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Abstract. In this study, improved Sinc-Galerkin and Sinc-collocation
methods are developed based on double exponential transformation to solve
a one-dimensional Bratu-type equation. The properties of these methods
are used to reduce the solution of the nonlinear problem to the solution
of nonlinear algebraic equations. For simplicity in solving the nonlinear
system, a matrix vector form of the nonlinear system is found. The upper
bound of the error for the Sinc-Galerkin is determined. Also the numer-
ical approximations are compared with the best results reported in the
literature. The results confirm that both the Sinc-Galerkin and the Sinc-
collocation methods have the same accuracy, but they are significantly more
accurate than the other existing methods.
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1 Introduction

In this study, a classical Liouville-Bratu-Gelfand problem is addressed as
follows: 

u′′(x) + λ exp(u(x)) = 0, 0 < x < 1

u(0) = u(1) = 0,
(1)
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where λ is a physical parameter. This problem has an analytical solution
as below:

u(x) = −2 log
(cosh(0.5(x− 0.5)θ)

cosh(θ/4)

)
(2)

in which θ is the solution of θ =
√

2λ cosh(θ/4) [3, 4, 6–8]. This nonlinear
two-point boundary value problem appears in several engineering and phys-
ical problems, e.g., the theory of combustion, the Chandrasekhar model of
expansion of the universe, questions of geometry and relativity in Chan-
drasekhar model [7,19], the process in a rigid material, steady-state of heat
diffusion and transfer condition, chemical reaction theory, radiative heat
transfer, and non-technology [12]. Recently, this equation appeared in the
fuel ignition model as considered by Raja [21]. He applied a procedure
based on the neural network approach to solve it. An extended summary
of the equation’s history can be found in references [2, 4, 6, 11].

Several researchers have proposed methods to solve Bratu’s equation nu-
merically and analytically. Abbasbandy et al. [1] used the Lie-group shoot-
ing method. Caglar et al. [8] applied the B-Spline method, Abukhaled et
al. [3] suggested a spline based method. Jalilian et al. [9] proposed a class of
new method base on a septic non-polynomial spline function and discussed
convergence analysis of the method. Khuri [15] recommended the Laplace
method. Zarebnia et al. [29] utilized a parametric spline method. Rashi-
dinia et al. [22, 23] developed a Sinc method based on the single exponen-
tial transformation. Following Zarebnia et al. [30] investigated the conver-
gence of the Sinc-Galerkin method based on this transformation. Temimi et
al. [5,27] considered an iterative finite difference (IFD) scheme. They intro-
duced a transformation to convert Bratu’s problem into a simpler one and
then applied the classical finite difference. The application of the Legendre
spectral element method coupled with the qusi-linearization method was
studied by Lotfi et al. [17]. Igbal et al. [13] studied the higher dimensional
Gelfand Bratu model by a nonlinear multigrid method. Vazquez-Lead et
al. [28] applied the novel Lead-polynomial to the approximation of various
nonlinear differential equations. They considered Bratu’s problem in their
study. Singh et al. [24] used the Legendre spectral collocation method to
find solutions for the fractional Bratu’s problem. Hajipour et al. [10] devel-
oped a fourth-order nonstandard compact finite difference to solve 1-D, 2-D
and 3-D Bratu’s problem. Kazemi Nasab et al. [14] investigated a Cheby-
shev wavelet analysis method to solve Troesch’s and Bratu’s problems.

This problem has an analytic closed-form solution for several parame-
ters, introduced in Eq. (1), which is a transcendental equation. It is, there-
fore, a suitable criterion for validating the accuracy and effectiveness of the
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obtained solution. On the other hand, this problem has more applications
in science and engineering as already stated. Therefore, we were motivated
to apply the Sinc-Galerkin and Sinc-collocation methods based on the dou-
ble exponential (DE) transformation. The points to consider when applying

of these methods are the order of accuracy O
(

exp
(
− n/ log n

))
[26] and

the ability to handle singular problems. Interested readers can refer to the
references of [18,20,25] for more information on the Sinc function.

This paper develops, Sinc-collocation and Sinc-Galerkin methods based
on the DE transformation with a new strategy to solve Bratu’s problem.
The properties of these methods are useful to reduce the solution of a
nonlinear problem to the solution of nonlinear algebraic equations. To
simplify the solution by programming language, the matrix-vector forms of
these nonlinear algebraic equations are achieved, with full details. Since
the convergence of the Sinc-Galerkin method based on a single exponential
transformation has been investigated by Zarebnia et al. [30] just the upper
bound of error is obtained here. The results are compared with an exact
solution and the numerical solution of other existing methods. As presented
in the next sections, the results demonstrated that the DE Sinc methods are
easy to implement, rapidly converge, and provide an effective mathematical
tool to solve such nonlinear problems.

