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Abstract. This paper introduces an efficient numerical scheme for solv-
ing a significant class of nonlinear parabolic integro-differential equations
(PIDEs). The major contributions made in this paper are applying a di-
rect approach based on a combination of group preserving scheme (GPS)
and spectral meshless radial point interpolation (SMRPI) method to tran-
scribe the partial differential problem under study into a system of ordi-
nary differential equations (ODEs). The resulting problem is then solved
by employing the numerical method of lines, which is also a well-developed
numerical method. Two numerical experiments are carried out to evaluate
the performance and effectiveness of the suggested framework.
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1 Introduction

Consider the following PIDE:

yt(t,x)−∇ · p(t,x) = f(t,x), (x, t) ∈ Ω× (0, T ], (1)
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where

p(t,x) = A(t,x)∇y(t,x)−
∫ t

0
B(t, s,x)∇y(s,x)ds,

with the initial and boundary conditions

y(t,x) = 0, (x, t) ∈ ∂Ω× (0, T ],

y(0,x) = g(x), x ∈ Ω,

in which Ω ⊆ Rd, d = 2, 3, is a bounded polygonal domain with the bound-
ary ∂Ω, A and B are two d× d matrices, f is a given real-valued function
on Ω and g(x) is a known function.

This issue have been used through modeling many nonlinear physical
applications evidently. More specifically, PIDEs used to illustrate the me-
chanics and dynamic systems [4, 12, 14, 32, 34]. Nonetheless it should be
noted that due to the high complexity of parabolic and nonlinear par-
tial differential equations, the analytically handling equations portrayed
by this nonlinearity is completely tough and even impossible. To be pre-
vailed through this challenge, practical numerical/approximate methods
have been presenting to solve them [10, 17]. Authors in [35], utilized com-
pact difference approach for spatial discretization and alternating direction
implicit method in time, combined with second-order fractional quadra-
ture rule for the approximating of integral term to solve a class of PIDEs
with weakly singular kernels in which the existence of positive solutions
of this problem had already been interrogated by Chen and Zou [8]. The
two-grid finite element algorithm is expanded by Wang and Hong in [44]
for solving problem (1) with nonlinear memory. Because of the high ef-
ficiency of nonlinear term in the problem (1), this discretization results
in highly nonlinear algebraic systems. To overcome this challenge, the re-
searcher used a linearized iterative process that vividly cause the numerical
results have much computational error. Through the next year, Deka et
al. [9] developed this method but the reported numerical results weren’t
better than previously reported results. Reddy et al. [36] have used the
Crank-Nicolson finite element techniques in order to perform an improved
a posteriori error analysis for the PIDEs with a bounded convex polygo-
nal or polyhedral domain. Also, a compact difference approach for spatial
discretization and alternating direction implicit method in time, combined
with second-order fractional quadrature rule has been investigated in [35].
An investigation on a class of quasilinear PIDEs with nonlinear boundary
conditions has been proposed in [47]. Other methods used to solve different
types of this problems include finite element method [5,11,20,28,33,46] and
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finite difference method [16,27,43]. Recently, several new numerical meth-
ods such as mixed finite element method and finite volume element method
for space discretization or time discretization have been proposed to solve
PIDEs [3,7,21,30,37,38]. Many meshless methods, as a special class of spec-
tral methods, have been used for solving the PIDE such as the Galerkin
method [18, 19, 31] Galerkin finite element scheme [48]. On the contrary
of easy implementation of these methods, the challenge of these methods
is their low accuracy and high cost of computing in discretization. Dif-
ferent from these techniques, here the parabolic equation (1) is discretized
directly into nonlinear algebraic system by the method of lines. Besides, to
deal with the nonlinearity, two iterative procedures are developed.

