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2-ABSORBING δ-PRIMARY ELEMENTS IN
MULTIPLICATIVE LATTICES

S. K. NIMBHORKAR AND J. Y. NEHETE ∗

Abstract. In this paper, we define a 2-absorbing δ-primary ele-
ment and a weakly 2-absorbing δ-primary element in a compactly
generated multiplicative lattice L. We obtain some properties
of these elements. We give a characterization for 2-absorbing δ-
primary elements. Also we define a δ-triple-zero and a free δ-
triple-zero and prove some results on it.

1. Introduction

The concept of a 2-absorbing and weakly 2-absorbing elements which
are generalizations of prime and weakly prime elements in
multiplicative lattices was introduced by Jayaram, et. al. [4].

Manjarekar and Bingi [5] introduced and investigated the notions of
expansions of element and δ-primary element in a multiplicative
lattice. Fahid and Zhao [3] defined a 2-absorbing δ-primary ideal in a
commutative ring which unifies both 2-absorbing and 2-absorbing
primary ideals in one frame. This motivates us to put 2-absorbing and
2-absorbing primary elements together using expansions of elements.
Also we extend the concept of 2-absorbing δ-primary ideal in a
commutative ring to multiplicative lattice.

The aim of this paper is to introduce the concept of a 2-absorbing
δ-primary element in a multiplicative lattice and generalize the results
of Fahid and Zhao [3] to multiplicative lattices. In section 2, we recall
some basic concepts in multiplicative lattices. In section 3, we
introduce the notion of a 2-absorbing δ-primary element. Such
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2-absorbing δ-primary elements unifies the concepts of a 2-absorbing
ideal and 2-absorbing primary ideal under one frame. In section 4,
we investigate some properties of 2-absorbing δ-primary elements with
respect to homomorphisms. In section 5, we define weakly 2-absorbing
δ-primary elements and obtain some properties of these elements. Also
we define a δ-triple-zero and a free δ-triple-zero.

Throughout in this paper, L denotes a compactly generated
multiplicative lattice with 1 compact in which every finite product of
compact elements is compact.

2. Preliminaries

The following definitions are from Jayaram et. al. [4].

Definition 2.1. A multiplicative lattice L is a complete lattice with a
commutative, associative and join distributive multiplication in which
the largest element 1 acts as a multiplicative identity.

Definition 2.2. An element a ∈ L is called compact if for
X ⊆ L, a ≤

∨
X implies the existence of a finite number of elements

a1, a2, . . . an ∈ X such that a ≤ a1 ∨ a2 ∨ . . . an.
The set of compact elements of L will be denoted by L∗.
A multiplicative lattice is said to compactly generated if every element
of it is a join of compact elements.

Definition 2.3. An element a ∈ L is said to be proper if a < 1.

Definition 2.4. A proper element p ∈ L is called a prime element if
ab ≤ p implies a ≤ p or b ≤ p where a, b ∈ L.

Definition 2.5. A prime element p ∈ L is said to be minimal prime
over a ∈ L, if a ≤ p and whenever there is a prime element q ∈ L with
a < q ≤ p, then q = p.

Definition 2.6. The radical of a ∈ L is defined as,√
a = ∨{x ∈ L∗|xn ≤ a for some, n ∈ N}

= ∧{p ∈ L|p is a prime element, a ≤ p }.

Definition 2.7. A proper element p ∈ L is called a primary element
if ab ≤ p implies a ≤ p or b ≤ √p where a, b ∈ L.

For a, b ∈ L we denote (a : b) = ∨{x ∈ L|bx ≤ a}.

Definition 2.8. An element a ∈ L is called semi primary if
√
a is a

prime element and is called semi prime if
√
a = a.

Definition 2.9. An element a ∈ L is called p-primary if a is primary
and
√
a = p is a prime element of L.
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Definition 2.10. A proper element m ∈ L is said to be a maximal
element if m � a for any other proper element a ∈ L.

Definition 2.11. An element a ∈ L is said to be nilpotent if an = 0
for some n ∈ N.

Definition 2.12. A proper element p of L is called a 2-absorbing
element of L if whenever a, b, c ∈ L and abc ≤ p implies that either
ab ≤ p or bc ≤ p or ac ≤ p.

Definition 2.13. A proper element p of L is called a 2-absorbing
primary element of L if whenever a, b, c ∈ L and abc ≤ p implies that
either ab ≤ p or bc ≤ √p or ac ≤ √p.

3. Properties of 2-absorbing δ-primary elements

The following definitions are from Manjarekar and Bingi [5].

Definition 3.1. An expansion of elements, or an expansion function,
is a function δ : L→ L, such that the following conditions are satisfied:
(i) a ≤ δ(a) for all a ∈ L (ii) a ≤ b implies δ(a) ≤ δ(b) for all a, b ∈ L.

Example 3.2. (1) The identity function δ0 : L→ L,
where δ0(a) = a for every a ∈ L, is an expansion of elements.
(2) For each element a, M : L→ L,
where M(a) = ∧{m ∈ L|a ≤ m, m is a maximal element }, where a
is a proper element of L and M(1) = 1. Then M is an expansion of
elements.
(3) For each element a define δ1 : L→ L as δ1(a) =

√
a, the radical of

a. Then δ1(a) is an expansion of elements.

Definition 3.3. Given an expansion δ of elements, an element p of L
is called δ-primary if ab ≤ p implies either a ≤ p or b ≤ δ(p) for all
a, b ∈ L.

Definition 3.4. A proper element p of L is called a 2-absorbing
δ-primary element of L if whenever a, b, c ∈ L and abc ≤ p implies
ab ≤ p or bc ≤ δ(p) or ac ≤ δ(p).

Example 3.5. Consider the lattice L of ideals of the ring
R = 〈Z60,+60,×60〉. Clearly,
L = {(0), (1), (2), (3), (4), (5), (6), (10), (12), (15), (20), (30)} is a
compactly generated multiplicative lattice. Its lattice structure is shown
in Figure 1.
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Figure 1