The rest of this paper is organized as follows. Section 2 outlines the
theorems and notations and also some of the main properties of the Sinc
function based on the DE transformation, which are needed by our method.
In Section 3, the Sinc-Galerkin and Sinc-collocation approaches based on
a double exponential transformation are developed to solve problem (1),
and the corresponding discrete systems of algebraic equations are achieved.
Section 4, compares the results of our method with each other and with
some existing numerical results reported in the literature. Finally, the
paper is concluded in Section 5

2 A survey of some properties of the Sinc method

This section provides, a brief overview of some properties of the Sinc func-
tion, theorems, and notations that are needed in other sections. Refer-
ences [18,25,26], discuss the Sinc method and applications thoroughly.

The original Sinc approximation is expressed on a whole real line as

f(x) ∼=
N∑

j=−N
f(jh)S(j, h)(x) (3)
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where h > 0, and S(j, h)(x) is the translated jth Sinc function given by

S(j, h)(x) = Sinc
(x− jh

h

)
=

{
sin((π/h)(x−jh))

(π/h)(x−jh) , x 6= jh,

1, x = jh.
(4)

Lemma 1. [18] Let S(k, h)(x) be the kth Sinc functions with step size h,
then

δ
(0)
jk = S(j, h)(kh) =

{
1, j = k,
0, j 6= k,

δ
(1)
jk = h

d

dx
[S(j, h)(x)](kh) =

{
0, j = k,
(−1)k−j

k−j , j 6= k,

δ
(2)
jk = h2

d2

dx2
[S(j, h)(x)](kh) =

{
−π2

3 , j = k,
−2(−1)k−j

(k−j)2 , j 6= k.

For the assembly of the discrete system, it is convenient to define the
following matrices:

I(l) = [δ
(l)
jk ], l = 0, 1, 2, (5)

where I(l)’s are Toeplitz matrix. The following notation will be needed
to write down the system of algebraic equations. Let D(g) be an m ×m
diagonal matrix as follows:

D
(
g(x)

)
= diag

(
g(−Nh), g((−N + 1)h), . . . , g(Nh)

)
. (6)

Definition 1. [18] Let Dd denote the infinite strip region with 2d(d > 0)

in a complex plane: Dd ≡
{
z ∈ C

∣∣∣|Imz| < d
}
, and for 0 < ε < 1, let Dd(ε)

be defined by Dd(ε) ≡
{
z ∈ C

∣∣∣|Rez| < 1/(ε), |Imz| < d(1 − ε)
}
, then

H1(Dd) be the Hardy space over the region Dd, i.e., the set of functions f
analytic in Dd such that

lim
ε→0

∫
∂Dd(ε)

|f(z)||dz| <∞.

Theorem 1. [26] Assume that a function f satisfies the following condi-
tions
1) f ∈ H1(Dd),

2) ∀x ∈ R : | f(x) |≤ A exp(−B exp(γ | x |)),



Solving Bratu’s problem through DE Sinc method 419

for positive constants A, B, γ and d where γd ≤ π
2 . Then, there exists a

constant C independent of N , such that:

sup
−∞<x<∞

∣∣∣ f(x)−
N∑

k=−N
f(kh)S(k, h)(x)

∣∣∣ ≤ C exp
(
− πdγN

log(πdγN/B)

)
,

where

h =
log(πdγN/B)

γN
.

Theorem 2. [26] For d > 0, let f be a holomorphic function on Dd

satisfying the following conditions

1) f ∈ H1(Dd),

2) ∀x ∈ R : | f(x) |≤ A exp(−B exp(γ | x |)),
for constants A, B > 0 and γ > 0 with γd ≤ π

2 . Then, there exists a
constant C independent of N , such that:

|
∫ ∞
−∞

f(x)dx− h
N∑

k=−N
f(kh) |≤ C exp

(
− 2πdγN

log(2πdγN/B)

)
, (7)

where

h =
log(2πdγN/B)

γN
. (8)

3 Methodology

3.1 Using DE transformation for converting Beratu-equation
to (−∞,∞)

Consider the Bratu’s equation of the form
L(u(x)) = u′′(x) + λ exp(u(x)) = 0, 0 < x < 1

u(0) = u(1) = 0,
(9)

From Theorems 1 and 2, it is clear that the original domain of the Sinc
method is a whole real line. Therefore in problems with a different domain
one can change the variable into a new variable in which the, problem has a
whole real line as a domain. For this purpose, the following conformal map,
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which is known as the double exponential (DE) transformation is used

x = ψDE(t) =
1

2
tanh

(π
2

sinh(t) +
1

2

)
, (10)

t = φDE(x) = ψ−1DE(x) = log
[ 1

π
log(

x

1− x
) +

√
1 + { 1

π
log(

x

1− x
)}2

]
.