SMRPI method, comprised of meshless radial point interpolation and
spectral collocation techniques, has been assigned and applied to the 2-D
and 3-D diffusion equations by Shivanian in [39–42]. Through this tech-
nique, the point interpolation method with the help of radial basis functions
(RBFs) is proposed to implement basis functions which have Kronecker
delta function property and are used as basis functions in the frame of
the SMRPI. The given method either utilize any global basis functions for
interpolating technique or uses arbitrary points for discretization, give us
a very flexible chart for solving PIDEs. Using SMRPI as a meshless col-
location method bears some advantages sush as simply evaluation of high
order derivatives of given differential equation and less expensive of com-
putational costs.

In this study, based on the numerical method of lines, which is also
a well-developed numerical method, a semi-discretization is implemented
on the state variable of PIDE (1) by SMRPI method to obtain a system
of ODEs. After that, a highly accurate and powerful approximate scheme
namlely the GPS suitable for ODEs is employed to acquire the approximate
solution of this system. The GPS is a robust method used to solve some
different problems such as Klein-Gordon model [13], telegraph equation
[15], Sturm-Liouville problem [26], Burgers equation [22,23], Bratu problem
[1], heat conduction problem [6, 24] and the Cauchy Problem [2, 13]. The
GPS, as a geometric method, is formed in the Minkowski space Mn+1,
whereas the traditional numerical approaches (non-geometric methods) are
all formulated directly in the usual Euclidean space Rn. Avoiding the
spurious solutions and ghost fixed points is one of the benefits of using the
augmented Minkowski space as a Lie group.

So, the overall layout of this paper is as follows. Section 2, is relevant
to some properties of the GPS and SMRPI method in short. Section 3, is
committed to the PIDE under study and its approximation by means of the
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mentioned functions. According to the existing mechanism, the synchro-
nization problem is recast to a system of ODEs. Section 4, is dedicated to
the simulation results. The experimental results demonstrate the validity
and capability of the proposed computational procedure. In Section 5, we
provide a conclusion.

2 Preliminaries

In this section, a brief description of GPS for solving a system of ODEs and
some of the stability results of this method is presented. Furthermore, the
SMRPI method and some of its properties are derived. Also, a new and
applied feature in nonlinear issues is expressed for it.

2.1 Group Preserving Scheme

We introduce the GPS, which was firstly derived by Liu [25]. GPS uses the
Cayley transformation and the Pade

′
approximations in the augmented

space, namely Minkowski. Consider a system of n ordinary differential
equations:

u′(x) = f(u(x), x), x ∈ R, u(x) ∈ Rn, (2)

where f is a vector valued function. Assume that ‖u(x)‖ > 0 in which ‖.‖
is the Euclidean norm. So, the dynamical system (2) can be transformed
as following:

d

dx

(
u(x)
‖u(x)‖

)
=

 0n×n
f(u(x),x)
‖u(x)‖

fT (u(x),x)
‖u(x)‖ 0

( u(x)
‖u(x)‖

)
. (3)

Let us put the Minkowski metric as follows

g =

(
In 0n×1

01×n In

)
,

where In is the identity matrix and

U(x) =

(
u(x)
‖u(x)‖

)
.

One can easily show that the augmented state variables of U(x) satisfies
the following cone condition

UT (x)gU(x) = uT (x).u(x)− ‖u(x)‖2 = 0, ∀x ∈ R. (4)
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From augmented technique, each equation of dynamical system (2) can be
displayed on augmented dynamical system (3) that its solution is placed on
the cone by the criterion (4). Moreover, the addition of the second equation
of (3) imposes a Minkowski structure that acquiescent to (4). Briefly, the
equation (3) can be written as the following

U′ = AU, (5)

in which

A(u(x), x) =

 0n×n
f(u(x),x)
‖u(x)‖

fT (u(x),x)
‖u(x)‖ 0

 ,

and the augmented matrix A that satisfies

ATg + gA = 0, (6)

is also an element of the Lie algebra so(n, 1) of the proper orthochronous
Lorentz group SO◦(n, 1) for all x ∈ R. Although the dimension of the new
system (5) is raising one more that system (2), it has been shown that
under the Lipschitz condition for f , this new system has the advantage of
allowing us to develop the GP numerical scheme. The GPS is developed
by Liu [25] that each Uk being numerical value of U(xk) can automatically
locate on the cone