L = {0, a, b, c, d, e, f, g, h, i, j, 1}, where 0 denotes the (0) ideal,
a = (12) denotes the ideal generated by 12, b = (20) denotes ideal
generated by 20, c = (30) denotes the ideal generated by 30, d = (4)
denotes the ideal generated by 4, e = (6) denotes the ideal generated
by 6, f = (10) denotes the ideal generated by 10, g = (15) denotes the
ideal generated by 15, h = (2) denotes the ideal generated by 2, i = (3)
denotes the ideal generated by 3, j = (5) denotes the ideal generated
by 5 and 1 = (1) denotes the ideal generated by 1.
(i) From Example 3.2 and multiplication table 1, here the elements
a, b, d, e, f, g, h, i, j, where M(a) = e, M(b) = f , M(d) = h, M(e) = e,
M(f) = f , M(g) = g, M(h) = h, M(i) = i, M(j) = j, are
2-absorbing M-primary elements. But the elements c, where M(c) = c
is not a 2-absorbing M-primary element. Since dij = 0 ≤ c but neither
di = a ≤ c nor ij = g ≤M(c) nor dj = b ≤M(c).
(ii) The elements e, f, g, h, i, j, where δ0(e) = e, δ0(f) = f , δ0(g) = g,
δ0(h) = h, δ0(i) = i, δ0(j) = j, δ1(I) = I, are 2-absorbing δ0-primary.
But the elements a, b, c, d, where δ0(a) = a, δ0(b) = b, δ0(c) = c,
δ0(d) = d, are not 2-absorbing δ0-primary. Since fih = 0 ≤ a but
neither fi = c ≤ a nor ih = e ≤ δ0(a) nor fh = b ≤ δ0(a).
Since egh = 0 ≤ b but neither eg = c ≤ b nor eh = a ≤ δ0(b) nor
hg = c ≤ δ0(b). Since dij = 0 ≤ c but neither di = a ≤ c nor
ij = g ≤ δ0(c) nor dj = b ≤ δ0(c). Since ghi = 0 ≤ d but neither
hi = e ≤ d nor gi = g ≤ δ0(d) nor gh = c ≤ δ0(d).
(iii) The elements a, b, d, e, f, g, h, i, j, where δ1(a) = e, δ1(b) = f ,
δ1(d) = h, δ1(e) = e, δ1(f) = f , δ1(g) = g, δ1(h) = h, δ1(i) = i,
δ1(j) = j, are 2-absorbing δ1-primary. But the elements c, where
δ1(c) = c, is not 2-absorbing δ1-primary. Since dij = 0 ≤ c but neither
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Table 1. Multiplication Table

· 0 a b c d e f g h i j 1
0 0 0 0 0 0 0 0 0 0 0 0 0
a 0 a 0 0 a a 0 0 a a 0 a
b 0 0 b 0 b 0 b 0 b 0 b b
c 0 0 0 0 0 0 0 c 0 c c c
d 0 a b 0 d a b 0 d a b d
e 0 a 0 0 a a 0 c a e c e
f 0 0 b 0 b 0 b c b c f f
g 0 0 0 c 0 c c g c g g g
h 0 a b 0 d a b c d e f h
i 0 a 0 c a e c g e i g i
j 0 0 b c b c f g f g j j
1 0 a b c d e f g h i j 1

di = a ≤ c nor ij = g ≤ δ1(c) = c nor dj = b ≤ δ1(c) = c.

The following theorem gives a characterization of a 2-absorbing
δ-primary element of L.

Theorem 3.6. An element q ∈ L is a 2-absorbing δ-primary element
of L if and only if for any a, b, c ∈ L∗, abc ≤ q implies that either
ab ≤ q or ac ≤ δ(q) or bc ≤ δ(q).

Proof. Assume that the condition hold. Let abc ≤ q and ac � δ(q) and
bc � δ(q) then there exists compact elements x ≤ a, y ≤ b and z ≤ c
such that xyz ≤ q. Since ac � δ(q) and bc � δ(q), there exist compact
elements a1 ≤ a, b1 ≤ b and c1 ≤ c and c2 ≤ c such that a1c1 � δ(q)
and b1c2 � δ(q). Put c3 = c1 ∨ c2 ∨ z, a2 = a1 ∨ x, b2 = b1 ∨ y. We
show that ab ≤ q. Choose compact elements aα ≤ a, bα ≤ b. Then
(a2 ∨ aα)c3(b2 ∨ bα) ≤ q, (a2 ∨ aα)c3 � δ(q) and (b2 ∨ bα)c3 � δ(q) and
hence by hypothesis (a2∨aα)(b2∨ bα) ≤ q. So aαbα ≤ q. Consequently,
ab ≤ q. Therefore q is a 2-absorbing δ-primary element of L.

The converse part follows from the definition.
�

Lemma 3.7. Every prime element of L is 2-absorbing δ-primary.

Proof. Let p be a prime element of L. Suppose that abc ≤ p for some
a, b, c ∈ L. As p is a prime element of L, we have either (1) ab ≤ p or
c ≤ p, or (2) bc ≤ p or a ≤ p, or (3) ac ≤ p or b ≤ p.
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Suppose that (1) ab ≤ p or c ≤ p. If ab ≤ p then the proof is clear. If
c ≤ p then ac ≤ p ≤ δ(p).
Thus we get either ab ≤ p or bc ≤ δ(p) or ac ≤ δ(p). Similarly, we can
prove the result in the other two cases. Therefore, p is a 2-absorbing
δ-primary element. �

Remark 3.8. The following example shows that the converse of Lemma
3.7 does not hold.

Example 3.9. Let L be a multiplicative lattice shown in Figure 1.
Here the element d is δ1-primary and M-primary, ce = 0 ≤ d but
neither c ≤ d nor e ≤ d. Thus d is not a prime element.

Remark 3.10. (i) An element p is 2-absorbing δ0-primary if and only if
it is 2-absorbing.
(ii) An element p is 2-absorbing δ1-primary if and only if it is
2-absorbing primary.

Now we establish a relation between a 2-absorbing element and a
2-absorbing δ-primary element.

Lemma 3.11. If δ and γ are two element expansions, and δ(a) ≤ γ(a)
for each element a, then every 2-absorbing δ-primary element is also
2-absorbing γ-primary. Thus, in particular, a 2-absorbing element is a
2-absorbing δ-primary element for every element expansion δ.

Proof. Let p ∈ L be a 2-absorbing δ-primary element. Then abc ≤ p
implies that either ab ≤ p or bc ≤ δ(p) or ac ≤ δ(p). As p is 2-absorbing
δ-primary. δ(p) ≤ γ(p). So p is γ-primary.
Next, suppose that p is a 2-absorbing element. By Remark 3.10(i),
p is a 2-absorbing δ0-primary element. For any element expansion δ,
p ≤ δ(p), so δ0(p) = p ≤ δ(p).
Thus we get δ0(p) ≤ δ(p) and p is δ0-primary. Therefore p is 2-absorbing
δ-primary for every δ. �

The following theorem proves that the radical of a 2-absorbing
δ primary element is again a 2-absorbing δ-primary element.

Theorem 3.12. If p is a 2-absorbing δ-primary element of L such that√
δ(p) = δ(

√
p), then

√
p is a 2-absorbing δ primary element of L.

Proof. Let a, b, c ∈ L be such that abc ≤ √p. Then there exists a
positive integer n such that (abc)n ≤ p. As p is a 2-absorbing δ-primary
element of L we get either ancn ≤ p or bncn ≤ δ(p) or anbn ≤ δ(p), that

is either ac ≤ √p or bc ≤
√
δ(p) = δ(

√
p) or ab ≤

√
δ(p) = δ(

√
p).