(11)

By using this transformation, problem (9) is converted to:
L
(
u(ψ(t))

)
= u′′

(
ψ(t)

)
+ λ exp

(
u(ψ(t))

)
= 0,

lim
t→±∞

u
(
ψ(t)

)
= 0.

(12)

Considering v(t) = u(ψ(t)), by using the chain role of differentiation, then

u′(ψ(t)) =
d

dx
u(ψ(t)) =

d

dt
u(ψ(t))

dt

dx
=

1

ψ′(t)
v′(t), (13)

u′′(ψ(t)) =
d2

dx2
u(ψ(t)) =

d

dx
u′(ψ(t)) =

( 1

ψ′(t)

)2
v′′(t)− ψ′′(t)

(ψ′(t))3
v′(t)

(14)

Substituting equations (13), (14) into problem (12), and multiplying by
ψ′(t), the following equation is obtained

L
(
v(t)

)
=
(

1
ψ′(t)

)
v′′(t)−

(
ψ′′(t)

(ψ′(t))2

)
v′(t) + λψ′(t) exp

(
v(t))

)
= 0,

limt→±∞ v(t) = 0.

(15)

Now problem (15) is defined on a whole real line, so one can use the Sinc
method to solve it. To approximate the solution of problem (15), the Sinc
approximation is considered in the following form:

vm(t) =
N∑

j=−N
CjSj(t), m = 2N + 1, (16)

where {Cj}Nj=−N is unknown and Sj(t) = S(j, h)(t) are bases of the Sinc
functions defined in Eq. (4). Note that limt−→±∞ Sj(t) = 0, so vm(t)
satisfies the boundary conditions of problem (15). To specify the unknown
coefficients in equation (16) two methods as Galerkin and collocation are
applied.
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3.2 The Sinc-Galerkin method

In this section, an approximation solution is obtained for problem (15) by
the Galerkin method. In other words, vn(t) is calculated by orthogonalizing
the residual L(v(t)) with respect to m-basis functions Sj , for j = −N, ..., N .
At first, consider the following form of inner product for an arbitrary func-
tion f , g

≺ f, g �=

∫ ∞
−∞

f(t)g(t)w(t)dt, (17)

in which w(t) is a weight function. This weight function may be chosen
for different reasons. Lund [18] used a kind of w for symmetrization of the
resulting system in a self-adjoint linear problem. But the selection here is
due to the requirement of vanishing the boundary terms when using the
integration by part in inner products. This is why weight function is chosen
as w(t) = ψ′(t).

With this interpretation, the orthogonality of L(v(t)) and Sj lead to

≺ Lv − ψ′f, Sj �= 0, j = −N,−N + 1, . . . , N. (18)

So we have:

≺
( 1

ψ′(t)

)
v′′(t)−

( ψ′′(t)

(ψ′(t))2

)
v′(t) + λψ′(t) exp

(
v(t))

)
, Sj(t) �= 0,

j = −N,−N + 1, . . . , N. (19)

Then

≺
( 1

ψ′(t)

)
v′′(t), Sj(t) � − ≺

( ψ′′(t)

(ψ′(t))2

)
v′(t), Sj(t) �

+ ≺ λψ′(t) exp
(
v(t))

)
, Sj(t) �= 0, j = −N,−N + 1, . . . , N. (20)

By using the inner product (17), and the integration by part formulas, one
can find

≺
( 1

ψ′(t)

)
v′′(t), Sj(t) � =

∫ ∞
−∞

v′′(t)Sj(t)dt

= B1 +

∫ ∞
−∞

v(t)S′′j (t)dt, (21)

≺
( ψ′′(t)

(ψ′(t))2

)
v′(t), Sj(t) � =

∫ ∞
−∞

( ψ′′(t)
(ψ′(t))

)
v′(t)Sj(t)dt

= B2 −
∫ ∞
−∞

v(t)
(( ψ′′(t)

(ψ′(t))

)
Sj(t)

)′
dt, (22)
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Finally,

≺ ψ′(t) exp
(
v(t)

)
, Sj(t) �=

∫ ∞
−∞

(
ψ′(t)

)2
exp

(
v(t)

)
Sj(t)dt, (23)

where

B1 = v′(t)Sj(t)− v(t)S′j(t)
∣∣∣∞
−∞

, B2 = v(t)
( ψ′′(t)

(ψ′(t))

)
Sj(t)

∣∣∣∞
−∞

.

Because of w(t) = ψ′(t), then B1 and B2 are vanished.