Uk+1 = GkUk, (7)

in which the cone condition can be constrained on Uk’s as following

UkgUk = 0, for k = 0, 1, 2, . . . , (8)

where Gk ∈ SO◦(n, 1), ∀k, are verified to satisfy the following properties:

GT
k gGk = g, (9)

detGk = 1, (10)

G00
k > 0, (11)

where G00
k is 00-th component of the matrix Gk. The k-th stage of one-step

differential equation system with the initial condition Uk on the interval
[xk, xk+1] has the following form:

U′(x) = A(U(x), x)U(x), x ∈ (xk, xk+1],

U(xk) = Uk.
(12)
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The exact solution of (12) is computed as

U(x) = e
∫ x
xk

A(U(t),t)dt
Uk, x ∈ (xk, xk+1], (13)

In a special way, we rewrite the above equation for x = xk+1, then we have:

U(xk+1) = e
∫ xk+1
xk

A(U(t),t)dtUk. (14)

Numerical solution of (14) can be obtained as follows

Uk+1 = e∆xA(Uk,xk)Uk, (15)

which has the following truncation error:

U(xk+1)−Uk+1 =
(
e
∫ xk+1
xk

A(U(t),t)dt − e∆xA(Uk,xk)
)
Uk

=
(
e
∫ xk+1
xk

A(U(t),t)dt−∆xA(Uk,xk) − In+1

)
e∆xA(Uk,xk)Uk

= O(∆x)e∆xA(Uk,xk)Uk.

(16)

We know that A(u(x), x) ∈ so(n, 1), accordingly, A(Uk, xk) ∈ SO◦(n, 1),
therefore by the inductive processing, if Uk satisfies the cone condition, then
Uk+1 is truest on it. A GPS is introduced for this purpose to preserves the
cone condition such as the problem (3). We now present the closed-form
representation of the appeared matrices on the any step of this scheme as
follows [25]:

e∆xA(Uk,xk) =

In +
(αk−1)fkf

T
k

‖fk‖2
βkfk
‖fk‖

βkf
T
k

‖fk‖ αk

 , (17)

where

αk = cosh(∆x
‖fk‖
‖uk‖

), βk = sinh(∆x
‖fk‖
‖uk‖

),

and fk = f(Uk, xk). Taking the first n-component of Uk, for all k =
1, 2, 3, . . ., and applying them for a practical numerical calculation that it
is a one-step method, we obtain [1, 2]:

uk+1 = uk + ηkfk, (18)

where

ηk =
(αk − 1)fTk .uk + βk‖uk‖‖fk‖

‖fk‖2
.



Solving parabolic integro-differential equations 297

The iterative algorithm (18) is alike the forward one-step Euler method,
but it is modified to satisfy the cone condition. A linear stability of the
one-step method (18) is surveyed to end the current section. The definition
of the linear stability, which was previously stated for a multi-step finite
difference method [29], can be modified for a multi-step GPS. In addition,
one can see the relationship between it and the other types of stability.

Definition 1. A multi-step scheme for each system of ODE with constant
coefficient has a linear stability if and only if all complex eigenvalues of its
coefficients matrix have a negative real parts.

The linear stability of method (18) is shown in the following theorem.

Theorem 1. The one-step method (18) has linear stability.