Therefore,
√
p is a 2-absorbing δ-primary element of L. �
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Lemma 3.13. Let δ be an element expansion such that δ(δ(a)) = δ(a),
for every element a of L. Let δ(q) be a 2-absorbing δ-primary element
of L. Then (δ(q) : x) is a 2-absorbing δ-primary element of L, for all
x � δ(q).

Proof. Let x � δ(q). Let a, b, c ∈ L be such that abc ≤ (δ(q) : x).
Thus a(bc)x ≤ δ(q) and so either a(bc) ≤ δ(q) or ax ≤ δ(δ(q)) = δ(q)
or bcx ≤ δ(δ(q)) = δ(q). If ax ≤ δ(q) or bcx ≤ δ(q), then the proof is
clear. If abc ≤ δ(q), as δ(q) be a 2-absorbing δ-primary element of L, we
get either ab ≤ δ(q) or ac ≤ δ(δ(q)) = δ(q) or bc ≤ δ(δ(q)) = δ(q) and
hence either abx ≤ δ(q) or acx ≤ δ(q) or bcx ≤ δ(q). Thus (δ(q) : x) is
a 2-absorbing δ-primary element of L. �

We prove the following characterization of a 2-absorbing δ primary
element of L.

Lemma 3.14. Let δ be an element expansion of L and p is a
proper element of L. If p is a 2-absorbing δ-primary element, then for
elements x, y ∈ L with xy � δ(p), (p : xy) ≤ (δ(p) : y) ∨ (p : x).

Proof. Suppose that x, y ∈ L with xy � δ(p), let a ≤ (p : xy). So
axy ≤ p. If ax ≤ p, then a ≤ (p : x). Assume that ax � p. Since p is
a 2- absorbing δ-primary element, ay ≤ δ(p). So a ≤ (δ(p) : y). Thus
(p : xy) ≤ (δ(p) : y) ∨ (p : x). �

Theorem 3.15. If δ is an expansion function such that δ(p) ≤ δ1(p)
and δ(p) is a semi prime element of L for every element p, then for
any 2-absorbing δ-primary element p, δ(p) = δ1(p).

Proof. Let a ≤ δ1(p). Then there exists k which is the least positive
integer k with ak ≤ p. If k = 1, then a ≤ p ≤ δ(p). If k > 1, then

ak−2aa ≤ p. But ak−1 � p, so a2 ≤ δ(p) implies a ≤
√
δ(p) . Since

δ(p) is semi prime, then a ≤
√
δ(p) = δ(p). Hence δ1(p) ≤ δ(p) and

δ(p) = δ1(p). �

It is known (see [1]) that for any a ∈ L, L/a = {b ∈ L|a ≤ b} is a
multiplicative lattice with multiplication c ◦ d = cd ∨ a.

Proposition 3.16. Let L be a multiplicative lattice and p be a
2-absorbing δ-primary element. If a ∈ L with a ≤ p then p is a
2-absorbing δ-primary element of L/a.

Proof. Let x◦y◦z ≤ p, for some x, y, z ∈ L/a then clearly xyz ≤ p. As
p is a 2-absorbing δ-primary element, we get either xy ≤ p or yz ≤ δ(p)
or xz ≤ δ(p). Thus we get either x◦y ≤ p or y◦z ≤ δ(p) or x◦z ≤ δ(p).
Therefore p is a 2-absorbing δ-primary element of L/a. �
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4. Expansions with extra properties and
2-absorbing δ-primary elements

In this section we investigate 2-absorbing δ-primary elements where
δ satisfies additional conditions, and prove some results with respect to
such expansions. Recall from Manjarekar and Bingi [5] that an element
expansion δ is meet preserving if it satisfies:

δ(a ∧ b) = δ(a) ∧ δ(b) for any a, b ∈ L.

Lemma 4.1. Let δ be a meet preserving element expansion. If
q1, q2, . . . , qn are 2-absorbing δ-primary elements of L, and p = δ(qi)
for all i, then q =

∧n
i=1 qi is 2-absorbing δ-primary.

Proof. Let xyz ≤ q and xy � q then, for some k, xy � qk. Now
xyz ≤ qk, as each qk is 2-absorbing δ-primary we get either yz ≤ δ(qk)
or xz ≤ δ(qk) , But δ(q) = δ(

∧n
i=1 qi) =

∧n
i=1(δ(qi)) = p = δ(qk).

Thus either yz ≤ δ(q) or xz ≤ δ(q), so q is a 2-absorbing δ-primary
element. �

Next Lemma prove that the meet of a pair of distinct prime elements
of L is 2-absorbing δ-primary.

Lemma 4.2. Let δ be a meet preserving element expansion. Then the
meet of a pair of distinct prime elements of L is 2-absorbing δ-primary.

Proof. Assume that p1 and p2 are two distinct prime elements of L. Let
abc ≤ p1 ∧ p2. Since p1 and p2 are prime elements of L, we get either
(1) ab ≤ p1 or c ≤ p1 and ab ≤ p2 or c ≤ p2,
or (2) bc ≤ p1 or a ≤ p1 and bc ≤ p2 or a ≤ p2,
or (3) ac ≤ p1 or b ≤ p1 and ac ≤ p2 or b ≤ p2.
Suppose that (1) ab ≤ p1 or c ≤ p1 and ab ≤ p2 or c ≤ p2. If ab ≤ p1
and ab ≤ p2 then ab ≤ p1 ∧ p2 and proof is done. If c ≤ p1 and c ≤ p2
then either bc ≤ p1 and bc ≤ p2 or ac ≤ p1 and ac ≤ p2. Further it
implies either bc ≤ p1 ∧ p2 ≤ δ(p1 ∧ p2) or ac ≤ p1 ∧ p2 ≤ δ(p1 ∧ p2).
Similarly, we can prove the result in the other two cases.
Therefore, the meet of each pair of distinct prime elements of L is
2-absorbing δ-primary. �

Definition 4.3. Let L1 and L2 be compactly generated multiplicative
lattices with largest element compact in which every finite product of
compact elements is compact. Let δ be an element expansion of L2 and
γ be an element expansion of L1. We say that a lattice isomorphism
f : L1 → L2 is a γδ- lattice isomorphism if

γ(f−1(a)) = f−1(δ(a)) for all a ∈ L2.
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In particular, if f is a γδ-lattice isomorphism, then f(γ(a)) = δ(f(a))
for every element of L.
In the following result, we prove that the inverse image of a 2-absorbing
δ-primary element of L under the homomorphism is again a 2-absorbing
δ-primary element.

Lemma 4.4. Let L1 and L2 be compactly generated multiplicative
lattices with largest element compact in which every finite product of
compact elements is compact. Let f be a γδ- lattice isomorphism
f : L1 → L2. Then for any 2-absorbing δ-primary element p ∈ L2,
f−1(p) is a 2-absorbing γ-primary element of L1.