Theorem 3. Let v(t)S′′j (t), v(t)
((

ψ′′(t)
(ψ′(t))

)
Sj(t)

)′
,
(
ψ′(t)

)2
exp

(
v(t)

)
Sj(t)

satisfy the conditions of Theorem 2, then

∣∣∣ ≺ L(v(t)), Sj(t) � −h
N∑

k=−N

[
v(kh)

{
S′′j (kh)−

(ψ′′
ψ′

)
(kh)S′j(kh)

+
(ψ′′
ψ′

)′
(kh)Sj(kh)

}
− λ
(
ψ′(kh)

)2
exp

(
v(kh)

)
Sj(kh)

]∣∣∣
≤ C exp

( −K ′N
log(K ′N/B)

)
, (24)

where h = log(2πdγN/B)
γN and K ′ = 2πdγ.

Proof. Using triangular inequality

∣∣∣ ≺ L(v(t)), Sj(t) � −h
N∑

k=−N

v(kh)
{
S′′j (kh) +

(ψ′′
ψ′

)
(kh)S′j(kh)

+
(ψ′′
ψ′

)′
(kh)Sj(kh)− λ

(
ψ′(kh)

)2
exp

(
v(kh)

)
Sj(kh)

}∣∣∣
≤
∣∣∣ ≺ ( 1

ψ′(t)

)
v′′(t), Sj(t) � −h

N∑
k=−N

v(kh)S′′j (kh)
∣∣∣

+
∣∣∣ ≺ ( ψ′′(t)

(ψ′(t))2

)
v′(t), Sj(t) � −h

N∑
k=−N

v(kh)
{(ψ′′

ψ′

)
(kh)S′j(kh)

+
(ψ′′
ψ′

)′
(kh)Sj(kh)

}∣∣∣+
∣∣∣ ≺ ψ′(t) exp

(
v(t)

)
, Sj(t) �

− h
N∑

k=−N

λ
(
ψ′(kh)

)2
exp

(
v(kh)

)
Sj(kh)

∣∣∣, (25)
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and regarding equations (21), (22) and (23), it is concluded that

≤
∣∣∣ ∫ ∞
−∞

v(t)S′′j (t)dt− h
N∑

k=−N

v(kh)S′′j (kh)
∣∣∣+
∣∣∣ ∫ ∞
−∞

v(t)
(( ψ′′(t)

(ψ′(t))

)
Sj(t)

)′
dt

− h
N∑

k=−N

v(kh)
{(ψ′′

ψ′

)
(kh)S′j(kh) +

(ψ′′
ψ′

)′
(kh)Sj(kh)

}∣∣∣
+
∣∣∣ ∫ ∞
−∞

(
ψ′(t)

)2
exp

(
v(t)

)
Sj(t)dt− h

N∑
k=−N

λ
(
ψ′(kh)

)2
exp

(
v(kh)

)
Sj(kh)

∣∣∣
(26)

Using Theorem 1, the following upper bound for Eq. (26) is obtained

C1 exp
( −k′N

log(k′N/B)

)
+ C2 exp

( −k′N
log(k′N/B)

)
+ C3 exp

( −k′N
log(k′N/B)

)
≤ C exp

( −k′N
log(k′N/B)

)
, (27)

which completes the proof.

Deleting the error term O
(

exp
(

−k′N
log(k′N/B)

))
, replacing v(kh) by Ck

and dividing by h, together with δ
(l)
kj defined in Lemma 1 imply following

nonlinear system

N∑
j=−N

Cj

{ 1

h2
δ
(2)
kj +

(ψ′′
ψ′

)
(jh)

1

h
δ
(1)
kj +

( ψ′′
(ψ′)

)′
(kh)δ

(0)
kj

}
+ λ
(
ψ′
)2

(kh) exp
(
Ck

)
= 0, k = −N,−N + 1, . . . , N. (28)

Conveniently, by recalling the notations introduced in (5) and (6), it is
possible to obtain a matrix-vector form nonlinear system (28) as follows:

AC +B exp(C) = 0, (29)

where

A = I(2) + I(1)D
(ψ′′
ψ′

)
+ I(0)D

(( ψ′′
(ψ′)

)′)
,

B = D
(
λψ′2

)
,

C =
(
C−N , C−N+1, . . . , CN

)T
,

exp(C) =
(

exp(C−N ), exp(C−N+1), . . . , exp(CN )
)T
.
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To solve this nonlinear system, Newton’s method is applied. In this regard,
starting with an initial guess Ω0, Newton’s iteration is used as follows:

Ωk+1 = Ωk − J−1(Ωk)
{
F (Ωk)

}
, (30)

where

F (Ωk) = AΩk +B exp(Ωk), (31)

J(Ωk) = A+BD
(

exp(Ωk)
)
. (32)

By solving this system and obtaining C =
(
C−N , C−N+1, . . . , CN

)T
, a

numerical solution of problem (1) is calculated by (16).

