∃g(x, y, z) ∈ H1 such that g(x, y, z) = g1(x, y)z}
= {0,−x+ 1,−x− y, x− 1, x+ y,−y − 1, y + 1,−x+ y − 1,

x− y + 1,−xy − 1, xy + 1,−xy + y, xy − y,−xy − x, xy + x

xy − y + 1, xy + y − 1,−xy + x+ 1, xy − x− 1,−xy + x− y,
xy − x+ y,−xy − x− y − 1,−xy − x+ y + 1,−xy + x+ y − 1,

xy − x− y + 1, xy + x− y − 1, xy + x+ y + 1}.
We use the first algorithm to find a basis of J1: we construct

J10 = H10 = {g10(x) ∈ F3[x] | ∃g(x, y) ∈ J1 such that

g(x, y) = g10(x) + g11(x)y where g11(x) ∈ F3[x]}
= {0, 1,−1, x, x+ 1, x− 1,−x,−x+ 1,−x− 1}.

We have J10 = 〈1〉. If we take p010(x) = 1, there exists p10(x, y) ∈ J1
such that p10(x, y) = 1 + g11(x)y. We can take p10(x, y) = 1 + y. Now,
consider

H11 = {elements of J1 whose constant terms,

as polynomials in y are zero}
= {0,−xy + y, xy − y}

and

J11 = {g11(x) ∈ F3[x] | ∃g(x, y) ∈ H11 and g(x, y) = g11(x)y}
= {0, x− 1,−x+ 1}.
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We have J11 = 〈1−x〉. Taking p111(x) = 1−x, there exists a polynomial
p11(x, y) ∈ J1 such that p11(x, y) = (1 − x)y. A basis of J1 is

B1 = {p10(x, y), p11(x, y)} = {1 + y, y − xy}.

According to the notations in [5, 3] and in (2.12), an ideal basis of J
is then given by

B = {p(0)0 (x, y, z), p
(0)
1 (x, y, z), p

(1)
0 (x, y, z), p

(1)
1 (x, y, z)}

where

p
(0)
0 (x, y, z) ∈ J, whose constant term is p00(x, y) = 1 + y ∈ J0, as

a polynomial in z,

p
(0)
1 (x, y, z) ∈ J, whose constant term is p01(x, y) = y ∈ J0, as a

polynomial in z,

p
(1)
0 (x, y, z) ∈ J, whose constant term is zero, as a polynomial in z,

the coefficient of z being p10(x, y) = 1 + y ∈ J1 ,

p
(1)
1 (x, y, z) ∈ J, whose constant term is zero as a polynomial in z,

the coefficient of z being p11(x, y) = (1− x)y ∈ J1.

We can take

p
(0)
0 (x, y, z) = 1 + y + z + yz,

p
(0)
1 (x, y, z) = y − z,

p
(1)
0 (x, y, z) = z + yz,

p
(1)
1 (x, y, z) = yz − xyz,

and finally,

B = {1 + y + z + yz,−z + y, z + yz, yz − xyz}.
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Bases. IEEE Trans. Inf. Theory, 41 (1995), 1733–1751.



FINDING A GENERATOR MATRIX 83

2. R. M. Lalasoa, R. Andriamifidisoa and T. J. Rabeherimanana, Multicyclic
Codes and Algebraic Dynamical Systems, British Journal of Mathematics &
Computer Science (2) 21 (2017), 1-22.

3. R. M. Lalasoa, R. Andriamfidisoa and T. J. Rabeherimanana, Basis of a mul-
ticyclic code as an Ideal in F[X1, . . . , Xs]/〈Xρ1

1 − 1, . . . , Xρs
s − 1〉, J. Algebra

Relat. Topics, (2) 6 (2018), 63–78.
4. Z. Sepasdar, Some Notes on the Characterization of two dimensional skew cyclic

Codes, J. Algebra Relat. Topics, (2) 4 (2016), 1-8.
5. Z. Sepasdar, K. Khashyarmanesh, Characterizations of some two-dimensional

cyclic Codes correspond to the Ideals of F[x, y]/〈xs − 1, y2k − 1〉, Finite Fields
Appl. 41 (2016), 97-112.

6. Z. Sepasdar, Generator Matrix for two-dimensional cyclic Codes of arbitrary
Length, arXiv:1704.08070v1, [math.AC], 26 Apr 2017.

R. Andriamifidisoa
Department of Mathematics, University of Antananarivo, p.O.Box 906, 101 An-
tananarivo, Madagascar,
And
Higher Polytechnics Institute of Madagascar (ISPM), Ambatomaro Antsobolo,
101 Antananarivo, Madagascar.
Email: andriamifidisoa.ramamonjy@univ-antananarivo.mg

R. M. Lalasoa
Department of Mathematics and Computer Science, University of Antananarivo,
p.O.Box 906, 101 Antananarivo, Madagascar.
Email: larissamarius.lm@gmail.com

T. J. Rabeherimanana
Department of Mathematics, University of Antananarivo, p.O.Box 906, 101 An-
tananarivo, Madagascar.
Email: rabeherimanana.toussaint@yahoo.fr


	1. Introduction
	2. Notations and Preliminaries
	3. Results
	4. Examples
	Appendix A: Construction of multicyclic codes
	Appendix B: Algorithms for constructing an ideal basis of a multicylic code
	References