Proof. Let a, b, c ∈ L with abc ≤ f−1(p), So f(abc) = f(a)f(b)f(c) ≤ p
but p is 2-absorbing δ-primary, then we get either f(a)f(b) ≤ p or
f(a)f(c) ≤ δ(p) or f(b)f(c) ∈ δ(p), which implies either ab ≤ f−1(p)
or ac ≤ f−1(δ(p)) = γ(f−1(p)) or bc ∈ f−1(δ(p)) = γ(f−1(p)). Hence
f−1(p) is 2-absorbing γ-primary element of L1. �

The next result gives a characterization for a 2-absorbing δ-primary
element.

Lemma 4.5. Let L1 and L2 be compactly generated multiplicative
lattices with largest element compact in which every finite product of
compact elements is compact. Let f : L1 → L2 be a δγ- lattice
isomorphism. Then an element p ∈ L1 is a 2-absorbing δ-primary
element if and only if f(p) is a 2-absorbing γ-primary element of L2.

Proof. First suppose that f(p) is 2-absorbing γ-primary and we have
f−1(f(p)) = p. Then by Lemma 4.4, p is a 2-absorbing δ-primary
element of L1.
Conversely, suppose that p is a 2-absorbing δ-primary element of L1.
If a, b, c ∈ L2 and abc ≤ f(p) then there exist x, y, z ∈ L1 such that
f(x) = a and f(y) = b, and f(z) = c, then
f(xyz) = f(x)f(y)f(z) = abc ≤ f(p) implies xyz ≤ f−1(f(p)) = p,
as p is a 2-absorbing δ-primary element of L1, we get either xy ≤ p
or xz ≤ δ(p) or yz ≤ δ(p). As f is an δγ-lattice isomorphism, then
γ(f(a)) = f(δ(a)). We get either xy ≤ p or xz ≤ δ(p) = f−1(γ(f(p)))
or yz ≤ δ(p) = f−1(γ(f(p))) which implies that either ab ≤ f(p) or
ac ≤ γ(f(p)) or bc ≤ γ(f(p)). Thus f(p) is a 2-absorbing γ-primary
element of L2. �

We prove following Lemma which is helpful to prove next results, it
is an extension of [4, Lemma 2].

Lemma 4.6. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every element a ∈ L. Let δ(q) be a 2-absorbing
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δ-primary element of L. Then
(i) If x ≤

√
δ(q) then x2 ≤ δ(q).

(ii) If x, y ≤
√
δ(q) then xy ≤ δ(q).

(iii) (
√
δ(q))2 ≤ δ(q).

Proof. (i) Let a ≤
√
δ(q) be a compact element then there exists a

positive integer n such that an ≤ δ(q). Since δ(q) is a 2-absorbing
δ-primary element of L, we get a2 ≤ δ(q).

Suppose thatx ≤
√
δ(q). Let a, b ∈ L∗ be such that a ≤ x and

b ≤ x. Since a ≤
√
δ(q) and b ≤

√
δ(q), it follows that a2 ≤ δ(q) and

b2 ≤ δ(q) and so a(a ∨ b)b ≤ δ(q). As δ(q) is a 2-absorbing δ-primary
element of L, then either a(a ∨ b) ≤ δ(q) or (a ∨ b)b ≤ δ(δ(q)) = δ(q)
or ab ≤ δ(δ(q)) = δ(q). Since ab ≤ a(a ∨ b) = a2b ∨ ab2 ≤ δ(q). As
x2 = ∨{ab|a, b ∈ L∗, a ≤ x, b ≤ x}, it follows that x2 ≤ δ(q).

(ii) Suppose that x, y ≤
√
δ(q). By (i), x2 ≤ δ(q) and y2 ≤ δ(q), so

x(x ∨ y)y ≤ δ(q). As δ(q) is a 2-absorbing δ-primary element of L, it
follows that xy ≤ δ(q).

(iii) We note that (
√
δ(q))2 = ∨{ab|a, b ∈ L∗, a ≤

√
δ(q), b ≤

√
δ(q)}.

Now the result follows from (ii). �

The next result gives the condition for a p-primary element of L to
be 2-absorbing δ-primary element of L .

Lemma 4.7. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every a ∈ L. Suppose that δ(q) is a p-primary
element of L. Then δ(q) is a 2-absorbing δ-primary element of L if
and only if p2 ≤ δ(q).

Proof. Let δ(q) be a 2-absorbing δ-primary element of L. Since δ(q) is

a p-primary element of L,
√
δ(q) = p so by Lemma 4.6(iii),

p2 = (
√
δ(q))2 ≤ δ(q).

Conversely, assume that p2 ≤ δ(q) and xyz ≤ δ(q). If either x ≤ δ(q)
or yz ≤ δ(q), then the proof is clear. So assume that x � δ(q) and
yz � δ(q). Since δ(q) is a p-primary element, so we have

xyz ≤ δ(q) ≤
√
δ(q) = p and p is prime then either x ≤ p or yz ≤ p.

Thus either x ≤ p or y ≤ p or z ≤ p. Hence xy ≤ p2 or xz ≤ p2. Since
p2 ≤ δ(q), it follows that either xy ≤ δ(q) or xz ≤ δ(q), and hence δ(q)
is a 2-absorbing δ-primary element of L. �

Lemma 4.8. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every a ∈ L. Let δ(q) ∈ L be such that

√
δ(q) = p

is a prime element of L and δ(q) be a 2-absorbing δ-primary element
of L. Assume that δ(q) 6= p.
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(i) For each x ≤ p and x � δ(q), (δ(q) : x) is a prime element of L
and p ≤ (δ(q) : x).
(ii) Either (δ(q) : x) ≤ (δ(q) : y) or (δ(q) : y) ≤ (δ(q) : x), for all
x, y ≤ p and x, y � δ(q).

Proof. (i) Let x ≤ p =
√
δ(q) and x � δ(q), then by Lemma 4.6 (iii), we

have p2 = (
√

(δ(q))2 ≤ δ(q). Since x ≤ p implies that px ≤ p2 ≤ δ(q)
implies that px ≤ δ(q). So p ≤ (δ(q) : x).
Next, Let y, z ∈ L be such that yz ≤ (δ(q) : x). If either y ≤ p or
z ≤ p, since p ≤ (δ(q) : x) then either y ≤ (δ(q) : x) or z ≤ (δ(q) : x).
So assume that y � p and z � p. If yz ≤ δ(q) then