3.3 The Sinc-collocation method

In this section, vm is calculated as the numerical solution of problem (1) by
the Sinc-collocation method. A collocation scheme is defined by substitut-
ing vm(t) =

∑N
j=−N CjSj(t) into (1) and calculating the result at xk = kh,

k = −N, . . . , N , so

v′m(t) =
N∑

j=−N
Cj

d

dt
Sj(t), (33)

v′′m(t) =
N∑

j=−N
Cj

d2

dt2
Sj(t). (34)

Therefore based on (15)

1

ψ′(t)

( N∑
j=−N

Cj
d2

dt2
Sj(t)

)
− ψ′′

ψ′2
(t)
( N∑
j=−N

Cj
d

dt
Sj(t)

)

+λψ′(t) exp
( N∑
j=−N

CjSj(t)
)

= 0, t = −Nh,−(N + 1)h, . . . , Nh, (35)

and multiplying (35) by ψ′, and some calculations, the nonlinear system
(35) is rewritten as follows:

N∑
j=−N

Cj

{ d2
dt2

Sj(t)−
ψ′′

ψ′2
(t)

d

dt
Sj(t)

}
+ λ

(
ψ′(t)

)2
exp

( N∑
j=−N

CjSj(t)
)

= 0,

t = −Nh,−(N + 1)h, . . . , Nh. (36)
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By using lemma (1) and knowing that δ
(0)
jk = δ

(0)
kj , δ

(1)
jk = −δ(1)kj , and δ

(2)
jk =

δ
(2)
kj , the above system can be rewritten as follows:

N∑
j=−N

Cj

{ 1

h2
δ
(2)
jk +

1

h
δ
(1)
jk

ψ′′

ψ′2
(kh)

}
+ λ
(
ψ′(kh)

)2
exp

(
Ck

)
= 0,

k = −N,−N + 1, . . . , N. (37)

By applying the diagonal matrix, which was introduced in (6), and the
notations of I(l) in lemma (1), we have:

AC +B exp(C) = 0, (38)

where

A = I(2) +D
(ψ′′
ψ′

)
I(1),

B = D
(
λψ′2

)
,

C =
(
C−N , C−N+1, . . . , CN

)T
,

exp(C) =
(

exp(C−N ), exp(C−N+1), . . . , exp(CN )
)T
.

This nonlinear system can be solved by Newton’s method, which was dis-
cussed in Subsection 3.2

4 Numerical Results

In order to demonstrate the accuracy and efficiency of the numerical so-
lution obtained by the DE Sinc method, Bratu’s problem is solved by a
variety of parameters reported in the literature. Furthermore, the solution
is compared with the exact solution at certain points, and also with the
best numerical results reported by existing methods in the literature.

For several parameters, the maximum absolute error in the solution over
999 equally spaced gride points Λ is calculated in which

Λ = {x1, . . . , x999},

xk =
k

1000
, k = 1, 2, . . . , 999,
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Table 1: Absolute error in the solution for λ = 1.

DE Sinc method

x Galerkin collocation B-Spline Laplace LSHM OSM PSM SESG(N=60) IFDM

[8] [15] [1] [3] [29] [30] [5]

0.1 1.52 E-16 2.08 E-16 2.97 E-06 1.97 E-06 7.50 E-07 4.63 E-08 5.85 E-10 2.01 E-10 5.60 E-11

0.2 0.0000 1.52 E-16 5.46 E-06 3.93 E-06 1.01 E-06 1.02 E-07 2.58 E-10 1.69 E-10 3.62 E-11

0.3 2.77 E-17 3.88 E-16 7.33 E-06 5.85 E-06 5.85 E-06 1.44 E-07 2.59 E-11 1.82 E-11 2.80 E-11

0.4 1.38 E-16 3.88 E-16 8.49 E-06 7.70 E-06 7.70 E-06 1.71 E-07 8.77 E-11 1.14 E-11 1.00 E-12

0.5 1.94 E-16 4.16 E-16 8.89 E-06 9.46 E-06 9.46 E-06 1.81 E-07 1.38 E-10 1.18 E-11 1.30 E-11

0.6 1.66 E-16 5.27 E-16 8.49 E-06 1.11 E-05 1.11 E-05 1.71 E-07 8.77 E-11 1.14 E-11 3.50 E-11

0.7 1.24 E-16 5.27 E-16 7.33 E-06 1.25 E-05 1.25 E-05 1.44 E-07 5.59 E-11 1.82 E-11 1.20 E-11

0.8 2.22 E-16 2.91 E-16 5.46 E-06 1.34 E-05 1.34 E-05 1.02 E-07 2.58 E-10 1.69 E-10 2.19 E-11

0.9 3.46 E-17 2.91 E-16 2.97 E-06 1.19 E-05 1.19 E-05 4.63 E-08 5.87 E-10 2.01 E-10 6.70 E-12

MaxError 3.46 E-17 5.27 E-16 8.89 E-06 1.34 E-05 1.34 E-05 1.81 E-07 5.87 E-10 2.01 E-10 6.70 E-11

Table 2: Maximum absolute error and CPU time over Λ for λ = 1.