Proof. Consider f(u(x), x) = Au(x) with the initial condition u(0) = u◦
that all of the eigenvalues of A have the negative real part. From (18), we
have

uk+1 =
(
In + ηkA

)
uk, for k = 1, 2, 3, . . . . (19)

From the above equation, we conclude that

uk+1 =
k∏
i=1

(
In + ηiA

)
u◦, for k = 1, 2, 3, . . . . (20)

We know that −‖uk‖‖fk‖ ≤ uk.fk ≤ ‖uk‖‖fk‖, then [2]:

‖uk‖
‖fk‖

(
1− e−∆x

‖fk‖
‖uk‖

)
≤ ηk ≤

‖uk‖
‖fk‖

(
e

∆x
‖fk‖
‖uk‖ − 1

)
. (21)

Selecting ∆x in the interval (0, 1
‖A‖) results in ηk ≈ ∆x,

∑k
i=1 ηk ≈ xk and

In + ηiA ≈ eηiA (see [29]). Then, from (20) we conclude that

uk+1 ≈ exk+1Au◦, for k = 1, 2, 3, . . . , (22)

in which causes ‖uk‖ → 0 as k → ∞, since as we assumed that all of the
eigenvalues of A have the negative real part.

2.2 SMRPI scheme

To approximate the continuous function u(x) we can use a localized mesh-
less radial point interpolation called SMRPI method [40]. We briefly intro-
duce it in this section. The continuous function u(x) can be represented
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via both RBFs Ri(x) and monomials in interest point x ∈ Ωl. So, the
coefficients ai and bj can be considered as

u(x) =
n∑
i=1

Ri(x)ai +
m∑
j=1

Pj(x)bj = RT (x)a + PT (x)b, (23)

in which Ωl is a disk centered at xl with radius rs, n is the number of point
in Ωl and m is the number of polynomial basis functions. When m = 0, only
RBFs are used, otherwise, the RBF is augmented with m polynomial basis
functions. In the point of interest xl, we enforce Eq. (23) to be satisfied at
those n nodes surrounding it. Then the linear algebraic equations system
(23) is represented as follows:

Us = RT
na + PT

mb, (24)

in which Us is the vector of function values defined as

Us = {u1, u2, u3, . . . , un}T , (25)

Rn denotes the RBFs moment matrix as follows

Rn =

R1,1 R1,2 · · · R1,n
...

...
. . .

...
Rn,1 Rn,2 · · · Rn,n

 , (26)

and Pm which represents the polynomial moment matrix is defined as below

Pm =

p1(x1) p1(x2) · · · , p1(xn)
...

...
. . .

...
pm(x1) pm(x2) · · · , pm(xn)

 . (27)

Also, the vector of unknown coefficients for RBFs is

a = {a1, a2, a3, . . . , an}T , (28)

and the vector of unknown coefficients for basis polynomial is

b = {b1, b2, b3, . . . , bm}T . (29)

Assume that rk, k = 1, 2, . . . , n, being the distance between nodes in the
support domain, Rk,i = Ri(rk) are the RBFs in (26). We added the fol-
lowing m equations in (24) to make a square matrix:

n∑
i=1

pj(xi)ai = PT
ma = 0, j = 1, 2, . . . ,m. (30)
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So, the following system of equations is obtained from Eqs. (24) and (30):

Ûs =

(
Us

0

)
=

(
Rn Pm

PT
m 0

)(
a
b

)
= Gâs, (31)

in which the matrix G is theoretically non-singular [45] and

âs =

(
a
b

)
. (32)

Now from (31) we have
âs = G−1Ûs. (33)

By rewriting Eq. (23) we obtain

u(x) = Φ̂(x)Ûs, (34)

such that
Φ̂(x) = [Rn(x),Pm(x)]G−1. (35)

The shape functions corresponding to the nodal displacements of radial
point interpolation method (RPIM), are the first n functions of the above
vector and we show them by the vector ΦT (x), that means

Φ(x) = {φ1(x), φ2(x), . . . , φn(x)}. (36)

Now Eq. (34) takes following form:

u(x) = Φ(x)Us =

n∑
i=1

φi(x)ui. (37)

Also it is well known that the Kronecker delta function property is attached
to the RPIM shape functions by (35) which is clarified, that means