yz ≤ δ(q) ≤
√

(δ(q) = p. As p is prime we get y ≤ p or z ≤ p, a
contradiction. So we assume that yz � δ(q). Since yz ≤ (δ(q) : x), it
follows that xyz ≤ δ(q) which implies that either xy ≤ δ(δ(q)) = δ(q)
or ]xz ≤ δ(δ(q)) = δ(q). Hence either y ≤ (δ(q) : x) or z ≤ (δ(q) : x).
Thus (δ(q) : x) is a prime element of L.
(ii) Let x, y ≤ p and x, y � δ(q). Choose any z ≤ L∗ such that
z ≤ (δ(q) : x) and z � (δ(q) : y). By (i), p ≤ (δ(q) : y). So z � p. We
show that (δ(q) : y) ≤ (δ(q) : x). Let w ≤ L∗ and let w ≤ (δ(q) : y). If
w ≤ p, then w ≤ (δ(q) : x). So assume that w � p. Since z ≤ (δ(q) : x)
and w ≤ (δ(q) : y) then we get z(x ∨ y)w ≤ δ(q). As δ(q) is a
2-absorbing δ-primary element of L, either
zy ≤ zx ∨ zy ≤ z(x ∨ y) ≤ δ(q) or zw ≤ δ(δ(q)) = δ(q) or
(x ∨ y)w ≤ δ(δ(q)) = δ(q). Since z � (δ(q) : y) and z � p and w � p,
we get zy � δ(q) and zw � δ(q). Thus we get xw ≤ δ(q) implies that
w ≤ (δ(q) : x). Therefore (δ(q) : y) ≤ (δ(q) : x). �

Theorem 4.9 characterize nonradical 2-absorbing elements of L.

Theorem 4.9. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every a ∈ L. Let δ(q) ∈ L be such that δ(q) 6=

√
δ(q)

and
√
δ(q) be a prime element of L. Then the following statements are

equivalent:
(i) δ(q) is a 2-absorbing δ-primary element of L.

(ii) (δ(q) : x) is a prime element of L for each x ≤
√
δ(q) and x � δ(q).

Proof. (i)⇒ (ii) Follows from Lemma 4.8.

(ii) ⇒ (i) Let xyz ≤ δ(q) ≤
√
δ(q). Since

√
δ(q) is a prime element

then x ≤
√
δ(q) or y ≤

√
δ(q) or z ≤

√
δ(q). Let us assume that

x ≤
√
δ(q). If x ≤ δ(q) then the proof is clear. Suppose that x � δ(q)

then by (ii), (δ(q) : x) is a prime element of L, and yz ≤ (δ(q) : x), so
either y ≤ (δ(q) : x) or z ≤ (δ(q) : x) it follows that either xy ≤ δ(q)
or xz ≤ δ(q). Thus δ(q) is a 2-absorbing δ-primary element of L. �
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Theorem 4.10. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every a ∈ L. Let δ(q) be a 2-absorbing δ-primary
element of L. Then the following statements holds:
(i) If y ∈ L, x ≤

√
δ(q) and x � δ(q) and xy � δ(q), then

(δ(q) : xy) = (δ(q) : x).

(ii) If x ≤
√
δ(q) and x � δ(q) and (δ(q) : x) < (δ(q) : y), then

(δ(q) : ax∨ by) = (δ(q) : x), for all a, b, y ∈ L such that ab � (δ(q) : x).
In particular, (δ(q) : x ∨ y) = (δ(q) : x).

Proof. (i) Let y ∈ L, x ≤
√
δ(q) and x � δ(q) and xy � δ(q). Let

a ≤ (δ(q) : x) implies that ax ≤ δ(q) implies that
axy ≤ δ(q)y ≤ δ(q) ∧ y ≤ δ(q), so we get a ≤ (δ(q) : xy), Thus
(δ(q) : x) ≤ (δ(q) : xy). Let z ≤ (δ(q) : xy), then xyz ≤ δ(q), since
x � δ(q), we have yz ≤ (δ(q) : x), by Lemma 4.8, (δ(q) : x) is a
prime element. Hence either y ≤ (δ(q) : x) or z ≤ (δ(q) : x), but
xy � δ(q) , so z ≤ (δ(q) : x). Thus (δ(q) : xy) ≤ (δ(q) : x). Hence
(δ(q) : xy) = (δ(q) : x).

(ii) Suppose that x ≤
√
δ(q) and x � δ(q) and (δ(q) : x) < (δ(q) : y).

Let a, b ∈ L such that ab � (δ(q) : x). Let z ≤ (δ(q) : x)⇒ zx ≤ δ(q)
⇒ zxa ≤ δ(q)a ≤ δ(q) ∧ a ≤ δ(q). Similarly we get zby ≤ δ(q), These
imply that zax∨zby ≤ δ(q)⇒ z(ax∨by) ≤ δ(q)⇒ z ≤ (δ(q) : ax∨by).
Thus (δ(q) : x) ≤ (δ(q) : ax ∨ by).

On the other hand, suppose that z ≤ (δ(q) : ax ∨ by) � (δ(q) : x)
then z ≤ (δ(q) : ax ∨ by) and z � (δ(q) : x). As z ≤ (δ(q) : ax ∨ by)⇒
zax ≤ zax ∨ zby ≤ δ(q)⇒ zax ≤ δ(q)⇒ za ≤ (δ(q) : x) and (δ(q) : x)
is prime, it follows that z ≤ (δ(q) : x) or a ≤ (δ(q) : x), a contradiction.
Therefore (δ(q) : x) = (δ(q) : ax ∨ by). By taking a = b = 1 then we
get (δ(q) : x) = (δ(q) : x ∨ y). �

Lemma 4.11. Let δ be an element expansion such that δ(δ(a)) = δ(a),
for every a ∈ L. Suppose that δ(q) is a 2-absorbing δ-primary element
of L and p1, p2 are two distinct minimal primes over δ(q).
Let x1, x2 ∈ L∗ be such that x1 ≤ p1, x1 � p2, x2 ≤ p2, x2 � p1. Then
x1x2 ≤ δ(q).

Proof. Let x1, x2 ∈ L∗ be such that x1 ≤ p1, x1 � p2, x2 ≤ p2, x2 � p1.
By [2, Lemma 3.5], there exist c1, c2 ∈ L∗ and c1 � p1, c2 � p2 such
that c2x

n
1 ≤ q ≤ δ(q), c1x

m
2 ≤ q ≤ δ(q) for some positive integers n and

m. As δ(q) is a 2-absorbing δ-primary element, it follows that either
c2x1 ≤ δ(δ(q)) = δ(q) or x1 ≤ δ(q). If x1 ≤ δ(q) ≤ p2, then x1 ≤ p2, a
contradiction. Therefore c2x1 ≤ δ(q). Similarly, it can be easily shown
that c1x2 ≤ δ(q).
Now observe that (c1 ∨ c2)x1x2 ≤ δ(q). Since c1 ∨ c2 � p1 and
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c1 ∨ c2 � p2, we conclude that (c1 ∨ c2)x2 � p1 and (c1 ∨ c2)x1 � p2.
Hence (c1∨ c2)x2 � δ(δ(q)) = δ(q) and (c1∨ c2)x1 � δ(δ(q)) = δ(q) and
so x1x2 ≤ δ(q), as δ(q) is a 2-absorbing δ-primary element of L. �

Lemma 4.12. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every a ∈ L. Let δ(q) be a 2-absorbing δ-primary
element of L. Then there are at most two prime elements of L that are
minimal over δ(q).