DE Sinc-collocation DE Sinc-Galerkin

N MAE CPU-time CondJ MAE CPU-time CondJ SE-SC [22] SE-SG [23]

10 1.8647E − 07 1.1486s 67.37 3.0073E − 07 1.1671s 91.57 3.02E − 04 ———

16 8.9636E − 10 1.1870s 124.2 4.4568E − 10 1.1767s 166.57 ——— 5.4E − 05

25 1.0605E − 12 1.2544s 239.9 1.3833E − 13 1.2337s 311.99 6.46E − 06 ———-

32 8.2434E − 15 1.2601s 353.9 2.6784E − 10 1.2477s 450.34 ———– 1.6E − 06

50 4.7878E − 15 1.6496s 743.4 5.8287E − 16 1.2950s 900.37 7.30E − 08 ———

64 5.3291E − 15 1.3784s 1139 4.7184E − 15 1.3769s 1339 ———- 9.5E − 09

and the maximum absolute error (MAE) in the equally spaced points de-
fined by:

MAESG = max
1≤k≤999

|uexat−solution(xk)− um,Sinc−Galerkin(xk)|,

MAESC = max
1≤k≤999

|uexat−solution(xk)− um,Sinc−collocation(xk)|.

All the computations developed on (PC) by Matlab and the initial esti-
mate for Newton,s iteration are chosen the zero vector. Also to show the
CPU execution time, the ”tic” and ”toc” functions are used, and results
are reported in the tables.

Table 1 presents the maximum absolute error (MAE) over Λ for our
method with N = 50, B-spline method [8], Laplace method [15], decomposi-
tion method [16], Lie group shooting method [1], optimal spline method [3],
parametric spline method [29], SE Sinc-Galerkin method for N = 60 [30],
and iterative finite difference method (IFDM) [5], for λ = 1. In the last
row of the table the maximum error calculated at points 0.1, 0.2, . . . , 0.9 is
listed. Clearly, the DE Sinc method is more accurate than of other methods
reported in the literature. Table 2 shows MAE for the Sinc-Galerkin [23]
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Table 3: Absolute error in the solution for λ = 2.

DE Sinc method

x Galerkin collocation B-Spline [8] Laplace [15] DCM [16] LSHM [1] PSM [29] SESG(N=60) [30] IFDM [5]

0.1 4.99 E-16 6.93 E-17 1.72 E-05 2.13 E-03 2.68 E-03 1.52 E-02 1.25 E-08 1.48 E-09 1.42 E-10

0.2 3.88 E-16 8.60 E-16 3.23 E-05 4.12 E-03 2.02 E-03 1.46 E-02 1.95 E-08 1.34 E-09 1.01 E-10

0.3 3.33 E-16 1.22 E-15 4.49 E-05 6.19 E-03 1.52 E-04 5.58 E-03 2.73 E-08 1.68 E-10 1.11 E-10

0.4 6.10 E-16 1.27 E-15 5.28 E-05 8.00 E-03 2.20 E-03 3.24 E-03 3.31 E-08 2.35 E-10 1.60 E-10

0.5 7.21 E-16 1.44 E-15 5.56 E-05 9.60 E-03 3.01 E-03 6.98 E-03 3.53 E-08 7.39 E-11 1.27 E-10

0.6 6.66 E-16 1.49 E-15 5.28 E-05 1.09 E-03 2.20 E-03 3.24 E-03 3.31 E-08 2.35 E-10 1.39 E-10

0.7 4.44 E-16 1.22 E-15 4.49 E-05 1.19 E-03 1.52 E-04 5.88 E-03 2.73 E-08 1.68 E-10 1.46 E-10

0.8 4.44 E-16 7.77 E-16 3.28 E-05 1.24 E-02 2.02 E-03 1.46 E-02 1.95 E-08 1.34 E-09 1.65 E-10

0.9 6.93 E-16 0 1.72 E-05 1.09 E-02 2.68 E-03 1.52 E-02 1.25 E-08 1.48 E-09 9.10 E-11

MaxError 7.21 E-16 1.49 E-15 5.56 E-05 1.09 E-02 3.01 E-03 1.52 E-02 3.53 E-08 1.48 E-09 1.65 E-10

Table 4: Maximum absolute error and CPU time over Λ for λ = 2.