φi(xj) =

{
1 i = j, i, j = 1, 2, . . . , n,
0 i 6= j, i, j = 1, 2, . . . , n,

(38)

and lead to a sparse global collocation system. We assume that the total
number of nodes that cover Ω̄ = Ω ∩ ∂Ω is N . By rewriting Eq. (37), we
have

u(x) = Φ(x)Us =

N∑
i=1

φi(x)ui. (39)

Since, corresponding to node xj , there is a shape function φi(x), i =
1, 2, . . . , N , then obviously we have from Eq. (38) that

∀xj ∈ Ωc
x φi(xj) = 0, (40)



300 S. Soradi-Zeid, M. Mesrizadeh

where Ωc
x = {xj : xj /∈ Ωx}. Now the derivatives of u(x) with respect to

xi, i−th component of x = {x1, . . . , xi, . . . , xN}, is determined as

∂u

∂xi
(x) =

N∑
j=1

∂φj
∂xi

(x)uj , (41)

and for high derivatives of u(x) we have

∂su

∂(xi)s
(x) =

N∑
j=1

∂sφj
∂(xi)s

(x)uj , (42)

where ∂s

∂(xi)s
is s−th derivatives with respect to xi imply that due to Eq.

(40), ∀xj ∈ Ωc
x,

∂sφj
∂(xi)s

(x) = 0, s = 1, 2, . . .. Denoting u
(s)
xi (.) = ∂su(.)

∂(xi)s
and

setting x = xi in Eq. (39), we get

u
(s)
xi (x1)

...

u
(s)
xi (xN )

 =

Ds
xi︷ ︸︸ ︷

∂sφ1
∂(xi)s

(x1) · · · ∂sφN
∂(xi)s

(x1)
...

. . .
...

∂sφ1
∂(xi)s

(xN ) · · · ∂sφN
∂(xi)s

(xN )


u1

...
uN

 . (43)

This matrix-vector form for high-order derivatives is as follows:

U sxi = Ds
xiU, (44)

where
U sxi = {u(s)

xi (x1), . . . , u(s)
xi (xN )}. (45)

3 Implementation the method of lines for PIDEs

For any fixed value of x, Eq. (1) is transformed into an ODE as follows:

yt(t,xi) = f(t,xi) +∇ · p(t,xi),

p(t,xi) = A(t,xi)∇y(t,xi)−
∫ t

0
B(t, s,xi)∇y(s,xi)ds.

(46)

Let
∑N

k=1 yk(t)φk(x) be the SMRPI approximation of y(t,x). By applying
the GPS for (46) we will have:

yj+1(xi) = yj(xi) + ηi,j

(
f(tj ,xi) +∇ · pj(xi)

)
,

pj(xi) =

N∑
k=1

(
A(tj ,xi)−

∫ tj

0
B(tj , s,xi)ds

)
· ∇φk(xi)yj(xi),

(47)
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where yj(xi) is equal to yi(tj) and estimates y(t,x) in (tj ,xi). So, we have

yi,j+1 = yi,j + ηi,j

(
f(tj ,xi) +∇ · pi,j

)
,

pi,j =
N∑
k=1

(
A(tj ,xi)−

∫ tj

0
B(tj , s,xi)ds

)
· ∇φk(xi)yi,j ,

(48)

in which yi,j = yj(xi).

4 Numerical results

For confirming our theoretical analysis, we need to consider a numerical
example based on problem (1) with initial boundary conditions. The fol-
lowing symbols are introduced in order to analyze the error of this method:

|u− uh|0 =
[ ∫

Ω
|u− uh|2dΩ

] 1
2
, (49)

|u− uh|1 =
[ ∫

Ω
| ∂
∂x1

(u− uh)|2 + | ∂
∂x2

(u− uh)|2dΩ
] 1

2
, (50)

where u and uh are the exact and the approximation solutions, respec-
tively. To apply the SMRPI method for all examples, let rs = 4.5h that
is significant enough to have sufficient number of nodes for any support
domain in which used the radius of disks of support domain to construct
basis functions. In Eq. (23) we use the thin plate spline with three or-
der φ(x) = ‖x‖6 log ‖x‖ where ‖.‖ is the Euclidean norm in Rn. Also, let
m = 21 that causes the polynomial basis functions as following:

P Tm(x) = {1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x4, x3y, x2y2,

xy3, y4, x5, x4y, x3y2, x2y3, xy4, y5}.