Proof. Let A = { pi : pi is prime elements of L that are minimal over
δ(q)}, and assume that A has at least three elements. Let p1, p2 ∈ A.
Then there exist x1, x2 ∈ L∗ such that x1 ≤ p1, x1 � p2, x2 ≤ p2,
x2 � p1. Then x1x2 ≤ δ(q), by Lemma 4.11. Now assume that there
exists p3 ∈ A distinct from p1 and p2. Then we can choose yi ∈ L∗ such
that yi ≤ pi, yi � pj, for i 6= j, where i, j = 1, 2, 3. By Lemma 4.11, we
have y1y2 ≤ δ(q) ≤ p3, as p3 is prime this implies that either y1 ≤ p3 or
y2 ≤ p3, a contradiction. Therefore A has at most two elements. �

Theorem 4.13. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every a ∈ L. Let δ(q) be a 2-absorbing δ-primary
element of L. Then one of the following statement hold true:
(1)

√
δ(q) = p is a prime element of L such that p2 ≤ δ(q).

(2)
√
δ(q) = p1 ∧ p2 and p1p2 ≤ δ(q), where p1 and p2 are the only

nonzero distinct prime elements of L that are minimal over δ(q).

Proof. By Lemma 4.12, we have either
√
δ(q) = p is a prime element

of L or
√
δ(q) = p1 ∧ p2, where p1 and p2 are the only nonzero distinct

prime elements of L that are minimal over δ(q).

If
√
δ(q) = p is a prime element of L, then by Lemma 4.7, p2 ≤ δ(q),

so the condition (1) holds.

Now assume
√
δ(q) = p1 ∧ p2, where p1 and p2 are the only nonzero

distinct prime elements of L that are minimal over δ(q). We show

that p1p2 ≤ δ(q). If x, y ≤
√
δ(q) = p1 ∧ p2, then by Lemma 4.6,(ii),

xy ≤ δ(q).
If x, y ∈ L∗ be such that x ≤ p1, x � p2, y ≤ p2, y � p1. Then
xy ≤ δ(q), by Lemma 4.11.

If x, y ∈ L∗ be such that x ≤
√
δ(q), y ≤ p2, y � p1. Take y1 ∈ L∗ such

that y1 ≤ p1, y1 � p2. Then yy1 ≤ δ(q), by Lemma 4.11. Note that
x ∨ y1 ≤ p1, x ∨ y1 � p2. Then (x ∨ y1)y ≤ δ(q), by Lemma 4.11 and

hence xy ≤ δ(q). Similarly, we can show that if y ∈
√
δ(q), x ≤ p1,

x � p2, then xy ≤ δ(q). Consequently, we get p1p2 ≤ δ(q). So the
condition (2) holds. �
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Lemma 4.14. Let δ be an element expansion such that δ(δ(a)) = δ(a),
for every a ∈ L. Let δ(q) be a 2-absorbing δ-primary element of L such

that δ(q) 6=
√
δ(q) = p1 ∧ p2, where p1 and p2 are the only nonzero

distinct prime elements of L that are minimal over δ(q).

(i) For each x ≤
√
δ(q) and x � δ(q), (δ(q) : x) is a prime element of

L and p1 ≤ (δ(q) : x) and p2 ≤ (δ(q) : x).
(ii) Either (δ(q) : x) ≤ (δ(q) : y) or (δ(q) : y) ≤ (δ(q) : x), for all

x, y ≤
√
δ(q) and x, y � (δ(q).

Proof. (i) Let x ≤
√

(δ(q) and x � (δ(q). Since p1p2 ≤ δ(q), by
Theorem 4.13, we have xp1 ≤ δ(q), and xp2 ≤ δ(q). Thus
p1 ≤ (δ(q) : x) and p2 ≤ (δ(q) : x). Suppose y, z ∈ L, and
yz ≤ (δ(q) : x). So we have xyz ≤ δ(q), since δ(q) is a 2-absorbing
δ-primary element of L, we have either xy ≤ δ(q) or
xz ≤ δ(δ(q)) = δ(q) or yz ≤ δ(δ(q)) = δ(q). If either y ≤ p1 or y ≤ p2
or z ≤ p1 or z ≤ p2, then the proof is clear. If y, z � p1 or y, z � p2,
and so yz � δ(q), then we get either xy ≤ δ(q) or xz ≤ δ(δ(q)) = δ(q).
Thus we get either y ≤ (δ(q) : x) and z ≤ (δ(q) : x). Therefore
(δ(q) : x) is a prime element of L.
(ii)The proof is similar to the proof of Lemma 4.8(ii). �

We prove the following characterization.

Theorem 4.15. Let δ be an element expansion such that
δ(δ(a)) = δ(a), for every a ∈ L. Let q ∈ L, and let

δ(q) 6=
√
δ(q) = p1 ∧ p2 where p1 and p2 are the only nonzero distinct

prime elements of L that are minimal over δ(q). Then the following
statements are equivalent :
(1) δ(q) is a 2-absorbing δ-primary element of L;
(2) p1p2 ≤ δ(q) and (δ(q) : x) is a prime element of L, for each

x ≤
√
δ(q) and x � δ(q);

(3) If (δ(q) : x) is proper and either x ≤ p1 or x ≤ p2, then (δ(q) : x)
is a prime element of L.

Proof. (1)⇒ (2) follows from Lemma 4.14 and Theorem 4.13.
(2)⇒ (3) Let x ≤ p1 and x � p2, since p1p2 ≤ δ(q), we have xp2 ≤ δ(q).
Hence (δ(q) : x) = p2 is a prime element of L. Similarly, x ≤ p2 and
x � p1, then p1x ≤ δ(q). Hence (δ(q) : x) = p1 is a prime element of
L. If x ≤ p1 and x ≤ p2 and x � δ(q) then by condition (2), (δ(q) : x)
is a prime element of L, so (3) holds.
(3)⇒ (1) Let xyz ≤ δ(q), for some x, y, z ∈ L.

So xyz ≤ δ(q) ≤
√
δ(q) = p1 ∧ p2, so xyz ≤ p1 ∧ p2 then xyz ≤ p1 and

xyz ≤ p2 implies that either x ≤ p1 or yz ≤ p1 and either x ≤ p2 or
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yz ≤ p2. Without loss of generality, we assume that x ≤ p1. If x ≤ δ(q)
then the proof is clear. If x � δ(q) then yz ≤ (δ(q) : x) and by (3),
(δ(q) : x) is prime then either y ≤ (δ(q) : x) or z ≤ (δ(q) : x), it follows
that either xy ≤ δ(q) ≤ δ(δ(q)) or xz ≤ δ(q) ≤ δ(δ(q)). Thus δ(q) is a
2-absorbing δ-primary element of L. �

5. weakly 2-absorbing δ-primary elements

In this section, we define a weakly 2-absorbing δ-primary element and
obtain some properties of these elements. Also we define a δ-triple-zero.