DE Sinc-collocation DE Sinc-Galerkin

N MAE CPU-time CondJ MAE CPU-time CondJ SE-SC [22] SE-SG [23]

10 5.5338E − 07 1.1264 75 1.0902E − 06 1.1637 101.92 8.60E − 04 ———

16 1.6036E − 08 1.1436 138.12 6.0332E − 09 1.1774 185.31 ——— 1.5E − 04

25 4.2510E − 11 1.1719 266.8 1.3783E − 11 1.2250 347.01 1.84E − 05 ———-

32 5.4937E − 13 1.2333 393.65 1.6445E − 13 1.2631 500.85 ———– 4.04E − 06

50 1.7764E − 15 1.2703 826.74 1.4433E − 15 1.3124 1001.30 2.07E − 07 ———

64 1.5987E − 15 1.3532 1267 1.6320E − 14 1.4132 1489 ———- 2.7E − 08

Table 5: Absolute error in the solution for λ = 3.513830719.

DE Sinc method

x Sinc-Galerkin Sinc-collocation B-Spline [8] LSHM [1] IFDM [5]

0.1 3.3683E − 06 5.2052E − 06 3.8417E − 02 4.45E − 05 4.74E − 08

0.2 6.5536E − 06 1.0127E − 05 7.4813E − 02 7.12E − 05 8.97E − 08

0.3 9.2633E − 06 1.4315E − 05 1.0582E − 01 7.30E − 05 1.25E − 07

0.4 1.1121E − 05 1.7186E − 05 1.2711E − 01 4.46E − 05 1.49E − 07

0.5 1.1787E − 05 1.8215E − 05 1.3475E − 01 6.75E − 07 1.57E − 07

0.6 1.1121E − 05 1.7186E − 05 1.2711E − 01 4.56E − 05 1.48E − 07

0.7 9.2633E − 05 1.4315E − 05 1.0582E − 01 7.20E − 05 1.23E − 07

0.8 6.5536E − 06 1.0112E − 05 7.4813E − 02 7.05E − 05 8.78E − 08

0.9 3.3683E − 06 5.2052E − 06 3.8417E − 02 4.41E − 05 4.52E − 08

MaxError 9.2633E − 05 1.8215E − 05 1.3475E − 01 7.30E − 05 1.57E − 07

and Sinc-collocation [22] methods based on single exponential (SE) trans-
formation, CPU time and condition number of Jacobian matrix introduced
in Eq. (32) for the Sinc-collocation method and the Sinc-Galerkin method
based on double exponential (DE) transformation, over Λ, for λ = 1 and
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different values of N . Based on the results, the two methods are much less
time-consuming in terms of CUP time.

Table 3 enumerates MAE over Λ for our method with N = 50, B-
spline method [8], Laplace method [15], decomposition method [16], Lie
group shooting method (LSHM) [1], parametric spline method [29], SE
Sinc-Galerkin method for N = 60 [30], and IDFM [5], for λ = 2. The
last row of the table is devoted to the maximum error calculated at points
0.1, 0.2, . . . , 0.9. Table 4 presents MAE for the Sinc-Galerkin [23] and Sinc-
collocation [22] methods based on single exponential (SE) transformation,
CPU time and condition number of Jacobian matrix introduced in Eq.
(32) for the Sinc-collocation method and the Sinc-Galerkin method based
on double exponential (DE) transformation over Λ for λ = 2 and different
values of N .

Table 5 includes MAE over Λ for our method with N = 50, B-spline
method [8], LSHM [1], and IFDM [5], for λ = 3.513830719. In this special
case IFDM outperforms the other methods. Tables 6 and 7 present MAE
for the Sinc-collocation method [22] based on (SE) transformation, CPU
time and condition number of Jacobian matrix introduced in Eq. (32) for
the Sinc-collocation method and the Sinc-Galerkin method based on (DE)
transformation over Λ for different values of N for λ = 3.513830719 and
λ = −π2 respectively.

Table 8 shows the MAE over Λ obtained by our method for different
values of N and λ.

In Table 9, the absolute error in the points obtained by the DE Sinc
methods and IFDM [5] for λ = 0.1, 0.01 tabulated. As the results show,
the Sinc methods have the so smaller error.

Figures 1 and 2 depict the approximation solution obtained by the DE
Sinc-Galerkin and the DE Sinc-collocation methods for different values of
λ.

5 Conclusions

This study developed efficient Sinc-Galerkin and Sinc-collocation methods
based on a double exponential transformation by a new strategy to solve
one-dimensional Bratu-type problem. Bratu’s problem was discretized to
a nonlinear system of algebraic equations by using the Sinc method. Also,
the upper bound of the error for Sinc-Galerkin was found. The nonlin-
ear system was rearranged in matrix-vector forms and solved by Newton’s
method. The results obtained from the DE Sinc-Galerkin and the DE
Sinc-collocation methods were compared with each other and with the best
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Table 6: Maximum absolute error and CPU time over Λ for λ =
3.513830719.