In addition, all computations have been done with Mathematica software.
To evaluate the benefits and validity of this method for solving problem
(1), consider the following examples.

Example 1. Assume that A and B are identity matrices and the exact
solution is

y(t,x) = exp(−t) sin(πx1) sin(πx2),

on x = (x1, x2) ∈ Ω = [0, 1]2 and t ∈ [0, 1] with initial condition g(x) = 0.
Also, the associated forcing term f(t,x) is determined by replacing the
above functions into problem (1). Fig. 1 gives the associated error y − yN
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Figure 1: Error function y − yN with h = 1/32 and N = 16 for Example 1.

with h = 1/32. Error norms has been computed with different types of
norms and the results have been presented in Table 1. From the presented
results, it can be concluded that the accuracy of the numerical results have
been improved by decreasing the number of h. In addition, this table states
the effect of various values of the nodal spacing N on the results.

Example 2. Let

A(t,x) =

(
3 + ‖x‖2 1− ‖x‖2
1− ‖x‖2 4

)
,

and

B(t, s,x) =

(
exp(s+ t) 1

1 t2 + s2 + 4

)
.

in which the initial condition is given by g(x) = 0 and the exact solution
is y(t,x) = x1x2(1 − x1)(1 − x2) sin(πt) in x = (x1, x2) ∈ Ω = [0, 1]2 and
t ∈ [0, 1]. So, the source function f(t,x) is determined by embedding the
above functions into problem (1). Fig. 2 gives the associated error y − yN
with h = 1/32. The error norms have been computed with different types of
norms and have been presented in Table 2. These numerical results clearly
show the accuracy of this method.
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Figure 2: Error function y − yN with h = 1/32 and N = 16 for Example 2.

Table 1: Error norms for Example 1 with different values of N and h.

N = 8 N = 16

h 0.01 0.001 0.0001 0.01 0.001 0.0001

− log10(‖y − yN‖0) 2.4034 2.6843 2.9073 3.5320 3.8650 4.1058

− log10(‖y − yN‖1) 1.1034 1.3848 1.5931 2.1532 2.4860 2.7562

5 Conclusion

This paper has been devoted to solve parabolic integro-differential equa-
tions with mixed group preserving scheme and spectral meshless radial
point interpolation by the method of lines. In spite of easy implementation
of other methods for solving this problem, the challenge of these methods
is their limited accuracy, locality, complexity and high cost of computing
in linearization of the nonlinear terms. So, we have proposed the spectral
meshless radial point interpolation scheme that, in addition employs radial
functions as a means of local interpolation, offers a very flexible chart with
a high accuracy for solving this parabolic equation. Numerical examples
show that our suggested approach is more effective and accurate for var-
ious choices of norms and semi norms. Through this assessment, we are
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Table 2: Error norms for Example 2 with different values of N and h.

N = 8 N = 16

h 0.01 0.001 0.0001 0.01 0.001 0.0001

− log10(‖y − yN‖0) 2.5464 2.8011 3.0043 3.5532 3.7968 4.2625

− log10(‖y − yN‖1) 1.0034 1.3003 1.3883 2.3532 2.7560 2.8562

convinced that the described method is an effective numerical scheme for
partial differential equations. More importantly, the proposed scheme is
easy to implement and time saving. From the results which we can see in
the tables and figures, it can be concluded that the spectral meshless radial
point interpolation method has a good convergence characteristic. Inter-
ested readers are advised to apply this method for others partial differential
equations.
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