Definition 5.1. A proper element p of L is called a weakly 2-absorbing
δ-primary element if, whenever, a, b, c ∈ L and 0 6= abc ≤ p implies that
ab ≤ p or bc ≤ δ(p) or ac ≤ δ(p).

We prove the following characterization of a weakly 2-absorbing
δ-primary element, the proof of this Theorem is similar to the proof of
Theorem 3.6.

Theorem 5.2. An element q ∈ L is a weakly 2-absorbing δ-primary
element if and only if for any a, b, c ∈ L∗, 0 6= abc ≤ q implies that
either ab ≤ q or ac ≤ δ(q) or bc ≤ δ(q).

Lemma 5.3. Every 2-absorbing δ-primary element of L is a weakly
2-absorbing δ-primary element of L.

Proof. Suppose that p is a 2-absorbing δ-primary element of L. Let
0 6= abc ≤ p. As p is a 2-absorbing δ-primary element of L, we get
ab ≤ p or bc ≤ δ(p) or ac ≤ δ(p). Thus p is a weakly 2-absorbing
δ-primary element of L. �

Remark 5.4. The following example shows that the converse of Lemma
5.3 does not hold.

Example 5.5. Consider the multiplicative lattice shown in Figure 1.
Here the element 0 is weakly 2-absorbing δ0-primary, δ1-primary,
M-primary element. For g, h, i ∈ L, ghi = 0 ≤ 0 but neither hi = e ≤ 0
nor gi = g ≤ δ0(0) = 0 nor gh = c ≤ δ0(0) = 0.
dij = 0 ≤ 0 but neither di = a ≤ 0 nor ij = g ≤ δ1(0) = c nor
dj = b ≤ δ1(0) = c.
dij = 0 ≤ 0 but neither di = a ≤ 0 nor ij = g ≤ M(0) = c nor
dj = b ≤M(0) = c.
Thus 0 is not 2-absorbing δ0-primary, δ1-primary, M-primary element
of L.
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We have proved Lemmas 3.7 and 4.2 for 2-absorbing δ-primary
elements. The following two results can be similarly proved for weakly
2-absorbing δ-primary elements.

Lemma 5.6. Every weakly prime element of L is a weakly 2-absorbing
δ-primary element of L.

The proof of this Lemma is similar to the proof of Lemma 3.7.

Remark 5.7. The following example shows that the converse of Lemma
5.6 does not hold.

Example 5.8. Consider the multiplicative lattice shown in Figure 1.
Here the element e is 2-absorbing δ0-primary, δ1-primary, M-primary
element and weakly 2-absorbing δ0-primary, δ1-primary, M-primary
element. For di = a ≤ e but neither d ≤ e nor i ≤ e. Hence e is neither
prime nor weakly prime element.

Lemma 5.9. Let δ be an meet preserving element expansion. Then
the meet of any two weakly prime elements of L is weakly 2-absorbing
δ-primary.

The proof is similar to the proof of Lemma 4.2.

Definition 5.10. Let p be a weakly 2-absorbing δ-primary element of
L. We say that (a, b, c) is a δ-triple-zero of p if whenever a, b, c ∈ L
and abc = 0 then ab � p, bc � δ(p) and ac � δ(p).

Remark 5.11. If q is a weakly 2-absorbing δ-primary element of L that
is not a 2-absorbing δ-primary element of L, then q has a δ-triple-zero
(a, b, c), for some a, b, c ∈ L.

Proof. Since q is not a 2-absorbing δ-primary element of L then there
exists a, b, c ∈ L, abc ≤ q but ab � q, bc � δ(q), ac � δ(q). As q is
a weakly 2-absorbing δ-primary element of L, if abc 6= 0 then either
ab ≤ q or bc ≤ δ(q) or ac ≤ δ(q), which is not possible. Hence abc = 0.
Thus q has a δ-triple-zero (a, b, c). �

Theorem 5.12. Let q be a weakly 2-absorbing δ-primary element of
L and suppose that (a, b, c) is a δ-triple zero of q for some a, b, c ∈ L.
Then
(1) abq = bcq = acq = 0
(2) aq2 = bq2 = cq2 = 0

Proof. (1) Suppose that abq 6= 0. Let x be a compact element of L
such that x ≤ q. Suppose that 0 6= abx ≤ q. Hence
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0 6= abc ∨ abx = ab(c ∨ x) ≤ q. Since ab � q and q is a weakly
2-absorbing δ-primary element, we have either a(c ∨ x) ≤ δ(q) or
b(c ∨ x) ≤ δ(q). So we get either ac ≤ a(c ∨ x) ≤ δ(q) or
bc ≤ b(c ∨ x) ≤ δ(q), which is a contradiction. Thus abx = 0, and so
abq = 0. Similarly, bcq = acq = 0.
(2) Suppose that aq2 6= 0. Let x, y be compact elements of L such that
x, y ≤ q. Suppose that 0 6= axy ≤ q. Hence
0 6= abc ∨ axy ∨ acx ∨ aby = a(b ∨ x)(c ∨ y) ≤ q. Hence from (1),
aby = acx = abc = 0, we have 0 6= axy = a(b∨ x)(c∨ y) ≤ q and q is a
weakly 2-absorbing δ-primary element, we have either a(b ∨ x) ≤ q or
a(c∨y) ≤ δ(q) or (b∨x)(c∨y) ≤ δ(q). So we get either ab ≤ a(b∨x) ≤ q
or ac ≤ a(c ∨ y) ≤ δ(q) or bc ≤ (b ∨ x)(c ∨ y) ≤ δ(q), which is a
contradiction. Thus axy = 0, and so aq2 = 0. Similarly, we can prove
that bq2 = cq2 = 0. �

The following theorem establishes a condition for a weakly 2-absorbing
δ-primary element of L to be a 2-absorbing δ-primary element of L.

Theorem 5.13. If q is a weakly 2-absorbing δ-primary element of L
that is not 2-absorbing δ-primary element, then q3 = 0.

Proof. Suppose that q is a weakly 2-absorbing δ-primary element of L
that is not a 2-absorbing δ-primary element, then there exists a
δ-triple-zero (a, b, c) of q for some a, b, c ∈ L. Assume that q3 6= 0.
Hence xyz 6= 0 for some compact elements x, y, z ≤ q. By Theorem
5.12, we obtain 0 6= (a ∨ x)(b ∨ y)(c ∨ z) ≤ q and q is a weakly
2-absorbing δ-primary element, we have either (a ∨ x)(b ∨ y) ≤ q or
(a ∨ x)(c ∨ z) ≤ δ(q) or (b ∨ y)(c ∨ z) ≤ δ(q). So we get either
ab ≤ (a ∨ x)(b ∨ y) ≤ q or ac ≤ (a ∨ x)(c ∨ z) ≤ δ(q) or
bc ≤ (b∨ y)(c∨ z) ≤ δ(q), which is a contradiction. Thus xyz = 0, and
so q3 = 0. �

As a consequences of Theorem 5.13, we have the following result.