DE Sinc-collocation DE Sinc-Galerkin

N MAE CPU-time CondJ MAE CPU-time CondJ SE-SC [22]

10 9.9276E − 03 1.1475s 112.3 1.1049E − 02 1.1620s 144.37 3.42E − 02

25 1.0915E − 04 1.1885s 356.93 2.8514E − 05 1.2136s 451.53 9.83E − 04

50 9.9392E − 06 1.2795s 1015.4 9.9490E − 06 1.3169s 1241.50 1.12E − 05

Table 7: Maximum absolute error and CPU time over Λ for λ = −π2.

DE Sinc-collocation DE Sinc-Galerkin

N MAE CPU-time CondJ MAE CPU-time CondJ SE-SC [22] SE-SG [23]

10 1.1239E − 06 1.1536s 36.31 1.3599E − 06 1.1497s 49.49 1.52E − 03 ———

16 2.9987E − 09 1.1578s 68.00 1.2821E − 09 1.1929s 90.86 ——— 4.3E − 04

25 2.6386E − 12 1.2072s 131.51 7.1355E − 13 1.2316s 170.88 3.21E − 05 ———-

32 2.1719E − 14 1.2458s 194.14 5.9536E − 15 1.2641s 246.96 ———– 1.6E − 05

50 1.3501E − 15 1.2839s 408.19 1.4594E − 15 1.3186s 494.37 3.61E − 07 ———

64 1.6100E − 15 1.3412s 626.01 1.6320E − 15 1.3708s 735.73 ———- 6.0E − 08

Table 8: Absolute error in the points for different values of λ.

DE Sinc-Galerkin DE Sinc-collocation

N λ = −π2 λ = 1 λ = 2 λ = 3.513830719 λ = −π2 λ = 1 λ = 2 λ = 3.513830719

2 0.2643 0.0556 0.1442 1.0761 0.2624 5.50E − 02 1.42E − 01 1.0758

5 1.70 E-03 3.24E − 04 9.21E − 04 1.88E − 01 1.61E − 03 3.19E − 04 9.18E − 04 1.87E − 01

10 1.35 E-06 3.00E − 07 1.09E − 06 1.10E − 02 1.12E − 06 1.86E − 07 5.53E − 07 9.92E − 03

15 3.43 E-09 7.63E − 10 1.13E − 08 6.54E − 04 3.13E − 09 2.42E − 09 3.28E − 08 1.43E − 03

20 2.61 E-11 1.58E − 11 3.74E − 10 1.01E − 04 2.96E − 11 4.34E − 11 1.08E − 09 7.49E − 05

30 2.99 E-14 9.41E − 15 5.80E − 13 1.17E − 05 8.38E − 14 2.97E − 14 1.85E − 12 1.82E − 05

40 1.89 E-15 4.16E − 16 2.74E − 15 9.96E − 06 2.45E − 15 5.27E − 16 5.41E − 16 9.21E − 06

Table 9: Absolute error in the points for different values of λ.

λ = 0.1 λ = 0.01

x DESC DESG IFDM [5] DESC DESG IFDM [5]

0.1 1.38E − 16 1.20E − 16 7.63E − 12 2.20E − 16 2.22E − 16 4.73E − 13

0.2 2.70E − 16 2.51E − 16 7.70E − 12 1.50E − 17 1.23E − 17 1.31E − 12

0.3 1.16E − 16 1.43E − 16 8.70E − 12 1.70E − 16 1.73E − 16 3.38E − 12

0.4 1.82E − 16 1.68E − 16 7.60E − 12 1.02E − 16 1.05E − 16 4.95E − 12

0.5 1.38E − 17 2.77E − 17 3.50E − 12 2.78E − 16 2.81E − 16 5.22E − 12

0.6 2.06E − 16 1.85E − 16 1.00E − 12 1.02E − 16 1.04E − 16 6.33E − 12

0.7 9.02E − 17 1.11E − 16 3.30E − 12 1.71E − 16 1.71E − 16 4.63E − 12

0.8 2.34E − 16 2.68E − 16 7.74E − 12 1.39E − 17 1.36E − 17 2.85E − 12

0.9 2.44E − 16 1.31E − 16 8.02E − 12 2.20E − 16 2.22E − 16 7.13E − 13
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Figure 1: Solution of Bratu’s problem with λ = −π2,−π,−2,−1, 0, 1, 2, π, 3.513830719
for (a) the DE Sinc-Galerkin method, (b) the DE Sinc-collocation method and (c) Exact
solution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2: Exact solution of Bratu’s problem with λ =
−π2,−π,−2,−1, 0, 1, 2, π, 3.513830719.

numerical results of the other existing methods reported in the literature.
The absolute error and CPU execution time, as shown in tables, clearly
indicate that the DE Sinc methods are much more accurate than existing
methods in almost all of the parameters. The results show that both the
DE Sinc-Galerkin and the DE Sinc-collocation methods are equally accu-
rate. The DE Sinc-collocation method is, however, easier to use than the
DE Sinc-Galerkin method for solving such problems.
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