Corollary 5.14. Let q be a weakly 2-absorbing δ-primary element of
L that is not 2-absorbing δ-primary element, then q ≤

√
0.

Manjarekar and Chavan [6] have introduced the concept of a free
triple-zero. We generalize this to free δ-triple-zero as follows.

Definition 5.15. Let q be a weakly 2-absorbing δ-primary element of
L and suppose that a1a2a3 ≤ q for some a1, a2, a3 ∈ L. We say that q is
a free δ-triple-zero with respect to a1a2a3 if (a, b, c) is not a δ-triple-zero
of q for any a ≤ a1, b ≤ a2, c ≤ a3.
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Lemma 5.16. Let q be a weakly 2-absorbing δ-primary element of L,
and suppose abd ≤ q for some elements a, b, d ∈ L such that (a, b, c) is
not a δ-triple-zero of q for every c ≤ d. If ab � q then ad ≤ δ(q) or
bd ≤ δ(q).

Proof. Suppose that neither ad ≤ δ(q) nor bd ≤ δ(q). Then ad1 � δ(q)
and bd2 � δ(q) for some d1, d2 ≤ d. Since (a, b, d1) is not a δ-triple-zero
of q and abd1 ≤ q and ab � q, ad1 � δ(q), we have bd1 ≤ δ(q). Since
(a, b, d2) is not a δ-triple-zero of q and abd2 ≤ q and ab � q, bd2 � δ(q),
we have ad2 ≤ δ(q). Since (a, b, d1 ∨ d2) is not a δ-triple-zero of q
and ab(d1 ∨ d2) ≤ q and ab � q, then we have a(d1 ∨ d2) ≤ δ(q) or
b(d1 ∨ d2) ≤ δ(q). If a(d1 ∨ d2) ≤ δ(q) then ad1 ≤ δ(q) and ad2 ≤ δ(q),
a contradiction. Hence b(d1 ∨ d2) ≤ δ(q). This implies bd1 ≤ δ(q) and
bd2 ≤ δ(q), a contradiction. Hence ad ≤ δ(q) or bd ≤ δ(q). �

Corollary 5.17. Let q be a weakly 2-absorbing δ-primary element of
L, and suppose that a1a2a3 ≤ q for some a1, a2, a3 ∈ L such that q is a
free δ-triple-zero with respect to a1a2a3. If a ≤ a1, b ≤ a2, c ≤ a3, then
ab ≤ q or ac ≤ δ(q) or bc ≤ δ(q).

Proof. Since q is a free δ-triple-zero with respect to a1a2a3. It follows
that (a, b, c) is not a δ-triple zero of q for any a ≤ a1, b ≤ a2, c ≤ a3.
We have abc ≤ a1a2a3 ≤ q. Since (a, b, c) is not a δ-triple-zero of q,
we must have either ab ≤ q or ac ≤ δ(q) or bc ≤ δ(q), if abc = 0. If
abc 6= 0 then 0 6= abc ≤ q implies that either ab ≤ q or ac ≤ δ(q) or
bc ≤ δ(q), as q is a weakly 2-absorbing δ-primary element of L. �

Theorem 5.18. Let q be a weakly 2-absorbing δ-primary element of L,
and suppose that 0 6= a1a2a3 ≤ q for some a1, a2, a3 ∈ L such that q is a
free δ-triple-zero with respect to a1a2a3. Then a1a2 ≤ q or a2a3 ≤ δ(q)
or a1a3 ≤ δ(q).

Proof. Suppose that a1a2 � q. If a2a3 � δ(q) and a1a3 � δ(q), then
there exist q1 ≤ a1, q2 ≤ a2 such that q2a3 � δ(q) and q1a3 � δ(q).
Since q1q2a3 ≤ q and q2a3 � δ(q) and q1a3 � δ(q), we have q1q2 ≤ q,
by Lemma 5.16. Since a1a2 � q we have ab � q for some a ≤ a1
and b ≤ a2. Since aba3 ≤ q and ab � q then we have aa3 ≤ δ(q) or
ba3 ≤ δ(q).
Case (1): Suppose that aa3 ≤ δ(q) but ba3 � δ(q). Since q1ba3 ≤ q and
ba3 � δ(q) and q1a3 � δ(q), we have q1b ≤ q by Lemma 5.16. Since
(a∨ q1)ba3 ≤ q and q1a3 � δ(q), so we conclude that (a∨ q1)a3 � δ(q).
Since (a∨ q1)a3 � δ(q) and ba3 � δ(q), we get (a∨ q1)b ≤ q, by Lemma
5.16. Since (a ∨ q1)b = ab ∨ q1b ≤ q, and q1b ≤ q, so we get ab ≤ q, a
contradiction.
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Case (2): Suppose that ba3 ≤ δ(q) but aa3 � δ(q). Since aq2a3 ≤ q and
aa3 � δ(q) and q2a3 � δ(q), we have q2b ≤ q by Lemma 5.16. Since
a(b ∨ q2)a3 ≤ q and q2a3 � δ(q), so we conclude that (b ∨ q2)a3 � δ(q).
Since (b∨ q2)a3 � δ(q) and aa3 � δ(q), we get a(b∨ q2) ≤ q, by Lemma
5.16. Since a(b ∨ q2) = ab ∨ q2a ≤ q, and q2a ≤ q, so we get ab ≤ q, a
contradiction.
Case (3): Suppose that aa3 ≤ δ(q) and ba3 ≤ δ(q). Since q2a3 � δ(q),
so we conclude that (b ∨ q2)a3 � δ(q). Since q1(b ∨ q2)a3 ≤ q and
q1a3 � δ(q) and (b ∨ q2)a3 � δ(q), so q1(b ∨ q2) = q1b ∨ q1q2 ≤ q,
by Lemma 5.16. Since q1b ∨ q1q2 ≤ q then we get q1b ≤ q. Since
q1a3 � δ(q), so we conclude that (a∨q1)a3 � δ(q). Since (a∨q1)q2a3 ≤ q
and q2a3 � δ(q) and (a ∨ q1)a3 � δ(q), so (a ∨ q1)q2 = aq2 ∨ q1q2 ≤ q,
by Lemma 5.16. Since aq2 ∨ q1q2 ≤ q then we get aq2 ≤ q. Now
since (a ∨ q1)(b ∨ q2)a3 ≤ q and (a ∨ q1)a3 � δ(q), (b ∨ q2)a3 � δ(q), so
(a∨q1)(b∨q2) = ab∨aq2∨bq1∨q1q2 ≤ q, by Lemma 5.16. So we conclude
that ab ≤ q, a contradiction. Hence a2a3 ≤ δ(q) or a1a3 ≤ δ(q). �
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